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Abstract

Identification of statistical patterns from observed time series of spatially distributed sensor data is critical for
performance monitoring and decision making in human-engineered complex systems, such as electric power generation,
petrochemical, and networked transportation. This paper presents an information-theoretic approach to identification of
statistical patterns in such systems, where the main objective is to enhance structural integrity and operation reliability.
The core concept of pattern identification is built upon the principles of Symbolic Dynamics, Automata Theory, and
Information Theory. To this end, a symbolic time series analysis method has been formulated and experimentally
validated on a special-purpose test apparatus that is designed for data acquisition and real-time analysis of fatigue

damage in polycrystalline alloys. © 2006 ISA—The Instrumentation, Systems, and Automation Society.

Keywords: Fault/analysis; Forcasting; Goodness monitoring

1. Introduction

Given a subsystem of a human-engineered com-
plex system, the critical issue is whether its dy-
namics can be adequately described by a math-
ematically and computationally tractable model.
The presence of uncertainties and chaos may often
restrict routine applications of the fundamental
laws of physics to model such systems [1]. This
issue has motivated the study of complex systems
during the last few decades, which is continually
gaining importance from the perspectives of both
fundamental sciences and technological applica-
tions. Specifically, sole reliance on model-based
analysis for pattern identification in complex sys-
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tems has been found to be infeasible because of
the difficulties to achieve requisite accuracy and
precision of the nonlinear spatial-temporal sto-
chastic models. For example, no existing model
can capture the dynamical behavior of fatigue
damage at the grain level solely based on the fun-
damental principles of molecular physics. More-
over, small deviations in the initial conditions and
critical parameters of the system may eventually
produce large bifurcations and chaotic outputs in
the expected dynamical behavior [2]. Despite
these difficulties, the key problem—identification
of statistical patterns—can be formulated in terms
of how the inherent dynamics of a complex non-
linear (and possibly nonstationary) process can be
inferred from the data generated from sensing de-
vices and ancillary instrumentation. In essence,
time series analysis of observed data is needed for
tracking the changes in statistical patterns of the
evolving system dynamics in real time [3,4].
Human-engineered complex systems, such as
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electric power generation plants, petrochemical
plants, and networked transportation systems,
must be designed to be information-intensive and
have capabilities for early detection and identifica-
tion of any anomalous behavior to ensure struc-
tural integrity and operation reliability. This objec-
tive can be achieved via provision of diverse
information sources through a network of sensing
devices and ancillary instrumentation, installed at
selected spatial locations of the complex system.
The information provided by the sensor network
enhances the capacity of measuring small changes
in the dynamical behavior of the system. For ex-
ample, the information derived from time series
data of sensors at different spatial locations pro-
vides the capability to capture small parametric
and nonparametric perturbations at localized re-
gions and their global effect on the entire system.
These sensors must provide online information
and quantitative estimates of damage precursors
that cause the observed deviations in the statistical
pattern.

Various signal processing tools have been em-
ployed to extract useful information from the
available time-series data. Technical literature
abounds with diverse techniques of pattern recog-
nition (for example, see citations in Ref. [5]); a
brief survey of pattern recognition tools for
anomaly detection is reported in Ref. [6].
Anomaly detection using symbolic time series
analysis (STSA) [7] has been recently reported [8]
and a comparative evaluation of this novel analyti-
cal method shows its superior performance rela-
tive to other existing pattern recognition tools in
terms of early detection of small changes in dy-
namical systems [9,10].

This paper presents the theoretical framework of
a novel STSA-based method for identification of
statistical patterns and its experimental validation
for early detection of fatigue damage in structural
materials of human-engineered complex systems.
The experimental platform consists of a special-
purpose electromechanical test apparatus that is
designed for data acquisition and analysis of fa-
tigue damage in polycrystalline alloys. The infor-
mation, needed for anomaly detection and damage
analysis, is derived from a network of distributed
and heterogeneous fatigue damage sensing devices
(e.g., ultrasonic, mechanical displacement, load
cell, accelerometer, and optical microscope).

The paper is organized in six sections including

the present one. Section 2 outlines the procedure
for identification of statistical patterns in complex
systems. Section 3 introduces the underlying con-
cepts of symbolic time series analysis for anomaly
detection [8]. Section 4 describes the experimental
apparatus on which the anomaly detection method
is validated for early detection fatigue damage.
Section 5 discusses the results of early detection
and identification of fatigue cracks under cyclic
loading. The paper is concluded in Section 6 along
with recommendations for future research.

