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Abstract

This paper presents symbolic time series analysis (STSA) of multi-dimensional measurement data for pattern identification in dynamical
systems. The proposed methodology is built upon concepts derived from Information Theory and Automata Theory. The objective is not merely
to classify the time series patterns but also to identify the variations therein. To achieve this goal, a symbol alphabet is constructed from raw
data through partitioning of the data space. The maximum entropy method of partitioning is extended to multi-dimensional space. The resulting
symbol sequences, generated from time series data, are used to model the dynamical information as finite state automata and the patterns
are represented by the stationary state probability distributions. A novel procedure for determining the structure of the finite state automata,
based on entropy rate, is introduced. The diversity among the observed patterns is quantified by a suitable measure. The efficacy of the STSA
technique for pattern identification is demonstrated via laboratory experimentation on nonlinear systems.
� 2007 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Accurate modeling of system dynamics, based solely on the
fundamental principles of physics, is often infeasible. There-
fore, it might be necessary to rely on time series data gener-
ated from sensors to learn about the system dynamics. When
the dynamics are stationary, analytical methods like the Fourier
transform are adequate for recognizing the patterns in the time
series. However, if the signal is nonstationary (e.g., exhibit-
ing drift and/or frequency variations), the afore-mentioned an-
alytical tools may become inadequate. Moreover, nonlinear
and nonstationary systems often exhibit behavior like strange
attraction, chaos, and bifurcation [1]. In such cases, a more
powerful technique is necessary for pattern classification and
also for identifying the variations therein [2].

Symbolic time series analysis (STSA) is a useful tool for mod-
eling and characterization of nonlinear dynamical systems [3,4].
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A novel approach, based on symbolic dynamics, for anomaly
detection was introduced by Ray in Ref. [5]. This methodology
was compared with other data driven methods such as princi-
pal component analysis (PCA) and artificial neural networks
(ANN) in Ref. [6]. A new partitioning scheme to enhance this
methodology, known as maximum entropy (ME) partitioning,
was reported in Ref. [7]. The STSA methodology is briefly sum-
marized below.

Time series data are converted to symbol sequences based
on an appropriate partition. This partition is obtained with re-
spect to a time series chosen as the nominal. The partition re-
mains invariant in the analysis of subsequent data sets. As the
dynamical behavior of the system changes, symbol sequences
generated are expected to be different from those of the nomi-
nal. Probabilistic finite state automata (PFSA) [8] can be used
to model the dynamics of the symbolic process generated from
the time series. The probability distributions, obtained from the
PFSA, provide a statistical representation of the patterns. The
variations in symbolic patterns are quantified by the divergence
among the probability distributions.

If the partitioning of time series and the subsequent model-
ing are done appropriately, the symbolic dynamic analysis can
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Fig. 1. Pattern recognition via symbolic time series analysis.

accurately identify and represent the patterns observed in the
time series. Fig. 1 provides a pictorial depiction of the pattern
identification process beginning with partitioning of the data
space to generate symbols, followed by representation with
PFSA and the generation of probability distributions from the
PFSA. Moreover, there are several advantages associated with
STSA. An important practical advantage of symbolic analysis
is its enhanced computational efficiency. Analysis of symbolic
data is often less sensitive to measurement noise. Applications
of symbolic methods are thus favored in circumstances where
robustness to noise and computational speed are paramount [4].

There are different classes of pattern identification (e.g.,
syntactic or structural matching, statistical decision-theoretic,
and artificial neural networks) [9], which are based on raw
data. The above classes may not be mutually exclusive as
it is possible that the same pattern recognition method may
belong to more than one class. The STSA-based pattern iden-
tification tool, presented in this paper, can be interpreted
to belong to both syntactic and statistical decision-theoretic
classes.

The paper is organized into six sections including the present
one. Section 2 provides a brief introduction to STSA. Section
3 describes the ME partitioning [7] method for symbol gen-
eration. This method is extended to multiple dimensions in
this paper. Pattern representation with finite state machines and
measures for quantifying deviations are described in Section 4.
Section 5 discusses the results of the proposed STSA methodol-
ogy, as applied to the well known nonlinear systems described
by the Duffing equation [10] and the Van der Pol equation [11].
Section 6 summarizes and concludes the paper with recommen-
dations for future research.

