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Abstract

Symbolic time series analysis (STSA) of complex systems for anomaly detection has been recently introduced in

literature. An important feature of the STSA method is extraction of relevant information, imbedded in the measured time

series data, to generate symbol sequences. This paper presents a wavelet-based partitioning approach for symbol

generation, instead of the currently practiced method of phase-space partitioning. Various aspects of the proposed

technique, such as wavelet selection, noise mitigation, and robustness to spurious disturbances, are discussed. The wavelet-

based partitioning in STSA is experimentally validated on laboratory apparatuses for anomaly/damage detection. Its

efficacy is investigated by comparison with phase-space partitioning.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The concept of symbolic time series analysis
(STSA) has been recently proposed for anomaly
detection in complex systems [1]. Several case
studies [2–5] in anomaly detection show that STSA

can be more effective than existing pattern recogni-
tion techniques (e.g., principal component analysis
and neural networks). The STSA method has also
been demonstrated for fault detection in electro-
mechanical systems, such as three-phase induction
motors [6] and helical gearbox in rotorcraft [7].
e front matter r 2006 Elsevier B.V. All rights reserved
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A crucial step in STSA is extraction of relevant
information, imbedded in the measured time series
data, to generate symbol sequences. Symbol gen-
eration requires partitioning of the data space to
obtain the symbol sequences [8,9]. Various parti-
tioning techniques have been suggested in literature
for symbol generation, which include variance-
based [10], entropy-based [11], and hierarchical
clustering [12] methods. A survey of clustering
techniques is provided in [13]. In addition to these
methods, another scheme of partitioning, based on
symbolic false nearest neighbors (SFNN), was
reported by Kennel and Buhl [14]. The objective
of SFNN partitioning is to ensure that points
that are close to each other in the symbol space are
also close to each other in the phase space.
Partitions that yield a smaller proportion of
SFNN are considered optimal. However, this
partitioning method may become computationally
.
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very expensive if the dimension of the phase space is
large or if the data set is contaminated by noise,
since noise induces false symbols.

Partitioning of wavelet-transformed data poten-
tially alleviates the above-mentioned shortcomings
and is particularly effective with noisy data from
high-dimensional dynamical systems. Usage of
wavelet transform for symbolization has been
recently introduced by the authors [1,15]. This
paper elaborates the concept of wavelet-based
partitioning for STSA and its major features are
delineated below.
�
 Selection of the wavelet basis and scale range.

�
 Noise mitigation in the measured time series data
prior to symbol generation.

�
 Robustness of extracted information from sym-
bol sequences.

�
 Enhancement of computational efficiency for
anomaly detection.

�
 Validation of the STSA method on laboratory
apparatuses for anomaly/damage detection.

The paper is organized into six sections including
the present section. Section 2 focuses on key
technical aspects of wavelet analysis such as
selection of wavelet basis and scales. Section 3
presents the maximum entropy method of partition-
ing the space of wavelet coefficients. Section 4
elucidates the underlying principles of wavelet-
based partitioning via simulation examples. Section
5 presents experimental results on laboratory
apparatuses to demonstrate efficacy of wavelet-
based STSA for anomaly detection. Section 6
summarizes the paper and makes major conclusions
along with recommendations for future research.

2. Wavelet analysis of time series data

This section presents generation of wavelet
coefficients from measured time series data, and
their arrangement for symbol generation. Specifi-
cally, issues of wavelet basis and scale range
selection are addressed.

Preprocessing of time series data is often neces-
sary for extraction of pertinent information. Fourier
analysis is sufficient if the signal to be analyzed is
stationary and if the time period is accurately
known. However, Fourier analysis may not be
appropriate if the signal has non-stationary char-
acteristics such as drifts, abrupt asynchronous
changes, and frequency trends. Wavelet analysis
alleviates these difficulties via adaptive usage of long
windows for retrieving low-frequency information
and short windows for high-frequency information
[16,17]. The ability to perform flexible localized
analysis is one of the striking features of wavelet
transform.