2. The procedure for pattern identification

This section outlines the procedure for identifi-
cation of statistical patterns in complex dynamical
systems. The procedure is based on the system
response, excited by selected input stimuli (e.g.,
persistent excitation), or due to self excitation. The
pattern identification of the quasistationary pro-
cess is recognized as a two-time scale (i.e., fast
and slow time scale) problem in the following
sense:

» Fast time scale refers to the local behavior of
the system, where changes in the patterns of the
process dynamics are assumed to be insignifi-
cant. It is assumed that the statistical distribu-
tion of the system dynamics is stationary at the
fast time scale [11], i.e., no statistical changes
occur during this period.

* Slow time scale refers to the long-term behav-
ior of the system, where the patterns of the pro-
cess dynamics might deviate from those under
the nominal conditions. It is assumed that any
observable nonstationary behavior pattern is as-
sociated with changes occurring on the slow
time scale. The pattern changes, if they occur,
develop gradually on the slow time scale and
may lead to accumulation of anomalies and
faults.

The notion of fast and slow time scales is de-
pendent on the specific application and operating
environment. In general, the time span in the fast
scale, over which data series are collected, is a
tiny (i.e., several orders of magnitude small) inter-
val in the slow time scale. While the statistics of
the process dynamics are assumed to be locally
stationary in these time intervals, it may exhibit
nonstationary statistics at different slow-time ep-
ochs.
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Statistical pattern identification in the above set-
ting is categorized by two inter-related problems:

* the forward (or analysis) problem and
* the inverse (or synthesis) problem.

The primary objective of the forward problem is
to identify the patterns in the process dynamics
and to track statistical changes occurring over the
entire span of slow time. Specifically, the forward
problem aims at detecting the deviations in the
statistical patterns in the time series data, gener-
ated at slow-time epochs, from the nominal behav-
ior pattern. Solutions of the forward problem re-
quire the following steps:

* generation of multiple sensor time series data
sets under self excitation, or under external
stimuli, spanning the system behavior under
different operational conditions and

* analysis of the data sets to characterize the sys-
tem’s behavioral pattern based on certain fea-
tures at different slow-time epochs as the pro-
cess evolves.

This paper addresses the forward problem and
experimentally validates the STSA-based pattern
identification method on mechanical structures,
where the source of possible anomalies is fatigue
crack damage.

The inverse (or synthesis) problem infers the
anomalies based on the observed time series data
and the information on anomaly characterization,
generated in the forward problem. The major role
of the inverse problem is to provide information
for monitoring and control of the system behavior.
The inverse problem is currently under active re-
search and details on the solution method is re-
ported in Ref. [8]; the results on the inverse prob-
lem will be reported in a forthcoming publication.

3. STSA

This section briefly describes the technique of
STSA [7] for anomaly detection in real time [8].
The STSA method of anomaly detection makes
use of the vector information on (finitely many)
states of an automaton generated by partitioning
the space over which the time-series data evolve.
The steps for STSA are as follows:

e transformation of time-series data from the
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Fig. 1. An example of space partitioning.

continuous domain to the symbolic domain;

e construction of the finite state machine struc-
ture based on symbolic sequences and calcula-
tion of its state probability vector at various
time epochs on the slow time scale; and

* statistical pattern identification based on the de-
viation of this vector information from the
nominal condition.

3.1. Transformation from continuous to symbolic
domain

The time-series data are transformed into a sym-
bol sequence by partitioning a compact region )
in the phase space, over which the data evolves,
into finitely many discrete blocks as shown in Fig.
1. Let {®,,D,,...P,} be a partitioning of the re-
gion (), such that it is exhaustive and mutually
exclusive set, i.e.,

UCDIZQ and CDjﬂCDk:@ V]ik

Jj=1
(1)

Each block ®; is labelled as the symbol o; € X,
where the symbol set 2, is called the alphabet set
consisting of m different symbols. As the system
evolves in time, it travels through various blocks
in its phase space and the corresponding symbol
g € 3 is assigned to it, thus converting a data
sequence to a symbol sequence ...0; 0y ... 0 ...
Fig. 1 exemplifies the partitioning of the phase
space where each block is assigned a particular
symbol such that a symbol sequence is generated



480 Gupta, Khatkhate, Ray, and Keller / ISA Transactions 45, (2006) 477—490

from the phase space at a given slow time epoch.
Thus, the symbol sequences represent coarse
graining of the trajectories’ time evolution [11].
Once the symbol sequence is obtained, the next
step is the construction of the finite state machine
and calculation of the state visiting probabilities to
generate state probability vector as shown in Fig.
1. The details of these steps are explained in com-
ing sections.

