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Renormalized measure of regular languages
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This paper modifies the signed real measure of regular languages, which has been reported in

recent literature for analysis and synthesis of discrete event supervisory control laws. A new

concept of renormalized measure is introduced to eliminate a user-selectable parameter in the

present version of the language measure. The concept of measure renormalization is illustrated

by an example.

1. Introduction

The signed real measure of regular languages

(of symbolic strings) has been reported in recent literature

(Ray 2005, Ray et al. 2005) as a quantative tool for

analysis and synthesis of discrete event supervisory

control laws (Ray et al. 2004). The regular language of

plant dynamics is realized by a Deterministic Finite State

Automaton (DFSA) Gi � hQ,�, �, qi,Qmi with cardin-

ality of the set of states Q
�� �� ¼ n2N. The language

measure is obtained in terms of a normalized state weight

vector, called the �-vector, and the state transition cost

matrix, called the a �-matrix. While the elements of the

�-vector are normalized to lie in the interval [�1, 1] and

the reflect individual state’s relative impact on the system

performance, the �-matrix captures the dynamics

behaviours of the plant under control. An element �jk
of the �-matrix is conceptually similar to the state

transition probability of Markov Chain with the

exception that the equality condition �k�jk¼ 1 is not

satisfied. Specifically,�k�jk<1, j¼ 1, 2, . . . , nmakes� a

contraction operator; this strict inequality is based on the

following rationale (Ray 2005, Ray et al. 2005). Since the

plant model is an inexact representation of the physical

plant, there exist unmodelled dynamics to be accounted

for. This phenomenon manifests itself either as unmo-

delled events that may occur at each state or as

unaccounted state(s) in the model.
Garg et al. (1992a, b) studied probabilistic discrete

event systems in the context of ‘‘terminating’’ models,

where the event probabilities at one or more state
may not sum to unity. The difference from unity is
interpreted as the probability of the plant terminating
operation at the particular state. Equivalently, the
difference from unity is the probability of transition
to a dump state. Reported work on language measure
(Ray 2005) and corresponding optimal control algo-
rithms (Ray et al. 2004) investigated such ‘‘terminating’’
plant models.

Let �u denote the set of all unmodelled events in the
DFSA. A new unmarked absorbing state qnþ1, called the
dump state (Ramadge and Wonham 1987), is created
and the transition function � is extented to �ext:
ðQ [ fqnþ1gÞ � ð� [�uÞ ! ðQ [ fqnþ1gÞ: The residue
�j¼ 1��k�jk denotes the probability of transition from
qj to qnþ1. Consequently, the �-matrix is augmented to
obtain a stochastic matrix �aug as follows:

�aug ¼

�11 �12 � � � �1n �1

�21 �22 � � � �2n �2

..

. ..
. . .

. ..
. ..

.

�n1 �n2 � � � �nn �n

0 0 0 � � � 1

2
6666666664

3
7777777775
: ð1Þ

Since the dump state qnþ1 is not marked (Ramadge
and Wonham 1987), it follows from (Ray 2005)
that the corresponding state weight �nþ1¼ 0. Hence,
the �-vector is augmented as �aug¼ [�T 0]T. With
these extension, the language measure vector �aug �

½�1 �2 . . . �n �nþ1 �
T
¼ ½�T �nþ1 �
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augmented DFSA is expressed as

�aug �
�

�nþ1

� �
¼

��þ ½ �1 � � � �n �
T �nþ1

�nþ1

 !
þ

�

0

� �
:

ð2Þ

In equation (2), �nþ1¼ 0 because �nþ1¼ 0 and all
transitions from the absorbing state qnþ1 lead to itself.
Hence,

�ð�1, . . . , �nÞ ¼ �ð�1, . . . , �nÞ�ð�1, . . . , �nÞ þ �: ð3Þ

Since it may be difficult to identify �j, j¼ 1, 2 , . . . , n
from experimental data, these n parameters are replaced
by a single parameter ��minj �j such that the induced
sup-norm k�k1¼maxj(1� �j)(�) remains unchanged.
In that case, �(�) can be obtained by multiplying the
experimentally determined stochastic matrix of state
transitions with the scalar parameter (1� �) (Ray 2005,
Ray et al. 2005). The objective here is to formulate a
well-defined measure for the limiting non-terminating
case. Therefore, identical probabilities of transition
from each terminating state to the dump state (i.e., a
common �) does not cause any loss of generality.
The next section shows that this approach makes the
computed measures unique.
This paper introduces the new concept of renormalized

measure and its properties to eliminate the parameter � in
the language measure. Specifically, the renormalized
measure is computed in the limit � approaching zero so
that �(�) converges to the original (i.e., experimentally
determined) stochastic matrix (Ray 2005, Ray et al. 2005)
of state transitions. Specifically, the language measure is
extended to ‘‘non- terminating’’ plants (i.e., to automata
that do not have a dump state).
This paper is organized in five sections and appendix.