2. Symbolic time series analysis

Continuously varying physical processes are often modeled
as a finite-dimensional dynamical system:

dx(t)

dt
= f (x(t, �)); x(0) = x0, (1)

where t ∈ [0, ∞) is time; x ∈ R� is the state vector in the
phase space; and � ∈ Rm is the (slowly varying) parameter
vector. Formally, a solution to Eq. (1) can be expressed as a
continuous function of the initial state x0 as x(t) = �t (x0),
where �t represents a parametric family of maps of the phase
space into itself. This evolution of phase trajectory in (discrete)
time t can be viewed as a flow of points in the phase space. A
symbolic description is derived by partitioning the phase space
into mutually disjoint regions as illustrated in Fig. 1. A brief
discussion on partitioning follows.

A compact set � ∈ R�, within which the trajectory is
contained, is identified with the phase space itself. The en-
coding of � is accomplished by introducing a partition
B ≡ {B0, B1, B2, . . . , Bp−1} consisting of p mutually ex-
clusive and exhaustive subsets, i.e., Bj ∩ Bk = ∅, ∀j 	= k,⋃p

j=1Bj = �. Each phase trajectory is described by an orbit
O ≡ (x0, x1, x2, . . . , x�, . . .), which passes through or touches
various elements of the partition B. Let the index of domain
Bi ∈ B visited at a given time instant be denoted by the
symbol �i ∈ �. The set of symbols � = (�0, �1, . . . , �p−1)

labeling the partition elements is called the alphabet. Each
initial state x0 generates an (infinite) sequence of symbols
defined by a mapping from the phase space to the space
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of symbols

x0 
−→ �3�4�2�0 . . . . (2)

Such a mapping is called symbolic dynamics [3] as it attributes
a legal (i.e., physically admissible) symbol sequence to the
time series. Since the size of each cell is finite and also the
cardinality of the alphabet � is finite, any such symbol sequence
represents, through iteration, a phase trajectory that has the
compact support �. In general, a dynamical system would only
generate a subset of all possible sequences of symbols as there
could be some illegal (i.e., physically inadmissible) sequences.

3. Symbol generation

The first aspect of STSA approach to pattern recognition is
generation of symbol sequences from time series. Various meth-
ods have been suggested in literature for symbolization. These
include variance-based [12] and entropy-based [13] methods
as well as hierarchical clustering. A survey of various cluster-
ing techniques is provided in Ref. [14]. In addition to these
methods, another scheme of partitioning, based on symbolic
false nearest neighbors (SFNN), was introduced in Ref. [15].
The objective of SFNN partitioning is to ensure that points that
are close to each other in symbol space are also close to each
other in phase space. Partitions that yield a smaller proportion
of SFNN are considered optimal. However, this partitioning
method may become computationally very inefficient if the di-
mension of the phase space is large or if the data set is contami-
nated by noise, since noise induces false symbols. Rajagopalan
and Ray [7] have reported comparison of computation speed
of SFNN partitioning and wavelet-transform-based ME parti-
tioning for measurement data, collected from three different
laboratory apparatuses, namely, electronic system, mechanical
vibration system, and fatigue damage system. In all three test
apparatuses, the execution time of ME partitioning was found
to be about five orders of magnitude less than that of SFNN par-
titioning on the same computer and for the same sets of data,
while their performance in terms of anomaly detection matched
very closely.

Entropy-based partitioning, introduced in Ref. [7] for one-
dimensional data, is extended to multiple dimensions in this
paper. A partition that maximizes the entropy of the generated
symbol sequence is chosen as the candidate partition. In other
words, this partition induces a uniform distribution of sym-
bols for the nominal pattern. This method of ME partitioning
is abbreviated as ME partitioning in the sequel. The procedure
for obtaining an ME partition, for one-dimensional data, is de-
scribed below.