In multi-resolution analysis (MRA) of wavelet
transform, a continuous signal f 2 H, where H is a
Hilbert space, is decomposed as a linear combina-
tion of time translations of scaled versions of a
suitably chosen scaling function fðtÞ and the derived
wavelet function cðtÞ. Let the sequence ffj;kg belong
to another Hilbert space M with a countable
measure, where the scale s ¼ 2j and time translation
t ¼ 2�jk. If the sequence ffj;kg is a frame for the
Hilbert space H with a frame representation
operator L, then there are positive real scalars A

and B such that

Akf k2HpkLf k2MpBkf k2H 8f 2 H, (1)

where Lf ¼ fhf ;fj;kig and kLf kM is an appropriate

norm, e.g., kLf kM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

j

P
kjhf ;fj;kij

2
q

is a candi-

date norm; and hx; yi is the inner product of x and y,
both belonging to H.

The above relationship is a norm equivalence
and represents the degree of coherence of the signal
f with respect to the frame set of scaling functions; it
may be interpreted as enforcing an approximate
energy transfer between the domains H and LðHÞ.
In other words, for all signals f 2 H, a scaled
amount of energy is distributed in the coefficient
domain where the scale factor lies between A and B

[16]. However, the energy distribution is dependent
on the signal’s degree of coherence with the under-
lying frame ffj;kg. For a signal f, which is coherent
with respect to the frame ffj;kg, norm equivalence in
the frame representation necessarily implies that a
few coefficients contain most of the signal energy
and hence have relatively large magnitudes. Simi-
larly, pure noise signal w being incoherent with
respect to the set ffj;kg, must have a frame
representation in which the noise energy is spread
out over a large number of coefficients. Conse-
quently, these coefficients have a relatively small
magnitude [17].

Let ~f be a noise corrupted version of the original
signal f expressed as

~f ¼ f þ sw, (2)

where w is additive white gaussian noise with zero
mean and unit variance and s is the noise level.
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Then, the inner product of ~f and fj;k is obtained as

h ~f ;fj;ki ¼ hf ;fj;ki|fflfflfflffl{zfflfflfflffl}
signal part

þs hw;fj;ki|fflfflfflffl{zfflfflfflffl}
noise part

. (3)

The noise part in Eq. (3) may further be reduced if
the scales over which coefficients are obtained are
properly chosen.

For every wavelet, there exists a certain frequency
called the center frequency F c that has the
maximum modulus in the Fourier transform of
the wavelet [18]. The pseudo-frequency f p of the
wavelet at a particular scale a is given by the
following formula [18,19]:

f p ¼
F c

aDt
, (4)

where Dt is the sampling interval. Fig. 1 depicts the
center frequency associated with the Daubechies 4
wavelet ‘db4’ [16,20].

The power spectral density (PSD) of the signal
provides the information about the frequency
content of the signal. This information along with
Eq. (4) can be used for scale selection. The
procedure of selecting the scales is summarized
below:
�
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Identification of the frequencies of interest
through PSD analysis of time series data.

�
 Substitution of the above frequencies in place of

f p in Eq. (4) to obtain the respective scales in
terms of the known parameters F c and Dt.

The wavelet coefficients of the signal are sig-
nificantly large when the pseudo-frequency f p of the
wavelet corresponds to the locally dominant fre-
quencies in the underlying signal. Example 1 in
Section 4 illustrates how the choice of wavelet and
scale affect the coefficients. Examples 2 and 3
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Fig. 1. Center frequency approximation for wavelet db4.
illustrate noise suppression and robustness. Three
experimental studies in Section 5 illustrate enhance-
ment of anomaly/damage detection using STSA and
make comparisons of wavelet-based partitioning
and SFNN phase-space partitioning in this regard.

Upon selection of the wavelet basis and scale
range, the wavelet coefficients are obtained. These
coefficients are stacked at selected time-shift posi-
tions, starting with the smallest value of scale and
ending with its largest value and then back from the
largest value to the smallest value of the scale at the
next instant of time shift. In the sequel, this one-
dimensional array of arranged wavelet coefficients is
called the scale series data, which is structurally
similar to time series data in the phase space. For
symbol generation, the scale series data can be
handled in a similar way as time series data.