3.2. Wavelet space partitioning

Several partitioning techniques have been re-
ported in literature for symbol generation
[3,12,13], primarily based on symbolic false
neighbors. These techniques rely on partitioning
the phase space and may become cumbersome and
extremely computation intensive if the dimension
of the phase space is large. This paper has adopted
a wavelet-based partitioning approach [14] be-
cause wavelet transform [15] largely alleviates
these shortcomings and is particularly effective for
noisy data from high-dimensional dynamical sys-
tems. In this method, called wavelet space parti-
tioning [8], the time series data are first converted
to the wavelet transform data, where wavelet co-
efficients are generated at different scales and time
shifts. The graphs of wavelet coefficients versus
scale, at selected time shifts, are stacked starting
with the smallest value of scale and ending with
its largest value and then back from the largest
value to the smallest value of the scale at the next
instant of time shift. The arrangement of the re-
sulting scale series data in the wavelet space is
similar to that of the time series data in the phase
space. The wavelet space is partitioned with alpha-
bet size || into segments of coefficients on the
ordinate separated by horizontal lines such that the
regions with more information are partitioned finer
and those with sparse information are partitioned
coarser. In this approach, the maximum entropy is
achieved by the partition that induces uniform
probability distribution of the symbols in the sym-
bol alphabet. Shannon entropy [16] is defined as

2|

S=- % pilog(p)), 2)

where p; is the probability of the ith state and
summation is taken over all possible states. Uni-
form probability distribution is a consequence of
the maximum entropy partitioning. Fig. 2 shows
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Fig. 2. Maximum entropy partitioning in the wavelet
domain.

an example of the maximum entropy partitioning
in the wavelet space for alphabet size |X|=6,
where the partitioned regions are marked by sym-
bols ranging from O to 5.

3.3. State machine construction

The partitioning as described in the previous
subsection is performed at (slow-time) epoch ¢, of
the nominal condition having zero anomaly mea-
sure. A finite state machine is then constructed,
where the states of the machine are defined corre-
sponding to a given alphabet 2 and window
length D. The alphabet size || is the total number
of partitions while the window length D is the
length of consecutive symbol words forming the
states of the machine [8]. The states of the ma-
chine are chosen as all possible words of length D
from the symbol sequence, thereby making the
number 7 of states to be equal to the total permu-
tations of the alphabet symbols within word of
length D, (i.e., n<|2|P) where some states may
be forbidden and have zero probability of occur-
rence. The choice of |%| and D depends on spe-
cific experiments, noise level and also the avail-
able computation power. A large alphabet may be
noise sensitive while a small alphabet could miss
the details of signal dynamics. Similarly, a high
value of D is extremely sensitive to small signal
distortions but would lead to larger number of
states requiring more computation power. Using
the symbol sequence generated from the time-
series data, the state machine is constructed on the
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Fig. 3. Finite state automaton with D=2 and ={0, 1}.

principle of sliding block codes [17] as explained
below.

The window of length D on the symbol se-
quence ...0; 0,...0; ... is shifted to the right by
one symbol, such that it retains the last (D—1)
symbols of the previous state and appends it with
the new symbol o7, at the end. The symbolic per-
mutation in the current window gives rise to a new
state. The machine constructed in this fashion is
called a D-Markov machine [8] because of its
Markov properties.

Definition 3.1: A symbolic stationary process is
called D-Markov if the probability of the next
symbol depends only on the previous D symbols,
e, Ploy/o...0; o0 .)=P(o; /oy ...
X O'i_D).

The finite state machine constructed above has
D-Markov properties because the probability of
occurrence of symbol o; ,ona particular state de-
pends only on the configuration of that state, i.e.,
previous D symbols. For example, if %={0,1},
ie., |X | =2 and D=2, then the number of states is
n<|X|P=4; and the possible states are Q
={00,01,10,11}, some of which may be forbid-
den. Fig. 3 shows the construction of the finite
state machine for the above example where forbid-
den states, if any, will have zero probability of
occurrence.

Once the partitioning alphabet X and word
length D are determined at the nominal condition
(time epoch f,), they are kept constant for all
(slow time) epochs {¢,,1,,...1;...}, i.e., the struc-
ture of the machine is fixed at the nominal condi-
tion. That is, the partitioning and the state machine
structure, generated at the nominal condition serve
as the reference frame for data analysis at subse-
quent time epochs. The states of the machine are
marked with the corresponding symbolic word
permutation and the edges joining the states indi-
cate the occurrence of an event o; - The occur-

-1 -D-1"

rence of an event at a state may keep the machine
in the same state or move it to a new state.