3.1. ME partitioning for one-dimensional data

Let N be the length of the data set and |�| be the size of
the alphabet (i.e., the number of the disjoint elements in the
partition). The data is sorted in ascending order. Starting from
the first point in the sorted data, every consecutive data segment
of length �N/|�|
 forms a distinct element of the partition.
(Note: �x
 represents the greatest integer less than or equal to x.)
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Fig. 2. ME partitioning with |�| = 4.

With ME partitioning, information-rich regions are allocated
more symbols and hence a finer partition is achieved in such
regions. Similarly, regions with sparse information content are
allocated fewer symbols leading to a coarser partition in those
regions. Hence, even small variations in patterns are more likely
to be reflected in the symbol sequence obtained under ME par-
titioning than other partitioning. Fig. 2 shows an ME partition-
ing for the noise contaminated signal sin(2�t) with |�| = 4.
As expected, the size of the partitions are not equal, but the
probabilities of the symbols are equal.

The choice of the alphabet size |�| plays a crucial role in
STSA. For example, a small value of |�| may prove inadequate
for capturing the characteristics of the raw data. On the other
hand, a large value may lead to redundancy and waste of com-
putational resources. The selection of optimal � is an area of
active research.

An entropy-based approach has been adopted for selecting
the alphabet size. Let H(k) denote the shannon entropy of the
symbol sequence obtained by partitioning the data set with k
symbols.

H(k) = −
i=k∑
i=1

pi log2 pi , (3)

where pi represents the probability of occurrence of the symbol
�i . Note that H(1) = 0 because pi = 0 or 1 with i = 1. If
the underlying data contain sufficient information content, then
the entropy achieved under ME partitioning would be log2(k),
which corresponds to the uniform distribution. We define a
quantity h(·) to represent the change in entropy with respect to
the number of symbols.

h(k)�H(k) − H(k − 1) ∀k�2. (4)

The algorithm for alphabet size selection is given below:
Step 1: Set k = 2. Choose a threshold �h, where 0 < �h>1.
Step 2: Sort the data set (of length N) in the ascending order.
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Step 3: Every consecutive segment of length �N/k
 in the
sorted data set (of length N) forms a distinct element of the
partition.

Step 4: Convert the raw data into a symbol sequence with
the partitions obtained in Step 3. If the data point lies within or
on the lower bound of a partition, it is coded with the symbol
associated with that partition.

Step 5: Compute the symbol probabilities pi , i =1, 2, . . . , k.
Step 6: Compute H(k)=−∑i=k

i=1pi log2 pi and h(k)=H(k)−
H(k − 1).

Step 7: If h(k) < �h, then exit; else increment k by 1 and go
to Step 3.

A small value of threshold �h leads to a large size of the
symbol alphabet, resulting in increased computation. Also a
larger alphabet will make the partitioning finer. This might in-
crease the probability of false symbols being induced by noise.
On the other hand, a large �h will lead to a small alphabet
size that may prove inadequate for pattern identification. Hence
there is trade-off between accuracy and computational speed
when �h is chosen. The variance of the noise process associ-
ated with the raw time series data may serve as a guideline for
selection of �h.

3.2. ME partitioning for multi-dimensional data

While it is fairly simple to find a partition that satisfies the
ME criterion for one-dimensional data, it is not straightforward
to construct such a partition for multi-dimensional data. Some
researchers have considered an approach where each dimension
is partitioned independently. The cartesian products of these
independent partitions form the elements of the partition for
multi-dimensional space [13].

For example, in a p-dimensional space, the elements of a
partition would assume the shape of a p-dimensional hyper-
cube. This approach suffers from the limitation that every di-
mension should have the same number of alphabets. Such a
restriction may not be appropriate as more information may
be contained in a particular dimension than others and it may
require a greater number of partitions.

Alternatively, different number of partitions may be cho-
sen for various dimensions. But this would make the process
tedious as the appropriate number of partitions needs to be
determined for each dimension. Also the symbols obtained
under such a partition may not be uniformly distributed.
Example of such a case can be found in Ref. [13]. To overcome
the above-mentioned limitations, the following approach is
proposed.