3. Symbolization of scale series data

This section presents symbolization of wavelet
coefficients by maximum entropy partitioning. The
scale series data are partitioned to construct the
symbol alphabet and to generate symbol sequences.

In the wavelet-based partitioning scheme, as
introduced in an earlier publication [1], the max-
imum and minimum of the scale series are evaluated
and the ordinates between the maximum and
minimum are divided into equal-sized regions.
These regions are mutually disjoint and thus form
a partition. Each region is then labelled with one
symbol from the alphabet. If the data point lies in a
particular region, it is coded with the symbol
associated with that region. Thus, a sequence of
symbols is created from a given sequence of scale
series data. This type of partitioning is called
uniform partitioning in the sequel. The left-hand
plot in Fig. 2 depicts uniform partitioning of noise
contaminated signal sinð2ptÞ with alphabet size
jSj ¼ 4. Note that the partition segments are of
equal size.

Intuitively, it is more reasonable if the informa-
tion-rich regions of the data set are partitioned finer
and those with sparse information are partitioned
coarser. To achieve this objective, a partitioning
method is adopted such that the entropy of the
generated symbol sequence is maximized [15].
Maximum entropy partitioning is abbreviated as
ME partitioning in the sequel. The procedure for
obtaining an ME partition is described below.

Let N be the length of the data set and jSj be the
size of the symbol alphabet (i.e., the number of
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Fig. 2. Examples of uniform and ME partitioning with jSj ¼ 4.
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disjoint elements in the partition). The data set is
sorted in ascending order. Starting from the first
point in the sorted data, every consecutive data
segment of length bN=jSjc forms a distinct element
of the partition, where bxc represents the greatest
integer less than or equal to x.

The right-hand plot in Fig. 2 shows ME partition-
ing for the noise-contaminated signal sinð2ptÞ with
jSj ¼ 4. As expected, the size of the partitions are not
equal, but the probabilities of the symbols are equal.
Variations in data patterns are more likely to be
reflected in the symbol sequence obtained under ME

partitioning than other partitioning.
The choice of the alphabet size jSj plays a crucial

role in STSA. For example, a small value of jSj may
prove inadequate for capturing the characteristics of
the scale series data. On the other hand, a large
value of jSj may lead to redundancy and waste of
computational resources.

Selection of the alphabet size jSj is an area of
active research; an entropy-based approach has
been adopted for selecting jSj in this paper. Let
HðkÞ denote the Shannon entropy of the symbol
sequence obtained by partitioning the data set with
k symbols:

HðkÞ ¼ �
Xi¼k

i¼1

pi log2 pi, (5)

where pi represents the probability of occurrence of
the symbol si. Note that Hð1Þ ¼ 0 because pi ¼ 0 or
1 with i ¼ 1. If the underlying data set has sufficient
information content, then the entropy achieved
under ME partitioning would be log2ðkÞ, which
corresponds to the uniform distribution. We define
a quantity hð�Þ to represent the change in entropy
with respect to the number jSj of symbols as

hðkÞ9HðkÞ �Hðk � 1Þ 8kX2. (6)

The algorithm for alphabet size selection is given
below.

Step 1: Set k ¼ 2. Choose a threshold �h, where
0o�h51.

Step 2: Sort the data set (of length N) in the
ascending order.

Step 3: Every consecutive segment of length
bN=kc in the sorted data set (of length N) forms a
distinct element of the partition.

Step 4: Convert the raw data into a symbol
sequence with the partitions obtained in Step 3. If
the data point lies within or on the lower bound of a
partition, it is coded with the symbol associated
with that partition.

Step 5: Compute the symbol probabilities pi,
i ¼ 1,2,y, k.

Step 6: Compute HðkÞ ¼ �
Pi¼k

i¼1pi log2pi and
hðkÞ ¼ HðkÞ �Hðk � 1Þ.

Step 7: If hðkÞo�h, then exit; else increment k by 1
and go to Step 3.