Definition 3.2: The probability of transitions
from state g; to state g; belonging to the set Q of
states under a transition 8:Q X2 — Q is defined
as

my=P(o E|5(qj,0') —q):> mr=1. (3)
k

Thus, for a D-Markov machine, the irreducible
stochastic matrix [I=[,] describes all transition
probabilities between states such that it has at
most |2|P*! nonzero entries. The left eigenvector
p corresponding to the unit eigenvalue of I is the
state probability vector under the (fast time scale)
stationary condition of the dynamical system [8].
On a given symbol sequence 03,0 O
generated from the time series data collected at
slow time epoch f;, a window of length (D) is
moved by keeping a count of occurrences of word
sequences 0 ...0; 0;  and oy ...0; which are,
respectively, denoted by N(o;...0; 0y ) and
N(o;,...0;)). Note that if N(o; ...0;)=0, then
the state ¢= 07 ...0; € Q has zero probability of
occurrence. For N(o;...0; ) #0, the transitions
probabilities are then obtained by these frequency
counts as follows:

Plgwg;] P(o;, ... 0, 0)

i = Plaiq;] =

P[Clj] - P(O'il O'iD)
N(o-l-l 0',-D0')
= T~ m (4)

where the corresponding states are denoted by g;
E(Tl'lo'l'z...o'il) and quO'iz...O'iD(T.

The time series data under the nominal condi-
tion (set as a benchmark) generates the state tran-
sition matrix 11"°™ that, in turn, is used to obtain
the state probability vector p"™™ whose elements
are the stationary probabilities of the state vector,
where p"™ is the left eigenvector of I1"°™ corre-
sponding to the (unique) unit eigenvalue [18].
Subsequently, state probability vectors
p'.p?,...p"... are obtained at slow-time epochs
1,t,...1;... based on the respective time series
data. Machine structure and partitioning should be
the same at all slow-time epochs. A deviation from
the nominal behavior (e.g., the statistical distribu-
tion at the nominal condition) is called an anomaly
and these anomalies are characterized by a scalar
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called anomaly measure (M). In the context of
fatigue crack phenomena in mechanical structures,
the anomaly measure is based on the following
assumptions:

e Assumption 1: The evolution of damage M (¢)
is an irreversible process, i.e., with zero prob-
ability of self healing. This assumption implies
the following conditions for all time =0,

G) M=0,
(i) dM/dt=0.

* Assumption 2: The damage accumulation at a
slow time epoch ¢, when the dynamical system
has reached a quasisteady state equilibrium, is
a function of the entire path taken to reach that
state.

Let us digress in the context of fatigue damage.
Although the crack length has been traditionally
defined by a straight line joining the starting point
to the tip of the crack, the actual crack follows a
complicated path, possibly fractal in ductile mate-
rials, to reach a particular point. Therefore, the
above assumption 2 implies that the anomaly mea-
sure should be determined from the actual path
traversed and not just the end points. Accordingly,
anomaly measure at a slow-time epoch #; is de-
fined as:

k

M= 2 d(ppH%
=1
(5)
n 1o
d(x,y) = (2 Ixj—yj|“> :
j=1

where the exponent a € [ 1, ) depends on the de-
sired sensitivity to small deviations. Large values
of « suppress small changes in the signal profile
which might be due to noise and spurious oscilla-
tions in the signal. Therefore, the choice of alpha
is a trade-off between suppression of small fluc-
tuations due to noise and those due to the actual
changes in the signal profile resulting from dam-
age growth. In this paper, the exponent is chosen
to be a=2 implying energy equivalence of the
anomaly measure.

4. Experimental validation on a test apparatus

This section validates the concept of STSA-
based pattern identification for detection of fatigue

Failure sites
in specimens

Fig. 4. Schematic diagram for the test apparatus.

damage in mechanical structures. With the aim of
investigating changes in statistical patterns due to
fatigue damage and consequent decision making
for damage reduction, a laboratory apparatus has
been designed to introduce fatigue damage in criti-
cal components [19]. These components are de-
signed to break in a reasonably short period of
time to enhance the speed of experiments. From
this perspective, the design requirements of the
test apparatus include:

(i) operability under cyclic loading with mul-
tiple sources of input excitation;

(ii) damage accumulation in test specimens (at
selected locations) within a reasonable pe-
riod of time with negligible damage in
other components of the test apparatus;
and

(iii) accommodation of multiple failure sites for
comparative evaluation of structural dam-
age at various spacial locations.

4.1. Description of the test apparatus

The test apparatus is designed and fabricated as
a three-degree of freedom (DOF) mass-beam
structure excited by oscillatory motion of two
shakers. A schematic diagram of the test apparatus
and the instrumentation is shown in Fig. 4; dimen-
sions of the pertinent components are listed in
Table 1.