Let X = {x1, x2, . . . , xN } be a data sequence of length N in
a p-dimensional normed space. Define a functional f (x) with
a small number of free parameters. The value of these free
parameters are determined from the data sequence {X}. The
functional is evaluated for all data points as

si = f (xi) ∀xi ∈ X. (5)

The ME criterion is imposed on the sequence {s} to obtain the
partitions.

As an illustrative example, consider a two-dimensional data
set. Let the functional chosen be

f (x) = ‖x − 	‖2, (6)

where ‖ · ‖2 is the Euclidean norm in the two-dimensional
vector space; 	 is the two-dimensional centroid vector of the
data defined as

	 = 1

N

N∑
i=1

xi . (7)

The functional is evaluated for each data point xi as

si = ‖xi − 	‖2. (8)

The ME criterion is applied on the sequence {s} to obtain
the boundaries of each element of the partition. In a two-
dimensional space these partitions appear as concentric circles
with increasing radii. In higher dimensions, these would be
hyper-spheroids. A data point xi is coded with symbol �j ∈ �
if the condition rj−1 �f (xi) < rj is satisfied, where rj−1 and
rj are the radii of two adjacent concentric circles.

It is essential that these partitions are defined appropriately
taking into consideration, the dynamical information of the data
being analyzed. It is highly unlikely that one type of partition
will be suitable for all data. Further details are given later in
Section 5.

4. Pattern representation with markov machines

PFSA are widely used in a variety of areas in pattern recogni-
tion and related fields (e.g., computational linguistics, machine
learning, time series analysis, speech recognition, fault detec-
tion and machine translation). A survey of various properties
of PFSA is provided in Ref. [8]. This section describes repre-
sentation of symbol sequences with a special class of PFSA
called the D-Markov machine [5]. It also presents appropriate
measures for quantifying the diversity or similarity between a
pair of patterns.

4.1. D-Markov machine construction

The core assumption in D-Markov machine construction is
that a symbolic process can be approximated, to a desired level
of accuracy, as a Dth order Markov process. D ∈ N and N is
the set of natural numbers.

Definition 1. A stochastic symbolic process S is called Dth
order Markov process if the probability of the current obser-
vation depends only on the previous D observations, i.e., ∀k,
∀si ∈ �

P [sk|sk−1sk−2 . . . s1s0] = P [sk|sk−1sk−2 . . . sk−D+1sk−D].

In other words, the process has a memory of length D. Such
a process can be represented as a PFSA. The states of the au-
tomaton are represented by symbol strings of length D, defined
over the alphabet �. For example, with an alphabet � = {0, 1}
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Fig. 3. D-Markov machine with |�| = 2 and D = 2.

and depth D = 2, the possible states are {00, 01, 10, 11}. The
machine transitions from one state to another upon occurrence
of a symbol si ∈ �. Fig. 3 depicts a D-Markov machine with
� = {0, 1} and D = 2.

The D-Markov machine can be represented by its state tran-
sition matrix (
) or by its morph matrix 
̃. The 
-matrix is
a stochastic matrix, i.e., all row sums are equal to one. The
elements of the 
-matrix represent the probabilities of tran-
sition from one state to another. For example, �23 represents
the probability of transition from state 2 to 3. The state transi-
tion probabilities of a D-Markov can be experimentally deter-
mined from the symbol sequence by frequency counting. The
morph matrix 
̃, provides the conditional symbol probabilities
for each state. For example, �̃41 represents the probability of
encountering symbol 1 when the machine is at state 4. While
the 
-matrix is a square matrix, the 
̃-matrix is a |Q| × |�|
matrix. |Q| is the number of states in the D-Markov machine.
The 
-matrix and the 
̃-matrix for the automaton represented
in Fig. 3 are presented below:


 =

⎡
⎢⎢⎢⎣

�11 �12 0 0

0 0 �23 �24

�31 �32 0 0

0 0 �43 �44

⎤
⎥⎥⎥⎦ ,


̃ =

⎡
⎢⎢⎢⎣

�̃11 �̃12

�̃21 �̃22

�̃31 �̃32

�̃41 �̃42

⎤
⎥⎥⎥⎦ .