In general, a small �h leads to a large size of the
symbol alphabet, resulting in increased computa-
tion. Also, a larger alphabet makes the partitioning
finer. This might increase the probability of false
symbols being induced by noise. On the other hand,
a large �h leads to a small alphabet size that
may prove inadequate for capturing the pertinent
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information. Hence, there is a trade-off between
accuracy and computational speed when �h is
chosen. The variance of the noise process associated
with the signal may serve as a guideline for selection
of �h.

4. Validation of wavelet-based partitioning

This section presents simulation cases to validate
symbolization of measured time series data via
partitioning of the wavelet coefficients. The under-
lying concepts are illustrated by three examples.

4.1. Example 1: choice of wavelet parameters

This example illustrates how the choice of wavelet
basis and scale range affects the coefficients that, in
turn, determine symbol generation for anomaly
detection [1]. Let us consider the following sinusoi-
dal signal:

yðtÞ ¼ cosð2ptÞ 8t 2 ½�5;þ5�. (7)

The frequency of yðtÞ in Eq. (7) is 1.00Hz. The
Gaussian wavelet 9 (‘gaus9’) (see [20, p. 74])
matches the shape of yðtÞ well, as seen in Fig. 3
that compares an appropriately scaled and trans-
lated version of the ‘gaus9’ wavelet with the
signal yðtÞ.

To demonstrate the impact of the chosen wavelet
parameters on the coefficients, the wavelet basis
‘db1’ is also considered for comparison purposes.
The signal yðtÞ is sampled at 100Hz (i.e., the
sampling interval Dt ¼ 0:01 s). The wavelet coeffi-
cients of the signal yðtÞ are obtained for various
scales with both wavelets, ‘gaus9’ and ‘db1’. The
-5 0 5
-1.5

-1

-0.5

0

0.5

1

1.5

Time t

S
ig

n
al

, W
av

el
et

Signal

Wavelet ’gaus 9’

Fig. 3. Comparison of the wavelet basis ‘gaus9’ and the signal.
norm of the coefficients corresponding to each scale
and the pseudo-frequencies of the wavelet corre-
sponding to the chosen scales are calculated. Fig. 4
shows the plot of the norm of coefficients and the
pseudo-frequencies of the wavelet.

It is observed in Fig. 4 that, for both wavelets
‘gaus9’ and ‘db1’, the maximum of the norm is
obtained at f p � 1:00Hz. In fact, it is exactly at
1.00Hz for ‘gaus9’. Furthermore, the value of the
peak norm achieved with ‘gaus9’ is appreciably
greater than that with wavelet ‘db1’. In other words,
the coefficients obtained with ‘gaus9’ are more
significant than those obtained with ‘db1’. Another
observation is that the norm curve for ‘gaus9’ shows
a greater rate of decay across pseudo-frequencies
than that of ‘db1’. More energy is concentrated in a
narrow band frequencies around 1.00Hz in the case
of ‘gaus9’. These observations imply that high
energy compaction can be achieved with fewer
coefficients if the wavelet and the scales are chosen
as stated in Section 2. A favorable implication of
fewer coefficients is fewer number of symbols for
analysis and hence an improvement in computa-
tional efficiency.

4.2. Example 2: noise suppression

This example demonstrates how noise suppres-
sion is achieved with wavelets. Let the signal yðtÞ in
Eq. (7) be corrupted with additive zero-mean white
Gaussian noise wðtÞ,

~yðtÞ ¼ yðtÞ þ swðtÞ. (8)

A common measure of noise in a noise-corrupted
signal is the signal-to-noise ratio (SNR) that is
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Fig. 5. Signal and noise profiles at s ¼ 0:05.
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Table 1

SNR values

s ¼ 0:05 s ¼ 0:1

SNR 191.55 50.89gSNR 25195 4281.5

V. Rajagopalan, A. Ray / Signal Processing 86 (2006) 3309–33203314
defined as:

SNR 9
kyk2H
ks wk2H

, (9)

where y and w are functions of time. Similar to
Eq. (9), the SNR in the wavelet domain is defined as

gSNR9
kLyk2M
ks Lwk2M

, (10)

where Ly and Lw, which belong to the Hilbert space
M (see Section 2), represent the wavelet coefficients
of the signal y and the noise w.