Section 2 introduces the concept of renormalized
measure and derives its properties. Section 3 computes
recursive relations on the derivatives of the renormalized
measure and establishes their limits. Section 4 presents
an example to illustrate the concept of renormalized
measure. Section 5 summarizes and concludes the paper
with recommendations for future work. The appendix
presents pertinent results on stochastic matrices to
support xx 2 and 3.

2. Renormalization of language measure

This section introduces the concept of renormalized
measure as an extension of the signed real measure �
(Ray 2005, Ray et al. 2005). Let P 2 [0, 1]n�n be a
stochastic matrix (Bepat and Raghavan 1997) (i.e., each
element of P is non negative and each row of P sums to
unity), implying that the induced sup-norm kPk1¼ 1.
Let us now parameterize the matrix operator P in terms

of � 2 (0, 1) as

�ð�Þ � ð1� �ÞP: ð4Þ

Then, the induced sup-norm k�(�)k1¼ (1� �). Let us
consider a regular language and its realization as a
deterministic finite state automaton (DFSA) over a
symbol alphabet �, where the number of automaton
states is n2N. Following equations (2)–(4), the language
measure is obtained (Ray 2005, Ray et al. 2005) as

�ð�Þ ¼ ½I��ð�Þ��1�, ð5Þ

where � 2 [�1, 1]n is the normalized state weight vector
for the DFSA; and �(�) is the state transition cost
matrix (Ray 2005). Since �(�) is a linear continuous
operator in the Banach space R

n with the induced
sup-norm k�(�)k1¼ 1� �, the following inequality
(Naylor and sell 1982) holds:

k½I��ð�Þ��1
k1 � ��1: ð6Þ

Furthermore, since k�k1� 1, it follows from
equations (5) and (6) that

k�ð�Þk1 � ��1 8 � 2 ð0, 1Þ: ð7Þ

The regular language under consideration is a sub-
language of the Kleene closure �* of the alphabet �, for
which the automation states can be merged into a single
state. In that case, the state transition cost matrix �(�)
degenerates to the 1� 1 matrix [1� �] and the normal-
ized state weight vector � becomes one-dimensional
and can be assigned as �¼ 1; consequently, the measure
vector �(�) degenerates to the scalar measure ��1.
Hence, to alleviate the singularity of the matrix
operator [I��(�)] at �¼ 0, the measure vector �(�) in
equation (5) is normalized with respect to ��1 to obtain
the renormalized measure vector.

Definition 1:

�renð�Þ � �½I��ð�Þ��1�

¼ �½I� Pð1� �Þ��1� ð8Þ

Remark 1: Recalling that the original expression for
language measure in equation (5) is given by [I��]�1�,
the transition probability matrix � becomes a stochastic
matrix (i.e., each row summing exactly to unity) as
�! 0þ; hence [I��] becomes non-invertible. It is
shown in the following proposition that the problem
can be handled by considering non terminating models
as the limiting cases of terminating models as the
transition probabilities to the dump state (see x 1) goes to
zero.

Propositon 1: The limiting renormalized measure vector
�ren(0)� lim�!0þ �ren(�) exists and k�ren(0)k1� 1.
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Proof: Because of continuity of the linear bounded
operator � and completeness of the space R

n,
equations (6)–(8) yield the following result:
k�ren(0)k1� 1. œ

Proposition 2: Let P be the transition matrix of a finite
markov chain (or equivalently a regular language). Then,
as the parameter �! 0þ, the limiting renormalized
measure vector is obtained as

�renð0Þ ¼ p�, ð9Þ

where the matrix operator p � limk!1ð1=kÞ
Pk�1

j�0 Pj is
defined in Theorem A.1.

Proof: Based on Definition 1 and Proposition 1, it
suffices to show that the following statement is true:

lim
�!0þ

�½I� ð1� �ÞP��1
¼ p: ð10Þ

We define the following identities:

�ð�Þ ¼ �½I� ð1� �ÞP��1
8 � 2 ð0, 1Þ ð11aÞ

�ð�Þ ¼ �
X1
k¼0

ð1� �Þkp 8 � 2 ð0, 1Þ: ð11bÞ

We observe that, for � 2 (0, 1), �(�)¼ �
P1

k¼0 ð1� �ÞkPk:
Therefore, �ð�Þ ¼ �ð�Þ ¼ �

P1

k¼0 ð1��ÞkðPk �pÞ. Using
the result ðPk �pÞ ¼ ðP�pÞ

k from Lemma A.1 and
Proposition A.1, we have

�ð�Þ ��ð�Þ ¼ �½I� ð1� �ÞðP�pÞ�
�1

) lim
�!0þ

ð�ð�Þ ��ð�ÞÞ ¼ lim
�!0þ

�½I� ð1� �ÞðP�pÞ�
�1:

Recalling that for, continuous functions f(�) and g(�),

lim
�!0þ

fð�Þ ¼ 0 and lim
�!0þ

gð�Þ<1

) lim
�!0þ

fð�Þgð�Þ ¼ 0,

we obtain ð�ð�Þ ��ð�ÞÞ ¼ 0) lim
�!0þ

�ð�Þ ¼ lim
�!0þ

�ð�Þ

) lim
�!0þ

�½I� ð1� �ÞP��1
¼ lim

�!0þ

�

�

� �
p¼p:

The proof is thus complete. œ

Corollary 1 (to Proposition 2): The expression p�renð�Þ
is independent of �. Specifically, the following identity
holds for all � 2 (0, 1):

p�renð�Þ ¼ p�: ð12Þ

Proof: Since [I� (1� �)P] is invertible for all � 2 (0, 1),
it follow from equation (8) and Theorem A.1 that

p�renð�Þ ¼ �p
X1
k¼0

ð1� �ÞkPk� ¼ �
X1
k¼0

ð1� �Þkp� ¼ p�

œ

In the sequel �ren(0) is referred to as the renormalized
measure vector unless otherwise stated.

2.1 Renormalized measure for primitive matrices

This section presents a special case, where the state
transition matrix P is restricted to be primitive, i.e.,
irreducible and aperiodic (Berman and Plemmons 1979)
(see Definition A.1). In that case, by Perron–Frobenius
Theorem (Bapat and Raghavan 1997), P has exactly one
unity eigenvalue and the remaining eigenvalues are
located within the unit circle with its center at the origin.
Following equation (4), the operator P is parametrized
in terms of � 2 (0, 1) as �(�)� (1� �)P. Then,
k�(�)k1¼ (1� �) and the eigenvalues of �(�) are

l0 ¼ ð1� �Þ and lj
�� �� < ð1� �Þ, j ¼ 1, 2, . . . , ðn� 1Þ:

In this case, Proposition 2 can be restated in a slightly
different way as follows.

Proposition 3: Let pT be the ‘1-normalized left eigen-
vector of P corresponding to the unique unity eigenvalue
and let e � ½ 1 1 . . . 1 �T 2R

n. The renormalized
measure vector is given by the following expression:

�renð0Þ ¼ e�ren, ð13Þ

where the scalar renormalized measure �ren is denoted as

�ren ¼ pT�: ð14Þ

Similarly, Corollary 1 can be restated as Corollary 2.

Corollary 2 (to Proposition 3): The expression
pT�ren(�) is independent of �. Specifically, the following
identity holds for all � 2 (0, 1):

pT�renð�Þ ¼ pT�: ð15Þ

Remarks 2: A consequence of Proposition 3 is that the
scalar-valued renormalized measure �ren of the language
represents the long-term behavior of plant dynamics in
terms of the steady-state state probability vector p and
the (assigned) state weight vector �. Therefore, �ren in
equation (14) is the expected value of plant performance
in terms of the assigned weights and probability
distribution of the DFSA states.

Remarks 3: Following Corollary 2 the scalar-valued
measure �ren can be readily used as a performance cost
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functional for synthesis of optimal discrete-event super-
visory control laws under complete observability (Ray
et al. 2004). This issue is further discussed at the
beginning of x 3.

Remark 4: The results derived in the finite-dimensional
space R

n for regular languages could be extended to an
infinite-dimensional Banach space V for non-regular
languages, where the square operator P is linear and
continuous and satisfies the Perron–Frobenius proper-
ties analogous to those of a primitive stochastic matrix
(Berman and Plemmons 1979). In that case, the
sequence of contraction operators {(1� �k)P}, with
�k 2 (0, 1) yields a sequence �ren(�k) of bounded vectors
converging to the renormalized measure vector
�ren(0)� e�ren as �k! 0þ with e being the vector of 1s
and the scalar �ren defined as

�ren ¼ hp,�i, ð16Þ

where the vector p 2 ‘1 is the unique fixed point of the
Perron–Frobenius operator P: V!V; the bounded
linear functional � 2 ‘1 represents (at most countably
infinite) state weights; and the expression hu, vi is the
scalar value of the functional v 2 ‘1 at the point u 2 ‘1.
(Note that ‘1 is isometrically isomorphic to the dual
space of ‘1 (Naylor and sell 1982)).

3. Bounds on derivatives

This section establishes bounds on the derivatives of the
renormalized measure �ren(�) for all � 2 (0, 1), and
computes the limits of the derivatives as �! 0þ. This
is necessary for developing synthesis tools for optimal
discrete-event supervisory control, as a refinement of
what is reported in recent literature (Ray et al. 2004). By
maximizing the renormalized measure �ren(�) for a given
� 2 (0, 1) an optimal control law can be derived based
on the stochastic matrix P of the supervised plant
language and the originally assigned �-vector. Such an
optimal control law can be possibly made �-independent
in the sense of equations (12) and (15) provided that � is
restricted to be not too far away from 0þ. On the other
hand, from the perspective of numerical stability and
computational accuracy, it is desirable to have a
relatively large positive value of �. The results derived
in this section serve toward establishing upper bounds
on � for which the optimal control law should be
�-independent.
A reported algorithm for synthesis of supervisors,

which maximizes the language measure (Ray et al.
2004), is applicable only for sub-stochastic state

transition cost matrices (i.e., for �>0). In this
approach, the computational advantage (e.g., conver-
gence in at most n steps, where n is the number of states)
offers incentive to investigate the plausibility of dealing
with stochastic matrices to take advantage of their
analytical and computational properties. For example,
identification of explicit bounds on the derivatives of
�ren(�) provides information on how fast �ren(�) can
change in the vicinity of 0þ; this approach appears to be
far more efficient than numerical search through �2mn

possibilities (m being the number of events), which might
be infeasible even in relatively simpler systems.