The total number of states in a D-Markov machine is less than
or equal to |�|D since some of the states might be forbidden,
implying that the probabilities of these states are zero. Given
the alphabet size |�| and the depth D, states of the D-Markov
machine are determined from the symbol sequence.

The depth of the D-Markov machine is a crucial parameter
since the number of states varies exponentially with D. A very
small depth could mean insufficient memory for the D-Markov

Table 1
Number of states and entropy rate for ideal string

Depth (D) No. of states (� |�|D) Entropy rate (h	)

0 1 0.810
1 2 0.689
2 3 0.500
3 4 0.000
4 4 0.000
5 4 0.000

machine to appropriately represent the symbolic dynamics of
the process. On the other hand, an unnecessarily large D would
result in a large number of states, leading to extremely small
values of state probabilities and an inaccurate 
-matrix. A pro-
cedure based on entropy rate has been developed for selecting
the depth of the D-Markov machine. The key idea is that in-
creasing the depth beyond a certain value does not lead to any
appreciable change in entropy; equivalently, the entropy rate
would be very small.

Definition 2. Given the current state, the entropy rate, h	, of
a symbolic stochastic process is defined as the uncertainty in
the next symbol.

h	 = −
N∑

i=1

pi

|�|∑
j=1

�̃ij log2 �̃ij , (9)

where pi is the probability of occurrence of ith state, �̃ij is the
probability of occurrence of j th symbol in the ith state; N is
the number of states in the probabilistic finite state machine;
and |�| is the alphabet size.

Being a measure of uncertainty, the entropy rate h	 mono-
tonically decreases as the depth D of the D-Markov machine
is increased. Beyond a certain point, increasing D may not
lead to any appreciable change in the entropy rate. This is the
asymptotical entropy rate and the corresponding D is optimal
for the machine. With ideal noise-free data h	 converges to
zero. However, in the real world of noisy data, h	 may only
monotonically decrease to a small nonzero value, depending
on the magnitude and the type of noise. Thus, the test for the
optimum D relies on how h	 converges as D is increased. For
example, let us consider a data set that yields a symbol stream
�S = . . . 000100010001 . . . on the alphabet � = {0, 1}. Table 1
provides the number of states and the entropy rate of the in-
ferred D-Markov machine for various depths.

It can be seen that the number of states in the generated
machine remains the same for depth D�3. Correspondingly,
the entropy rate remains at zero. This implies the minimum
depth for correct representation for this symbol stream is 3.
The number of states is less than |�|D in this case. The curve,
shown in Fig. 4 by solid lines, exhibits the plot of h	 of the
inferred machine as D is increased.

Next, let us consider the case where a small amount of white
noise is added to the raw data that produced the symbol stream
�S. Table 2 provides the number of states and the entropy rate of
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Table 2
Number of states and entropy rate for noisy string

Depth (D) No. of states (� |�|D) Entropy rate (h	)

0 1 0.818
1 2 0.721
2 4 0.530
3 6 0.070
4 8 0.050
5 12 0.045

the inferred D-Markov machine for various depths. Although
the number of inferred states appears to increase with increasing
depth, it can observed that the change in entropy rate h	 is very
small beyond D = 3. This means that very little information is
gained by increasing the depth and the uncertainty in the system
is largely due to the noise. Hence a criterion for the selection
of optimal depth of the D-Markov machine can be established
in terms of a lower bound on the change in the entropy rate.
The curve, shown in Fig. 4 by dashed lines, exhibits the plot
of h	 of the inferred machine as D is increased.