Numerical experiments have been performed with
s 2 f0:05; 0:1g. The signal is sampled at 100Hz (i.e.,
Dt ¼ 0:01 s). The scales are determined following
Eq. (4), such that the pseudo-frequency of the
wavelet matches the frequency of the signal. Fig. 5
depicts the time domain plot (left plate) and
coefficient plot (right plate) of the signal y and
white Gaussian noise having standard deviation
s ¼ 0:05. Similarly, Fig. 6 depicts the time domain
plot (left plate) and coefficient plot (right plate)
of the signal y and white Gaussian noise having
standard deviation s ¼ 0:10. Table 1 lists the
values of SNR and gSNR, averaged over 20
simulation runs.

Both Figs. 5 and 6 show that gSNR is significantly
larger than SNR. That is, the wavelet-transformed
signal is significantly de-noised relative to the time
domain signal. This is expected because the noise is
incoherent with the wavelet while the signal enjoys a
great degree of coherence with the wavelet. Thus,
symbols generated from wavelet coefficients would
reflect the characteristics of the signal with more
fidelity than those obtained with time domain
signals.
4.3. Example 3: robustness of symbol probability

vector

The symbolization scheme is developed to en-
hance real-time detection of slowly varying anoma-
lies in dynamical systems [1]. Of critical importance
is the symbol probability vector p whose elements
denote the probability of occurrence of individual
symbols in the symbol sequence. The vector p must
be robust relative to measurement noise and
spurious disturbances and, at the same time, be
sensitive enough to detect small slowly varying
anomalies from the observed data set. A distortion
measure for the symbol probability vector is
introduced below

dt9kpt � ~ptk1, (11)

where the subscript t denotes that the probability
vectors correspond to symbols generated from time
domain signals; and k � k1 is the sum of the absolute
values of the elements of the vector �. The vector pt,
with kptk1 ¼ 1, corresponds to the uncorrupted
signal and ~pt corresponds to the corrupted signal.
Similar to Eq. (11), distortion measure in the
wavelet scale domain is defined as

ds9kps � ~psk1, (12)

where the subscript s denotes that the probability
vectors correspond to symbols generated from
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wavelet scale domain signals (i.e., scale series data).
Therefore, lower is the distortion ratio, closer is the
probabilistic representation of the corrupted signal
to that of the uncorrupted signal, i.e., greater is the
robustness to noise and spurious disturbances.

The partitions are obtained, in case of time
domain, by employing the maximum entropy
criterion on the time series data of the signal. In
the wavelet domain, the partitions are obtained with
the corresponding scale series data, as defined in
Section 2. In both time domain and wavelet domain,
the probability vectors p and ~p are computed with
the same partitions for the uncorrupted and
corrupted signals.

The symbol alphabet size jSj is chosen to be 4 in
this example. The partitions are obtained as
mentioned before for the signal y and its transform,
i.e., the coefficient vector Ly. Table 2 lists the values
of distortion ratios dt and ds, averaged over 20
simulation runs.

It is seen that distortion measures are far smaller
in the wavelet scale domain than those in the time
domain. This observation implies that the symbol
probabilities are significantly more robust to mea-
surement noise and spurious disturbances in the
wavelet domain than in the time domain. Hence, it
may be inferred that symbols generated from the
wavelet coefficients would be better for anomaly
detection as the effects of noise to induce errors in
the symbol probabilities are significantly mitigated.

5. Experimental results on anomaly detection

This section evaluates the performance of wave-
let-based partitioning in STSA for anomaly/damage
detection. This is demonstrated via experimentation
on the following laboratory apparatuses:
�

Ta
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Anomaly detection on a nonlinear electronic
system apparatus [1].
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Structural damage detection on a mechanical
vibration system apparatus [3].
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Damage detection in polycrystalline alloys on a
fatigue testing apparatus [5].
ble 2

tortion ratios

s ¼ 0:05 s ¼ 0:1

0.040 0.054

0.006 0.010
5.1. Anomaly detection in nonlinear systems
This example demonstrates efficacy of the STSA

method for anomaly detection in nonlinear systems.
Experiments have been conducted on a laboratory
apparatus [1] that emulates the forced Duffing
equation [21], modelled as

d2y

dt2
þ b

dy

dt
þ yðtÞ þ y3ðtÞ ¼ A cosðOtÞ, (13)

where the dissipation parameter b varies slowly with
respect to the response of the dynamical system; b ¼
0:1 represents the nominal condition; and a change
in the value of b is considered as an anomaly. With
amplitude A ¼ 22:0 and O ¼ 5:0, a sharp change in
the behavior is noticed around b ¼ 0:29, possibly
due to bifurcation. The phase plots and time-
response plots, depicting this drastic change beha-
vior, are not presented here as they are provided in
an earlier publication [1].

The objective of anomaly detection is to identify
small changes in the parameter b as early as possible
and well before it manifests a drastic change in the
system dynamics. The details of the experimental
apparatus are provided in [22]. Time series data of
the signal yðtÞ from the experimental apparatus is
used for symbolic analysis.

The first step in the analysis is selection of the
wavelet basis. The time series data of the signal and
a scaled and translated version of the wavelet
‘gaus1’ are shown in the left-hand plate of Fig. 7.
For the purpose of comparison, the right-hand plate
of Fig. 7 shows the same time series data of the
signal and a scaled and translated version of the
wavelet ‘db1’ that was used in [1] for wavelet
analysis. Since ‘gaus1’ matches the shape of the
signal more closely than ‘db1’, the wavelet ‘gaus1’ is
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better suited for STSA of this data sequence than
‘db1’. Once the wavelet is chosen, the next step is
identification of the frequencies of interest. The top
and bottom plates of Fig. 8 depict the power spectra
of the system for b ¼ 0:1 and 0.29, respectively.

Fig. 8 shows that frequencies in the neighborhood
of 0.54Hz, though present at the nominal condition
b ¼ 0:10, are absent at b ¼ 0:29. The wavelet
coefficients at scales, corresponding to the pseudo-
frequency of 0.54Hz, would be smaller in magni-
tude in the anomalous condition(s) when compared
with those in the nominal condition. Hence, by
choosing scales that correspond to pseudo-frequen-
cies around 0.54Hz, early detection can be achieved
more effectively.

The next aspect of anomaly detection via STSA is
the choice of number of symbols, i.e., cardinality jSj
of the symbol alphabet S. The scale series data, at
the nominal condition, is partitioned into a symbol
sequence starting with jSj ¼ 2 and the threshold
parameter �h is chosen to be 0:2. Fig. 9 depicts the
change in entropy h versus the number of symbols
jSj. It is seen that h monotonically decreases with
jSj and becomes less than �h when jSj ¼ 8.
Accordingly, the number of symbols jSj is chosen
to be eight. A smaller value of �h results in increased
number of symbols, which would increase computa-
tion with (possibly) no significant gain in accuracy
of anomaly detection.

The partition is obtained using data obtained
under the nominal ðb ¼ 0:1Þ condition. Once the
partition is generated, it remains invariant. As the
dynamical behavior of the system changes due to
variations in b, the statistical characteristics of the
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Fig. 8. Power spectrum plots at nominal and anomalous

conditions.
symbol sequences are also altered and so do the
symbol probabilities. A measure could be induced
on the symbol probability vectors obtained under
different anomalous conditions, to quantify these
changes. Such a measure is called the anomaly
measure M. The metric Mk ¼ dðp0; pkÞ is an
anomaly measure, where p0 and pk represent the
symbol probability vectors under nominal and
anomalous conditions, respectively. A candidate
anomaly measure is the angle between the symbol
probability vectors under nominal and anomalous
conditions. This measure is defined as

Mk ¼ arccos
hp0; pki

kp0k2kpkk2

� �
, (14)

where hx; yi is the inner product of the vectors x and
y; and kxk2 is the Euclidean norm of x.