The above observation suggests the possibility of
deriving a stochastic optimal policy as the limit of a
sequence of sub-stochastic optimal policies, where,
optimality is realized in the sense of the measure
defined for sub-stochastic transition matrices. The
discrete nature of the optimal decision set implies
that it actually coincides with some substochastic
optimal policy obtained at � not too close to 0. Note
that the explicit bounds on the derivatives of �ren(�)
would allow � to be sufficiently removed from 0
so as to be numerically stable. The theoretical work
on synthesis of an optimal control law, based on the
renormalized measure, largely follows the concept
described in the earlier work (Ray et al. 2004).
This is a topic of current research and will be
reported in a forthcoming publication.

Let us start with �(�)� �½I� 1� �ÞP��1 as defined in
equation (11a). The following lemmas are necessary to
prove the main propositions in this section.

Lemma 1: �(�) is a non-negative stochastic matrix for
all � 2 (0, 1].

Proof: Let e� [1 1 ��� 1]T be a vector that is compa-
tible for post multiplication with the square matrix P.
Since P is a stochastic matrix, non-negativity of �(�)
follows from the series expansion

�ð�Þ ¼ �
X1
k¼0

ð1� �ÞkPk 8 � 2 ð0, 1�

) �ð�Þe ¼ �
X1
k¼0

ð1� �ÞkPke ¼ �
X1
k¼0

ð1� �Þke ¼ e

which implies that �(�) is a stochastic matrix
as well. œ

Remark 5: The following properties of �(�) hold for
� 2 (0, 1) by virtue of Theorem A.1.

�ð�ÞP ¼ P�ð�Þ ð17aÞ

�ð�Þp ¼ p�ð�Þ ¼ p: ð17bÞ
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Remark 6: The following relation holds for k2N [ f0g

@k�ð�Þ

@�k
¼

@k�ð�Þ

@�k
�: ð18Þ

Lemma 2: For � 2 (0, 1)

ðiÞ
@k�ð�Þ

@�k
¼ �

k

�

� �
@k�1�ð�Þ

@�k�1
�ð�ÞP 8 k2Nn½1� ð19Þ

ðiiÞ �k
@k�ð�Þ

@�k
¼ ð�1Þkk!�kð�ÞPk�1½�ð�ÞP� I� 8 k2N:

ð20Þ

Proof: Let us derive the first and second derivatives of
� and then use the method of induction. An explicit
expression for @�(�)/@� is obtained as follows:

�ð�Þ ¼ �½I� ð1� �ÞP��1

) �ð�Þ½I� ð1� �ÞP� ¼ �

)
@�ð�Þ

@�
½I� ð1� �ÞP� þ�ð�ÞP ¼ I

)
@�ð�Þ

@�
¼ ½I� �½I� ð1� �ÞP��1P�

½I� ð1� �ÞP��1: ð21Þ

Since �(�) and P commute (see Remark 5), we have

�
@�ð�Þ

@�
¼ ð�1Þ�ð�Þ �ð�ÞP� Ið Þ: ð22Þ

Similarly, the second derivative is explicitly obtained as

�
@�ð�Þ

@�
¼ �ð�Þ ��ð�Þ�ð�ÞP

)
@�ð�Þ

@�
þ �

@2�ð�Þ

@�2
¼

@�ð�Þ

@�
�
@�ð�Þ

@�
P�ð�Þ ��ð�ÞP

@�ð�Þ

@�

)
@2�ð�Þ

@�2
¼ �2

@�ð�Þ

@�
�ð�ÞP: ð23Þ

Commutativity of �(�) and @�(�)/@� in the last step
follows from Remark 5. Hence

�2
@2�ð�Þ

@�2
¼ ð�1Þ22!�2ð�ÞP2ð�ð�ÞP� IÞ: ð24Þ

The proof is completed by induction. œ

Corollary 3 (Corollary to Lemma 2):

p
@k�ð�Þ

@�k
¼

@k�ð�Þ

@�k
p ¼ 0 8 k2Nnf0g: ð25Þ

Proof: It follows from Remark 5 and Lemma 2 that
p�ð�Þ ¼ �ð�Þp and p�kð@k�ð�Þ=@�kÞ ¼ 0 8 k2N=½0�.
The proof follows by setting � 6¼ 0. œ