The test apparatus is logically partitioned into
two subsystems: (i) the plant subsystem consisting
of the mechanical structure including the test
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Table 1
Structural dimensions of the test apparatus.

Length (mm)
Mass (kg) (length X

width X
Component Material thickness)
Mass 1 Mild steel 1.0
Mass 2 Aluminium 0.615
6061-T6
Mass 3 Mild steel 2.2
Beam 1 Mild steel 800 X 254 X 12.7
Beam 2 Aluminium 711.2 X 222 X 11.1
6061-T6
Specimens Aluminium 203.2 X 222 X 11.1
6061-T6

specimens to undergo fatigue crack damage, ac-
tuators and multiple sensors and (ii) the instru-
mentation and control subsystem consisting of
computers, data acquisition and processing, and
communications hardware and software. The sen-
sors include: two peizoelectric accelerometers,
two linear variable displacement transducers
(LVDT), and two load cells for force measure-
ment.

Two of the three major DOFs are directly con-
trolled by the two actuators, shaker No. 1 and
shaker No. 2, and the remaining DOF is observ-
able via displacement and acceleration measure-
ments of the three vibrating masses: mass No. 1,
mass No. 2, and mass No. 3. The inputs to the
multivariable mechanical structure are the forces
exerted by the two actuators; and the outputs to be
controlled are the displacements of mass No. 2
and mass No. 3.

The three test specimens in Fig. 4 are represen-
tatives of plant components, which are subjected
to fatigue crack damage. The mechanical structure
is excited at one or more of the resonant frequen-
cies so that the critical component(s) can be sub-
jected to different levels of cyclic stresses with no
significant change in the external power injection
into the actuators. The excitation force vector,
generated by the two actuators, serves as the in-
puts to the multi-DOF mechanical structure to sat-
isfy the requirement No. 1. The failure site in each
specimen, attached to the respective mass is a cir-
cular hole of diameter 8.5 mm as shown in Fig. 5.
The test specimens are thus excited by different

iy 843 mm dia |
/_ + (&'/ /12.5mm
— !

| _\

Failure Sites
—67.56—
mm

Fig. 5. Side view of failure site on the beam specimen.

levels of cyclic stresses as two of them are directly
affected by the vibratory inputs while the remain-
ing one is subjected to resulting stresses, thus
functioning as a coupling between the two vibrat-
ing systems. In the present configuration, three test
specimens are identically manufactured and their
material is 6061-T6 aluminum alloy. In future re-
search, different materials will be selected for in-
dividual specimens that may also undergo differ-
ent manufacturing procedures.

4.2. Hardware implementation and
software structure

The electromechanical fatigue damage test ap-
paratus is interfaced with Keithley Data Acquisi-
tion Boards (DAS 17/18 STDA) having 6 analog/
digital (A/D) channels and 4 digital/analog (D/A)
channels. Data acquisition is carried out with a
sampling rate at 500 Hz for monitoring and con-
trol. The time-series data for statistical pattern rec-
ognition are decimated as needed. The real-time
instrumentation and control subsystem of this test
apparatus is implemented on a Pentium personal
computer (PC) platform. The software runs on the
Real-Time Linux Operating System and is pro-
vided with A/D and D/A interfaces to the amplifi-
ers serving the sensors and actuators of the test
apparatus.

The control software performs real-time com-
munication tasks, in addition to data acquisition
and built-in tests (e.g., limit checks and rate
checks). The data acquisition is an interrupt ser-
vice routine (ISR) for the direct memory access
(DMA) completion interrupt. The A/D board is
initialized to take 12 readings per frame. The
DMA controller on the PC motherboard is pro-
grammed to read 12 single 16-bit words and store
them sequentially in a given memory location for
each transfer. When a reading is taken, the result is
put into a first in, first out (FIFO) on the A/D
board and a DMA request is issued. The DMA
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Fig. 6. Graphical user interface of control software.

controller on the motherboard retrieves the data
and stores it in the system random access memory
in sequence. After every 12th reading is stored, the
DMA controller asserts a signal that is looped
back to an interrupt line by the A/D board. At this
point, control is given to the ISR. As the DMA
controller and A/D board are initialized to work
together, no periodic programming of either ele-
ment is necessary for subsequent data acquisition.

Additional hardware devices consist of ultra-
sonic sensors that provide information about the
microstructural changes that take place as the fa-
tigue crack damage evolves. The user space for
ultrasonic data acquisition and processing consists
of a ¢ program that connects through the Data
FIFO with the data acquisition kernel of the
RTLinux operating system and also stores the data
to a text file for off-line analysis. There is another
program that connects through the Command
FIFO and instructs the kernel to start or stop the
system, increase or decrease the gain, and increase
or decrease the excitation frequency. Other addi-
tional features of the software are a graphical user
interface as shown in Fig. 6 both for real-time data
display as well as for connecting to the stage mo-
tion of the optical microscope.