Fig. 10 compares the profiles of the anomaly
measures Mk in Eq. (14) obtained with wavelet
‘gaus1’ under ME partitioning and uniform parti-
tioning. With b increasing from 0.1, there is a
gradual increase in the anomaly measure much
before the abrupt change in the vicinity of b ¼ 0:29
takes place. This indicates growth of the anomaly
even before any notable change in the dynamical
behavior takes place. At this point, the anomaly
measure starts increasing relatively more rapidly
suggesting the onset of a forthcoming catastrophic
failure. Under ME partitioning, the larger values of
the anomaly measure at smaller values of b and
gradual increase in both slope and curvature of the
anomaly measure curve would facilitate anomaly
detection significantly before it is possible to do so
under uniform partitioning. Therefore, with regard
to early detection of anomalies, ME partitioning
appears to be more effective than uniform parti-
tioning.
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Fig. 11. Anomaly detection on the electronic system apparatus.
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Fig. 12. Anomaly detection on the mechanical vibration appa-

ratus.
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Fig. 11 depicts the anomaly measure plots
obtained with wavelet partitioning (‘gaus1’) and
phase-space partitioning (SFNN). These two pro-
files of anomaly measure are generated from the
same time series data, where the number of symbols
jSj ¼ 8 in both cases. It is observed that ME

partitioning with ‘gaus1’ wavelet is comparable to
SFNN partitioning. However, in this problem, the
execution time for SFNN to generate the partition is
found to be � 4 h, while that for ME partitioning is
� 100ms on the same computer. Therefore, it may
be inferred from this experiment that ME partition-
ing is computationally several orders of magnitude
less intensive than SFNN partitioning while they
yield similar performance from the perspectives of
anomaly detection.
5.2. Structural damage detection in mechanical

systems

This example demonstrates efficacy of the STSA

method for early detection of damage in mechanical
structures. Laboratory experiments have been con-
ducted on a multi-degree-of-freedom mechanical
vibration apparatus [3]. The mechanical system in
the apparatus is persistently excited at a frequency
of 10.4Hz, which is a close approximation of one of
resonance frequencies of the mechanical structure.
During the experiments, time series data have been
collected from the measurements of displacement
sensors, and each set contains 30 s of data under
persistent vibratory motion of the mass-beam
system. The resulting cyclic stresses induce (irrever-
sible) fatigue crack damage in the critical structures,
which cause gradual reduction in stiffness. Conse-
quently, the statistics of time series data undergo
changes. The objective here is to detect these
changes as early as possible in real time.

The first data set, which is dominated by a
sinusoid of frequency �10:4Hz and represents the
nominal behavior of the mechanical vibration
system, is considered to be the reference point.
The wavelet ‘gaus9’ is chosen for analysis because
this wavelet closely matches the shape of the signal.
A small set of scales around the frequency of
10.4Hz are chosen as per procedure outlined in
Section 2. The alphabet size is chosen, based on the
entropy rate, as eight, i.e., jSj ¼ 8.

Fig. 12 depicts two plots of anomaly measure,
which are obtained from the same data set with
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different partitioning methods.
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Fig. 13. Anomaly measure plots for fatigue crack detection.
It is observed in Fig. 12 that ME partitioning with
‘gaus9’ wavelet is comparable to SFNN partition-
ing. However, in this problem, the execution time
for ME partitioning is about five orders of
magnitude less than that for SFNN partitioning.
Hence, it may be inferred from this experiment that
ME partitioning, is better suited for real-time
structural damage detection in mechanical systems.

5.3. Fatigue damage detection in polycrystalline

alloys

This example presents a comparison between
wavelet space and phase-space partitioning in the
context of fatigue crack damage detection in
polycrystalline alloys. The details of the experimen-
tal apparatus, equipped with an ultrasonic flaw
detector and an optical microscope, on which
experiments were conducted are reported in [5]
and references therein. Low-cycle fatigue tests have
been conducted with specimens, made of aluminum
alloy 7075-T6. A sinusoidal load with maximum
and minimum loads of 87 and 4.85MPa, respec-
tively, is applied. A significant amount of internal
damage occurs before the crack appears on the
surface of the specimen, where it is observed by the
optical microscope. This internal damage caused by
multiple small cracks and dislocations affect the
ultrasonic waves as they pass through the regions
where these faults have developed. This phenomen-
on causes signal distortion and attenuation at the
receiver end of the ultrasonic flaw detector.