Lemma 3: For all � 6¼ 0 and � 2 (0, 1)

ðiÞ
@�ð�Þ

@�
¼ ½I� �½I� ð1� �ÞP��1P�2½I� Pþ �p�

�1

ð26Þ

ðiiÞ
@2�ð�Þ

@�2
¼�2P½I� �½I�ð1� �ÞP��1P�3½I�Pþ�p�

�2:

ð27Þ

Proof: It follows from equation (21) that

@�ð�Þ

@�
¼ ½I� �½I�ð1� �ÞP��1P�½I� 1� �ð ÞP��1

)
@�ð�Þ

@�
½I� 1� �ð ÞP� ¼ ½I� �½I�ð1� �ÞP��1P�

)
@�ð�Þ

@�
I�P½ � ¼

�
I� �½I�ð1� �ÞP��1P

��
@�ð�Þ

@�
P
�

)
@�ð�Þ

@�
½I�Pþ�p� ¼

�
I� �½I�ð1� �ÞP��1P

� �
@�ð�Þ

@�
P
�

by the fact that
@�ð�Þ

@�
p¼ 0 in equation ð25Þ

� �

)
@�ð�Þ

@�
¼ I� �½I�ð1��ÞP��1P� �

@�ð�Þ

@�
P

� �

�½I�Pþ�p�
�1

)
@�ð�Þ

@�
¼
�
I� �½I�ð1� �ÞP��1P

� �½I�ð1� �ÞP��1P

þ �2 I�ð1� �ÞP��2P2
� �

½I�Pþ�p�
�1

)
@�ð�Þ

@�
¼ ½I� �½I�ð1� �ÞP��1P�2½I�Pþ�p�

�1: ð28Þ
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To prove part (ii) of the lemma, equation (23) is
rewritten as

�
@2�ð�Þ

@�2
¼�2

@�ð�Þ

@�
�ð�ÞP

)
@2�ð�Þ

@�2
¼�2

@�ð�Þ

@�
P½I�ð1� �ÞP��1

)
@2�ð�Þ

@�2
½I�ð1� �ÞP� ¼ �2

@�ð�Þ

@�
P

)
@2�ð�Þ

@�2
½I�P� ¼ �2

@�ð�Þ

@�
Pþ �

@2�ð�Þ

@�2
P

)
@2�ð�Þ

@�2
½I�P� ¼ 2½I� �½I�ð1� �ÞP��1P�2

� ½I�Pþ�p�
�1P½�½I�ð1� �ÞP��1P� I�

)
@2�ð�Þ

@�2
I�Pþ�p½ � ¼ �2P½I� �½I�ð1� �ÞP��1P�3

� ½I�Pþ�p�
�1 Since

@2�ð�Þ

@�2
p¼ 0 in equation ð25Þ

� �

)
@2�ð�Þ

@�2
¼�2P½I� �½I�ð1� �ÞP��1P�3½I�Pþ�p�

�2:

Corollary 4 (Corollary 1 to Lemma 3):

lim
�!0þ

@�ð�Þ

@�
¼ ½I� Pþp�

�1
�p: ð29Þ

Proof: It follows from Lemma 3 that 8� 6¼ 0

lim
�!0þ

@�ð�Þ

@�
¼ lim

�!0þ
½I� �½I� ð1� �ÞP��1P�2½I� Pþ �p�

�1

¼ ½I�pP�2½I� Pþ �p�
�1

¼ ½I�p� ½I� Pþp�
�1

þ
1

�
� 1

� �
p

� 	
¼ ½I� Pþp�

�1
�p from Proposition A:2:

œ
Corollary 5 (Corollary 2 to Lemma 3):

lim
�!0þ

@�ð�Þ

@�
¼ lim

�!1
½I� Pþ �p�

�1: ð30Þ

Proof: Proof follows from Corollary 4 and
Corollary A.1. œ

Corollary 6 (Corollary 3 to Lemma 3):

lim
�!0þ

@2�ð�Þ

@�2
¼ 2½p� P�½I� Pþp�

�2: ð31Þ

Proof: The proof follows from equation (10) and by
setting �¼ 1 in Proposition A.2. The derivation is
similar to Corollary 4. œ

The main result on boundedness of the derivatives of
�(�) (and hence �ren(�)) are presented as the following
two propositions. Specifically, the results in
Corollaries 4 and 6 are combined as the following
proposition.