4.2. Measures for quantifying the divergence in patterns

The D-Markov machine, described above, is capable of rep-
resenting patterns observed in the symbol sequences. In order
to quantify the similarity or diversity in the patterns, a mea-
sure needs to be defined. This measure is called an anomaly
measure M since it measures the deviations of anomalous pat-
terns from the nominal pattern. The induced norm of the dif-
ference between the nominal state transition matrix 
0 and the
state transition matrix for the current pattern 
k , is a viable
candidate for the anomaly measure, i.e., Mk = ‖
0 − 
k‖.
Alternatively, measures of anomaly may be derived directly
from the state probability vector p of the D-Markov machine,
which is the left eigenvector corresponding to the unique unity

eigenvalue of the (irreducible) 
-matrix. A measure can be de-
fined as Mk = ‖p0 − pk‖ [5,8], where p0 and pk represent the
nominal and the current state probability vectors, respectively.
Another candidate for the anomaly measure is the angle be-
tween the state probability vectors:

Mang
k = arccos

( 〈p0, pk〉
‖p0‖2‖pk‖2

)
, (10)

where 〈x, y〉 is the inner product between the vectors x and y;
and ‖x‖2 is the Euclidean norm of x.

The measures, mentioned above, satisfy the requirements for
being a metric. But other measures, that do not qualify as a
metric, for example, the Kullback–Leibler distance [16] may
also be used.

Mkul
k = −

|�|∑
i=1

pi
k log2

pi
k

pi
0

. (11)

In the experimental analysis described in the next section, both
the angle measure and the Kullback measure are utilized.

5. Experimental validation

This section presents the experimental results to validate the
concept of STSA-based pattern identification on a laboratory
apparatus with computer instrumented electronic systems [5,6].
Two nonlinear systems described by Duffing equation and Van
der Pol equation [11] are considered. For the Duffing sys-
tem with exogenous excitation, the motion is chaotic [10] and
hence is approximately periodic under quasi-stationary condi-
tions; and the van der Pol system is self-excited and the result-
ing limit cycle [11] is periodic. Therefore, in both cases, since
the trajectories are approximately or exactly periodic, they are
confined within a compact region of the phase space.

5.1. Duffing system

The externally excited Duffing equation is a second-order
nonautonomous nonlinear differential equation:

d2y(t)

dt2
+ �

dy

dt
+ y(t) + y3(t) = A cos(�t). (12)

The amplitude A was equal to 22.0 and � = 5.0 rad/s. The
variables y1 = y and y2 = dy/dt constitute the phase space.
Behavior of the Duffing system is sensitive to changes in the
parameter �. For � in the range of 0.10–0.28, the behavior of
the Duffing system in Eq. (12) is largely similar though there
are small variations. However, when � increases to ≈ 0.29, the
system undergoes a period doubling bifurcation. The behavior
remains essentially unchanged for further increases in �. As
evidenced from the phase plots in Fig. 5, there are two distinct
patterns. However, there are minor variations in the patterns for
� ∈ [0.1, 0.28]. As stated earlier, the objective is not merely to
classify the patterns correctly, but also to identify the variations
in them. Each data set comprised of 2800 data points of the two
phase variables y1 and y2 sampled at a uniform rate of 100 Hz.
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Fig. 5. Duffing system phase plots and state probability histograms.

5.1.1. Generation of partition
The pattern for �=0.10 is chosen as the nominal since it has

the largest span. It is observed in Fig. 5 that the phase trajectory
is largely elliptical in nature. Hence, it is appropriate to choose
the shape of the partition as an ellipse. The functional for the
partitioning boundaries is defined as

f (yi) = (y1
i − 	1)

2

a2
+ (y2

i − 	2)
2

b2
, (13)

where

	1 = 1

N

N∑
i=1

y1
i (14)

and

	2 = 1

N

N∑
i=1

y2
i . (15)

The semi-minor axis (a) and the semi-major axis (b) are de-
termined from the nominal data as 2.18 and 8.31, respectively.
Further, 	1 is found to be 0.0053 and 	2 is found to be −0.0597.
The sequence {s} is obtained by evaluating the functional for
all yi . The partitioning algorithm in Section 3 yields the alpha-
bet size |�| = 8 with a threshold value �h = 0.05. The bounds
of the partitions are determined from {s}. The partitions are
depicted in Fig. 6. The innermost ellipse and each of the an-
nular regions between successive ellipses represent individual
symbols. In general, the partition boundaries are not restricted
to be elliptical or ellipsoidal. The partitioning could be a finite