4.3. Real time implementation

This subsection presents real-time implementa-
tion of STSA-based fatigue damage detection in
the laboratory environment. The nominal condi-
tion is chosen after the start of the experiment at a
time epoch 7, when the system attains the steady
state and is assumed to be in a healthy condition.
The states of the automaton (see Figs. 1 and 3) are
fixed in advance using a priori determined values
of the parameters: alphabet size || and window
length D. The algorithms for partitioning and ma-
chine construction are based on the time-series
data at the nominal condition #;. The resulting in-
formation (i.e., the partition and the state probabil-
ity vector at this nominal condition) is stored for
computation of anomaly measures at future slow-
time epochs, t;,%,,...,,... that are separated by
uniform or nonuniform intervals of time. The time
series data of multiple sensors are written on text
files so that the STSA algorithm can read the data
from the text files to calculate the anomaly mea-
sure at those time epochs. The algorithm is com-
putationally fast for real-time execution and the
results can be plotted on the screen such that the
plot updates itself with the most recent anomaly
measure at that particular time epoch. This proce-
dure allows on-line condition monitoring at any
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time and is capable of issuing early warnings.

4.4. Generation of fatigue crack damage

The mechanical system in Fig. 4 is persistently
excited near resonance so as to induce a stress
level that causes fatigue damage, ultimately lead-
ing to failure. The applied stress is dominantly
flexural (i.e., bending) in nature and the amplitude
of oscillations is symmetrical about the zero mean
level (i.e., a reversed stress cycle [20]). Under cy-
clic loading, the specimens undergo fatigue crack-
ing where the far-field stress is elastic and plastic-
ity is only localized near the crack site. The
fatigue damage occurs at a time scale that is (sev-
eral order of magnitude) slow relative to the fast
time scale dynamics of the vibratory motion and
eventually leads to a catastrophic failure. Close
observation indicates that fatigue failure develops
in the following sequence: (i) the repeated cyclic
stress causes incremental crystallographic slip and
formation of persistent slip bands; (ii) gradual re-
duction of ductility in the strain-hardened areas
results in the formation of submicroscopic cracks;
and (iii) the notch effect of the submicroscopic
cracks concentrates stresses to form a large crack
which grows till complete fracture occurs. Crack
initiation may occur at a microscopic inclusion or
at site(s) of local stress concentration. In this ex-
perimental apparatus, the sites of stress concentra-
tion are localized by creating a hole in each of the
three specimens. Since the mechanical structure of
the test apparatus consists of beams and masses,
the underlying dynamics can be approximated by
a finite set of first order coupled differential equa-
tions with parameters of damping and stiffness.
The damping coefficients are very small and the
stiffness constants slowly change due to the evolv-
ing fatigue crack.

4.5. Sensors for damage detection

The apparatus is equipped with multiple sensors
for damage detection including ultrasonic flaw de-
tectors and an optical microscope for localized
damage sensing. The advantages of using ultra-
sonic transducers over optical microscope include
the ease of installation at the desired damage site
and detection of early anomalies before the onset
of widespread fatigue crack propagation. Never-
theless, the optical microscope serves to calibrate
the ultrasonic flaw detectors.
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Fig. 7. Ultrasonic flaw detection scheme.

(a) Ultrasonic flaw detector—The ultrasonic
flaw detector functions by emitting high frequency
ultrasonic pulses that travel through the specimen
to the receiver transducers [21]. A piezoelectric
transducer is used to inject ultrasonic waves in the
specimen and a single receiver transducer is
placed on the other side of the circular notch to
measure the transmitted signal. The ultrasonic
waves produced were 5 MHz sine wave signals
and they were emitted during a very short portion
of every load cycle.

The sender and receiver ultrasonic transducers
are placed on two positions, above and below the
central notch, so as to send the signal through the
region of crack propagation and receive it on the
other side, as shown in Fig. 7. Since material char-
acteristics (e.g., voids, dislocations, and short
cracks) influence the ultrasonic impedance, minute
damage in the specimen is likely to change the
signature of the signal at the receiver end. There-
fore, the signal can be used to capture small
changes during the early stages of fatigue damage,
which may not be possible to detect by an optical
microscope. Prior to the appearance of a crack on
the specimen surface, deformations (e.g., disloca-
tions and short cracks) inside the specimen may
have already caused detectable attenuation and/or
distortion of the ultrasonic waves. Therefore, the
ultrasonic sensors are utilized for generating the
localized information of the growth of fatigue
damage.
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Table 2

Sensor mountings.