Proposition 4:

ðiÞ 8k2Nnf1g

lim
�!0þ

@k�ð�Þ

@�k
¼ �k lim

�!0þ

@k�1�ð�Þ

@�k�1
½Pþp�½I� Pþp�

�1

ðiiÞ lim
�!0þ

@k�ð�Þ

@�k

¼

½I� Pþp�
�1

�p, if k ¼ 1

ð � 1Þkk!½I� Pþp�
�1

½I� ½I� Pþp�
�1
�
k�1, if k2Nnf1g:

8><
>:

Proof: It is observed from Lemma 2 that 8 k2Nnf1g
and 8 � 2 (0, 1)

�
@k�ð�Þ

@�k
¼ �k

@k�1�ð�Þ

@�k�1
�ð�ÞP

)
@k�ð�Þ

@�k
¼ �k

@k�1�ð�Þ

@�k�1
P½I� ð1� �ÞP��1

)
@k�ð�Þ

@�k
½I� P� ¼ �k

@k�1�ð�Þ

@�k�1
Pþ �

@k�ð�Þ

@�k
P

)
@k�ð�Þ

@�k
½I� P� ¼ �k

@k�1�ð�Þ

@�k�1
P� k

@k�1�ð�Þ

@�k�1
P2�ð�Þ

)
@k�ð�Þ

@�k
¼ �k

@k�1�ð�Þ

@�k�1
½Pþ�ð�ÞP�½I� Pþp�

�1

ð32Þ

) lim
�!0þ

@k�ð�Þ

@�k
¼ �k lim

�!0þ

@k�1�ð�Þ

@�k�1

� lim
�!0þ

½Pþ�ð�ÞP�½I� Pþp�
�1

) lim
�!0þ

@k�ð�Þ

@�k
¼ �k lim

�!0þ

@k�1�ð�Þ

@�k�1
½Pþp�½I� Pþp�

�1:

ð33Þ

Part (ii) follows from Corollary 4 for k¼ 1 by. For k� 2,
it is first noted that

½Pþp�½I� Pþp�
�1

¼ ½I� Pþp�
�1

� Iþp

It is also noted from Corollary 4 that

lim
�!0þ

@k�ð�Þ

@�k
¼ �2 ½I� Pþp�

�2
� ½I� Pþp�

�1

 �

:

Then, the proof follows by induction. œ

Remark 5: Note that equation (32) is written for �¼ 1
but it is true for any � 6¼ 0. Specifically, @k�ð�Þ=@�k ¼
�kð@k�1�ð�Þ=@�k�1Þ½Pþ�ð�ÞP�½I� P� �p�

�1 for all
� 6¼ 0.
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The next proposition estabilishes bounds on the
derivatives of �(�) in an elementwise sense by computing
bounds on the induced sup-norm of the derivatives
of �(�). Recall that � has been defined to have unity
infinity norm.

Proposition 5:

@k�ð�Þ

@�k

����
����
1

� k!2kþ1 inf
a 6¼0

½I�Pþ �p�
�1

�� ��
1

� �k

8 �2½0, 1�:

Proof: We recall that ½I� P� �p�
�1 is well defined for

all � 6¼ 0. (Proposition A.1) which implies

inf
a6¼0

½I� Pþ �p�
�1

�� ��
1
< 1: ð34Þ

The assertion follows by taking induced sup-norm on
equation (28) with right multiplication by � and taking
infimum.

@�ð�Þ

@�

����
����
1

¼
@�ð�Þ

@�
�

����
����
1

� ½I� �½I�ð1� �ÞP��1P�2½I�Pþ�p�
�1

�� ��
1

ð35Þ

� ½I� �½I�ð1� �ÞP��1P�2
�� ��

1
½I�Pþ�p�

�1
�� ��

1

� ð1þ1Þ2 ½I�Pþ�p�
�1

�� ��
1
: ð36Þ

It follows from equation (32) and Remark 5 that

@k�ð�Þ

@�k

����
����
1

¼
@k�ð�Þ

@�k
�

����
����
1

¼ �k
@k�1�ð�Þ

@�k�1
½Pþ�ð�ÞP�½I�Pþ�p�

�1�

����
����
1

� k
@k�1�ð�Þ

@�k�1

����
����
1

ð1þ 1Þ ½I�Pþ�p�
�1

�� ��
1

� 2k
@k�1�ð�Þ

@�k�1

����
����
1

½I�Pþ�p�
�1

�� ��
1

ð37Þ

The proof follws by induction. œ

Remark 6: Note that for the second derivative,

@2�ð�Þ

@�2

����
����
1

� 16 inf
a 6¼0

½I� Pþ �p�
�1

�� ��
1

� �2

8 �2 ½0, 1�:

4. An illustrative example

This section presents a simple example to illustrate the

underlying concept of renormalized measure and its

usage for synthesis of discrete-event supervisory

controllers (Ray et al. 2004). Let us consider a

deterministic finite state automaton (DFSA) with the

state set Q¼ {q1, . . . , q9} and the event alphabet �¼ {�r,
�i, �f, �b, �fi, �rf, �rb, �ib, !1}. The DFSA model of the