The crack propagation stage starts when the
internal damage eventually develops into a single
large crack. Subsequently, the crack growth rate
increases rapidly and when the crack is sufficiently
large, the transmitted ultrasonic signal is almost
completely attenuated. The process of obtaining the
ultrasonic time series data is described in [5]. The
results of STSA-based anomaly/damage detection,
obtained with ME and SFNN partitioning methods,
are presented below.

Wavelet ‘gaus2’ is used for obtaining the coeffi-
cients that are stacked to form the scale series data
set. The alphabet size jSj is chosen to be eight. The
scale series data set is partitioned by imposing the
ME criterion to generate the symbols. Fig. 13
depicts two anomaly measure plots that are
obtained from the same data set by using ME and
SFNN partitioning.

While the SFNN partitioning yields slightly higher
values of the anomaly measure and comparable
slope, the profile of wavelet partitioning is more
smooth and yields a larger change in the curvature
around 32kilocycles, which is an early warning for
the forthcoming failure. Simultaneous consideration
of the anomaly measure, slope, and curvature
provides a robust method of failure prediction and
reduces the probability of false alarms.

Similar to the previous experiments, it is observed
that the execution time for ME partitioning is
approximately five orders of magnitude less than
that for SFNN partitioning. Hence, it may be
inferred that ME partitioning, is better suited for
real-time fatigue damage detection in polycrystalline
alloys.

6. Summary and conclusions

This paper presents a novel method of partition-
ing the data space for symbolic time series analysis
(STSA). In this approach, symbols are generated
from the wavelet coefficients of the time series data,
instead of obtaining them directly from the time
series data. Various aspects of this method, such as
selection of wavelet basis and scale range, are
systematically investigated for: (i) suppression of
noise and spurious disturbances and (ii) enhance-
ment of sensitivity to changes in signal dynamics.
The advantages of using wavelet-based partitioning
over phase-space partitioning are demonstrated by
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numerical simulation and laboratory experimenta-
tion. It has been shown that measurement noise
suppression results in robust symbol generation.
The symbol sequences, generated from the wavelet
coefficients of a noisy signal, are able to capture the
changes in signal information better than those
obtained directly from the time series data of the
signal. It is also shown that the choice of an
appropriate wavelet and scales significantly im-
proves computational efficiency and thereby en-
hances implementation of the anomaly detection
technique for real-time applications. An entropy-
based algorithm is introduced for selection of the
symbol alphabet size.

A partitioning method, based on maximum
entropy, is introduced and is compared with the
uniform partitioning method. The performance of
wavelet-based partitioning has been tested via experi-
mentation for: (i) anomaly detection on a nonlinear
electronic system apparatus [1]; (ii) structural damage
detection on a mechanical vibration system apparatus
[3]; and (iii) damage detection in polycrystalline alloys
on a Fatigue Testing apparatus [5].

Wavelet-based maximum entropy (ME) parti-
tioning has been compared with symbolic false
nearest neighbor (SFNN) partitioning [14] with
regard to anomaly detection. Based on the time
series data from three experimental apparatuses, it
is observed that the aforementioned partitioning
methods yield comparable results while the compu-
tation time for wavelet-based ME partitioning is
observed to be several orders of magnitude smaller
than that for SFNN partitioning.

A major conclusion based on this investigation is
that wavelet-based ME partitioning, combined with
an appropriate choice of wavelet and scales,
significantly enhances computational efficiency and
anomaly detection capabilities beyond what has
been reported in literature. The field of STSA is
relatively new and its application to anomaly
detection is very recent. Therefore, the proposed
method of symbol generation for anomaly detection
requires continued theoretical and experimental
research. In this context, future research is recom-
mended in the following areas:
�
 Exploration of lifting techniques [23] for wavelet
customization;

�
 Extension of ME partitioning to multi-dimen-
sional time series;

�
 Noise reduction in time series for robust anom-
aly/damage detection.
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