Sensor Location
LVDT Mass 1, mass 3
Accelerometer Mass 1, mass 3
Load cell Shaker 1, shaker 2

Specimen between mass 1

Ultrasonic transducers and mass 3

(b) Optical microscope—The traveling optical
microscope, shown as part of the schematic in Fig.
6, provides direct measurements of the visible part
of a surface crack. The microscope can be shifted
from left to right side and vice versa to track the
crack tip on the specimen.

(c) Accelerometers, load cells, and displacement
transducers — As the body of the accelerometer is
subjected to vibrations, the embedded piezoelec-
tric crystal is continually compressed and
stretched. The fluctuating force, which is propor-
tional to the instantaneous acceleration, generates
time-dependent electric charge that, in turn, is
converted to a voltage signal. The load cell func-
tions on a similar principle and is primarily used
for measuring the time-dependent forces exerted
on the vibrating structure. LVDT’s are also
mounted on the test apparatus to measure the in-
stantaneous positions of the masses. These sensors
are useful for analyzing the effects of local fatigue
damage on the global performance of the vibratory
system. The locations of various sensors on the
test apparatus are listed in Table 2. Raw time se-
ries data plots for four sensors (ultrasonic, LVDT,
accelerometer, and load cell) are shown in Fig. 8.

It is observed that the crack always starts at the
stress-concentrated region on the surface near the
center of the circular notch but the exact location
of the origin of the crack can be treated as a ran-
dom event. Formation of very small cracks is dif-
ficult to detect and model due to large material
irregularities. This paper focuses on integrating
the information generated from both the ultrasonic
sensors and the sensors measuring the global vari-
ables like accelerometers, LVDTSs, and load cells
for characterization of fatigue damage in the small
crack regime.

5. Results and discussion on
anomaly detection

STSA method has demonstrated superior perfor-
mance (in terms of early detection of evolving
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Fig. 8. Raw time series data for four different sensors.

anomalies, and robustness) relative to other exist-
ing pattern recognition tools such as principal
component analysis and artificial neural networks,
in both electronic systems [10] and mechanical
systems [9]. This section describes the experimen-
tal validation of the symbolic dynamic tools for
early detection and quantification of fatigue dam-
age based on time-series data, generated from the
sensors mounted on the test apparatus as shown in
Fig. 4. In the experiments, both shakers are ex-
cited by a sinusoidal input of amplitude 0.85 V
and frequency 14.09 Hz (89 rad/s) throughout
the run of each experiment. The time-series data
from displacement, accelerometer, load cell and
ultrasonic sensors, mounted on the experimental
apparatus (see Table 2), were collected from the
start of the experiments after the system response
attained the stationary behavior. The results shown
in Fig. 9 are based on the analysis of data col-
lected from sensors mounted on mass No. 1 and
shaker No. 1. The time-series data for each sensor
were saved for a total period of ~90 kc in 110
files. 1 min of time-series data was stored in each
file for all sensors. The total life of the specimen
was ~110 min corresponding to ~90 kc. The
data set at the beginning stage of experiments
served as the reference point representing the
nominal behavior of the dynamical system. The
anomaly measure at the nominal condition was
chosen to be zero and was subsequently updated at
approximately 3 min intervals.
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Fig. 9. Normalized anomaly measure plots derived from
accelerometer, load cell, and displacement sensors.

The alphabet size, window length, and the
wavelet basis were chosen as |2|=8, D=1 (see
Sec. 3) and the wavelet basis “gaus2” [22], re-
spectively, for time-series data sets of all sensors
(displacement, accelerometer, load cell, and ultra-
sonic). Absolute values of the wavelet scale series
data (see Sec. 3.2) were used to generate the par-
tition because of the symmetry of the data sets
about their mean. Increasing the value of |2 fur-
ther did not improve the results and increasing the
value of depth D created a large number of states
of the finite state machine, many of them having
very small or zero probabilities. The finite state
machine constructed with the choice of the param-
eters |2 |=8 and D=1 has only eight states and it
was able to capture early anomalies. The algo-
rithm is computationally very fast relative to the
evolution of fatigue damage. The wavelet basis of
gaus?2 provided better results than many other
wavelets of the Daubechies family [15] because it
closely matches the shape of the sinusoidal sig-
nals.