unsupervised plant is shown in figure 1. The arcs, shown

in thick red lines, are controllable and those shown in

thin black lines are uncontrollable. (Note that controll-

ability is state-dependent, i.e., the same event could be

controllable at one state and uncontrollable at another

state.) The arcs with thick red dashed lines in figure 1

indicate that the event(s) on this arc have been disabled

under the action of a supervisory controller. Table 1 lists

the stochastic transition martix P which is primitive

because P2 is a positive matrix. The stationary state

probability vector (i.e., the left eigen-vector pT

corresponding to the unique unity eigenvalue) of P is

pT ¼ ½ 0:234 0:041 0:065 0:084 0:095 0:016 0:153 0:147 0:076 �

q9 q1 q5

q2 q3 q4

q8 q7 q6

sl

sr

sf

sfl

slb

srf

srb

sf

sb
sb

sr

sl

sf

sb

sl

sr

sb

sf

sl

sr

sf

sb

sr

sl

w1

w1

w1

w1

w1

w1

w1

w1

Figure 1. DFSA Models of the (unsupervised and super-
vised) plant: red thick dashed-line arcs are controllable

transitions that are enabled for the unsupervised plant and
are later disabled under the control action; red thick solid-line
arcs are controllabed transitions that remain enabled under the
control action; black thin solid-line arcs are uncontrollable

transitions.
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The �-vector for the DFSA is chosen as

Variations of the elements of the renormalized

measure vector �ren(�) with � are plotted in figure 2,

where all elements of �ren(�) converage to a single value

�ren
	 0.122 as �! 0þ

Figure 3 and 4 respectively show the variations in the

gradient (i.e., first derivative) and the curvature (i.e.,

second derivative) of the renormalized measure vector

�ren(�) with �. An optimal control policy (Ray et al.

2004), which maximizes the renormalized measure as

�! 0þ, is computed by numerically searching for the

automation configuration. Figure 1 shows the optimally

supervised plant, where the red thick dashed-line arcs

show disabled controllable transitions.
Figure 5 displays a comparison of the histograms of

the state probability vector p for the unsupervised and

optimally supervised plant; the respective values of

�ren
¼ pT � in equation (14) are 0.1218 and 0.3534,

which indicates that the long term performance is almost
tripled under optimal supervision. The implication is
that the probability of terminating in favorable states
has increased and that of being in the unfavorable states
has decreased.

5. Summary and conclusion

This paper extends the notion of normalized signed
measure of probabilistic regular languages (Ray 2005)
through renormalization with respect to the measure of
the maximal language �* over the given alphabet �.
The work reported in this paper removes a fundamental

� ¼ ½ 0:66 �0:42 �0:97 0:52 �0:49 �0:57 0:57 �0:09 0:43 �T:

Table 1. Stochastic transtition matrix P.

0 0.015 0.102 0.041 0.120 0.048 0.300 0.139 0.139

0.372 0 0.131 0 0 0 0 0 0

0.130 0.319 0 0.551 0 0 0 0 0
0.087 0 0.424 0 0.489 0 0 0 0
0.351 0 0 0.411 0 0.238 0 0 0

0.337 0 0 0 0.240 0 0.423 0 0
0.069 0 0 0 0 0.470 0 0.460 0.460
0.738 0 0 0 0 0 0.259 0 0

0.199 0.218 0 0 0 0 0 0.583 0.583

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

data1
data2
data3
data4
data5
data6
data7
data8
data9

θ

µre
n (θ

)

Figure 2. Variations of �ren(�) for the unsupervised plant.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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−0.5
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0.5

1
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data1
data2
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data4
data5
data6
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data8
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θ

∂µ
re

n (θ
) 

/ ∂
θ

Figure 3. Slope �ren(�) for unsupervised plant.
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restriction of earlier analysis, namely, each row sum of

the state transition cost matrix being strictly less than 1,

instead of being equal to 1 (Ray 2005, Ray et al. 2005).

It also shows that if the (primitive stochastic) state

transition matrix has a unique unity eigenvalue and

the magnitude of each of the remaining eigenvalues is

strictly less than unity, then the scalar-valued renorma-

lized measure �ren represents the expected value of the

plant performance in terms of the assigned weights and

probability distribution of the plant states. The concept

is illustrated for optimal supervisory control synthesis by

an example. Future research areas include:

. Optimal control of regular languages under complete

and partial observability with the scalar �ren as the

cost functional.
. Renormalized measure of non-regular languages.
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Appendix

Properties of Stochastic Matrices

This appendix presents pertinent results for stochastic
matrices that have been used to derive the properties of
the renormalized measure in xx 2 and 3. Let P be the state
transition probability matrix of a stationary Markov
chain with finitely many states. Then, P is a stochastic
(i.e., non-negative with each row sum being identically
equal to unity (Bapat and Raghavan 1997).

Theorem A.1: For any stochastic matrix P, the following
limit exists.

lim
k!1

1

k

Xk�1

j¼0

Pj ! p, ð38Þ

wherep is a stochastic matrix. Furthermore,p commutes
with P and is idempotent. That is,

Pp ¼ pP ¼ p ¼ p
2: ð39Þ

Proof: The proof is given in Bapat and Raghavan
(1997, pp. 50–51). œ

Definition A.1: A stochastic matrix P is irreducible and
aperiodic, also called primitive (Berman and Plemmons
1979), if there exists k2N such that Pk>0 (Bapat and
Raghavan 1997, p. 49).