The three plots in Fig. 9 represent the evolution
of anomaly measure derived from the time-series
data of accelerometer, load cell and displacement
sensors, respectively. These sensors measure the
changes in the global performance of the system
due to evolving fatigue damage in a localized re-
gion of the system. Fatigue crack growth in the
specimen connecting mass No. 1 and mass No. 3
(see Table 2) changes the stiffness of the material.
Consequently, the dynamics of the system are al-

Normalized Anomaly Measure

% 20 a0 _ e 8 100 120
Time(min)

Fig. 10. Normalized anomaly measure derived from ultra-
Sonic sensors.

tered because of coupling between different com-
ponents of the apparatus (see Fig. 4). As a result,
the time-series data of these sensors record
changes in the statistical patterns as shown in Fig.
9. The three plots in Fig. 9 are normalized by di-
viding the anomaly measure values with the re-
spective maximum for comparative evaluation.

Fig. 10 exhibits the normalized anomaly mea-
sure plot derived from the time-series data of ul-
trasonic sensors that are mounted on the specimen
connecting mass No. 1 and mass No. 3 (see Table
2). This specimen is subjected to a relatively
higher load because of resonance and synchroni-
zation of two shakers and therefore has higher
probability of failure. Ultrasonic sensors capture
the effects of small fatigue growth in the localized
region of the mechanical structure. The growth of
multiple small cracks inside the specimen causes
attenuation of the ultrasonic waves. The crack
propagation stage starts as multiple small cracks
coalesce into a single large crack. At this point, a
rapid change is observed in the profile of the ul-
trasonic signal. Finally, the specimen breakage
causes complete attenuation of the received ultra-
sonic signal because of high impedance of the air
gap.

As seen in Fig. 10, ultrasonic sensors capture
slow progression of fatigue damage in the local-
ized region of the mechanical structure from the
very beginning. The sharp change in the slope at
~58 min indicate the transition from the crack
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initiation phase to crack propagation phase. The
results from displacement, load cell, and acceler-
ometer sensors, as seen in the three plots of Fig. 9
show similar trends for all three sensors. These
plots show little change in the anomaly measure
during the crack initiation phase because small fa-
tigue cracks do not significantly affect the global
performance; subsequently, the effects of fatigue
damage on the overall system behavior become
noticeable. The three plots in Fig. 9 exhibit a slope
change at ~45 min. At this point, the stiffness
change in the specimen caused major change in
the dynamics of the system as recorded by these
sensors. A change in the stiffness constant of the
material alters the natural frequency of vibrations
and thereby affecting the global dynamics of the
system. These results for localized damage and its
effect on the global performance of the system in-
dicate that a control strategy can be built to take
predictive actions, based on the derived damage
information, for fault mitigation and control. In
this experiment, the STSA method captured the
gradual progression of faults much earlier than the
occurrence of catastrophic failure. This is of para-
mount practical importance as it can provide
ample time for the hierarchical supervisory control
system to execute decision and control laws for
life extension without significant loss of perfor-
mance [19]. This is an area of future research.

It is emphasized that the anomaly measure is
relative to the nominal condition of that particular
data set and may not represent damage in the ab-
solute sense. Any value of anomaly measure
greater than zero just indicates some deviation
from the nominal condition and it signifies that
some small faults might have occurred inside the
specimen. However, inferring anomalies and for-
mulation of a decision and control law for life ex-
tension is an inverse problem and is a topic of
future work.

6. Summary, conclusions, and future work

This paper presents the concept and experimen-
tal validation of a novel method for identification
of statistical patterns in complex dynamical sys-
tems. The underlying principle is based on STSA
[7,8] of observed process variable(s), which is
built upon the concepts of symbolic dynamics, au-
tomata theory, and information theory. The histo-
grams on state probability distribution are gener-
ated from the observed time-series data to serve as

patterns of the evolving behavior change resulting
from stiffness reduction due to fatigue damage.
The capability of the proposed STSA method for
identification of behavior patterns is experimen-
tally validated on a special-purpose laboratory ap-
paratus by a demonstration of how fatigue damage
information can be extracted in real time from dis-
placement, accelerometer, load cell, and ultrasonic
sensor signals.

The proposed method of statistical pattern iden-
tification is useful for performance monitoring and
decision making in human-engineered complex
systems. The main features are summarized be-
low:

* Information extraction from observed time se-
ries data in real time;

 detection and identification of gradually evolv-
ing anomalous behavior due to progression of
faults; and

* early warnings on incipient faults to avert cata-
strophic failures.

The reported work is a step towards building a
reliable instrumentation system for early detection
of faults in human-engineered complex systems,
such as electric power generation, petrochemical,
and networked transportation. Further research is
necessary before its usage in industry. The utiliza-
tion of the information provided by anomaly mea-
sure for appropriate control action for damage
mitigation is an area of future work and would
require stochastic analysis of multiple data sets
generated under identical loading and environ-
mental conditions.
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