Theorem A.2: For any irreducible and aperiodic
stochastic matrix P, the following limit exists.

lim
k!1

Pk ! p, ð40Þ

where p is given in Definition A.1. In this case, each row
of p is identically equal to the unique probability vector
pT that is a fixed point of the operator P, i.e., pTP¼ pT.

Proof: The proof is given in Bapat and Raghavan
(1997, pp. 49–50). œ

Remark A.1: Since P is a stochastic matrix,
½I� P�e ¼ 0 where e� ½1, 1, . . . , 1�T. Therefore, ½I� P�

is not invertible for any stochastic matrix P. However,
the next proposition shows that ½I� Pþp� is always
invertible.
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4
data1
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data5
data6
data7
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data9

θ

∂2 µre
n (θ

) 
/ ∂

θ2

Figure 4. Curvature of �ren(�) for the unsupervised plant.

1 2 3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Unsupervised Plant
µren−Optimal Supervision

States

P
ro

ba
bi

lit
y

Figure 5. Probability distributions over the automation
states.
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Proposition A.1: Let P be a stochastic matrix. Then
½I� Pþ �p�

�1 is well-defined for all � 6¼ 0.

Proof: Let � 6¼ 0 be arbitrary. Let us assume that
½I� Pþ �p� is not invertible. Then, it follows that there
exists a vector # 6¼ 0 such that ½I� Pþ �p�# 6¼ 0.

) ½P� �p�# ¼ # ) �p½P� �p�# ¼ �p#

) ½�p� �2
p�# ¼ �p#

) �2
p# ¼ 0 ) p# ¼ 0 since � 6¼ 0:

Hence,

P# ¼ P#� �p# ¼ ½P� �p�# ¼ #

) Pk# ¼ # 8 k2N [ f0g,

which implies

1

k

Xk�1

j¼0

Pj

 !
# ¼ # ) lim

k!1

1

k

Xk�1

j¼0

Pj

 !
# ¼ p# ) # ¼ 0:

This is a contradiction. (Note that the commutative and
idempotent properties of p in Theorem A.1 have been
used). œ

The next proposition is useful for finding the properties
of the renormalized measure in x 3 and requires the
following lemma.

Lemma A.1:

½P� �p�
k
¼ Pk � 1� ð1� �Þk

� �
p, 8 k2N 8 � 6¼ 0

Proof: The above identity is readily seen to be valid for
k¼ 0 and k¼ 1. It is also true for k¼ 2 by virtue of the
commutative and idempotent properties of p in
Theorem A.1. The proof of the lemma follows directly
by the method of induction. œ

Proposition A.2: The following identity holds for any
stochastic matrix P.

½I� Pþ �p�
�1

¼ ½I� Pþp�
�1

þ
1� �

�

� �
p 8 � 6¼ 0:

ð41Þ

Proof: The matrix ½I� Pþ �p� is invertible for all
� 6¼ 0 by Proposition A.1. By setting �¼ 1, Lemma A.1.
yields ½I� Pþp�

�1
¼ Iþ

P1

k¼1 ðP
k �pÞ: The proof is

completed from the following identity (by use of
Theorem A.1):

½I� Pþp� Iþ
X1
k¼1

ðPk �pÞ

 !
þ

1� �

�

� �

� ½I� Pþ �p�p ¼ I: &

The following two corollaries of Proposition A.2 are
useful for finding bounds on the derivatives of the
renormalized measure in x 3.

Corollary A.1 (Corollary 1 to Proposition A.2):

lim
�!1

½I� Pþp�
�1

¼ ½I� Pþp�
�1

�p ð42Þ

Proof: The proof follows from Proposition A.2. œ

Corollary A.2 (Corollary 2 to Proposition A.2):

ðiÞ ½I� Pþ �p�
�1
p

�� ��
1
¼

1

�

����
���� 8 � 6¼ 0 ð43aÞ

ðiiÞ ½I�pþ �p�
�1

�� ��
1
�

1

�

����
���� 8 � 6¼ 0 ð43bÞ

ðiiiÞ ½I� Pþp�
�1

�� ��
1
� 1, ð43cÞ

where k
k indicates the induced sup-norm of the
operator 
.

Proof: Expressing ½I� Pþp�
�1 as a convergent

infinite sum following Proposition A.1, we have

½I� Pþp�
�1
p ¼

X1
k¼0

ðP�pÞ
k
p ¼ p:

Hence,

½I� Pþ �p�
�1
p ¼ ½I� Pþp�

�1
p�pþ

1

�
p ¼

1

�
p

which implies

½I� Pþ �p�
�1
p

�� ��
1
¼

1

�

����
���� pk k1¼

1

�

����
����

The last step follows from the stochastic property of p
(see Theorem A.1), which implies that each row sum of
p is 1 and hence pk k1¼ 1: The second assertion follows
from the first by using the sub-multiplicative property of
induced norms. The third assertion is immediate from
the second by setting �¼ 1. œ
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