−3 −2 −1 0 1 2 3

−8

−6

−4

−2

0

2

4

6

8

y1

y
2

Fig. 6. Partitions for the Duffing system.

set of compact regions in the phase space because the trajectory
is confined within a compact region of the phase space as stated
in the beginning of this section.
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5.1.2. Pattern identification
The procedure explained in Section 4 has been utilized to

find the optimal depth, which resulted in D = 1. Hence, the
number of states in the D-Markov machine was eight. Symbol
sequences are then generated from all other data sets based on
the partition obtained above. As the dynamics of the system
change due to variations in �, the statistics of the symbol se-
quences are also altered and so are the probability distributions
that are viewed as patterns. The probability distribution is uni-
form at the nominal condition of � = 0.10 because of the ME
criterion. As � increases, the distribution deviates from uniform
as seen in the histograms of the bottom-row plates of Fig. 5.

The measures defined in Eqs. (10) and (11) have been used
for quantifying the changes in the statistics. Fig. 7 depicts the
Kullback measure as the parameter � increases from the nom-
inal condition of � = 0.1. It can be observed from Fig. 7 that
the measure for � ∈ [0.1, 0.28] is significantly less (M < 0.5)
than the measure for � ∈ [0.29, 0.35] (M ≈ 2.3). Thus, the
Kullback measure provides precise classification of the pattern
behavior into two distinct categories with no possibility of false
classification.

The profile of the angle measure is shown in Fig. 8. This
measure also classifies the pattern into two categories even
though the rise in measure value is less steeper at � = 0.29.
But more importantly, it identifies the variations in the patterns
for � in the range of 0.1–0.28. The angle measure exhibits a
gradual monotonic increase for the afore-mentioned values of
beta, thereby distinguishing the patterns from one another. It
is even able to quantify the variations in patterns for � < 0.15,
which was not possible with the Kullback measure. Thus, by
choosing appropriate measures, it is possible to both classify
the patterns and identify the variations therein.

The efficacy of SFNN partitioning [15] and ME partition-
ing, for pattern identification in the Duffing system, are fairly
similar. The comparison plot of SFNN partitioning and one-
dimensional ME partitioning is provided in Ref. [7]. It can
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Fig. 8. Angle measure plot for the Duffing system.

be observed from Fig. 8 that the results obtained with multi-
dimensional ME are comparable with that of SFNN shown in
Ref. [7]. However, the computational time required for SFNN
partitioning is very high compared to ME partitioning. The time
required to generate the partition with SFNN is found to be ≈
4 h. In the case of one-dimensional ME partitioning, it is found
to be ≈ 100 ms and for multi-dimensional ME partitioning it is
found to be ≈ 300 ms. Thus, ME partitioning is several orders
of magnitude less intensive than SFNN partitioning.

5.2. Van der Pol system

The unforced Van der Pol equation [11] is a second order
autonomous nonlinear differential equation

d2y(t)

dt2
− 	(1 − y2(t))

dy(t)

dt
+ y(t) = 0. (16)

Behavior of the Van der Pol system is sensitive to changes in
the parameter 	. For small values of 	, the stationary phase
trajectory is a smooth orbit, largely similar to a circle of radius
2.0. As 	 increases, this shape gets distorted and the distortion
is very high around 	 equal to 3.0. Though there is no abrupt
change in the shape of the phase trajectories, they may be
classified into four categories:

1. 	�2.0—severe distortion,
2. 	 ∈ (1.2, 2.0)—moderate distortion,
3. 	 ∈ (0.5, 1.2)—mild distortion,
4. 	�0.5—little or no distortion.

The phase plots in the top-row plates of Fig. 9 exhibit the phase
plots for 	 = 3.0, 1.4, 0.6, and 0.2. Each data set comprised of
4500 data points of the variables y1 and y2 sampled at 100 Hz.

5.2.1. Obtaining the partition
The data set for 	=3.0 is chosen as the nominal since it has

the largest span. The functional defining the partition is given
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Fig. 9. Van der Pol system phase plots and state probability histograms.

by

f (yi) = ‖yi − c‖2, (17)

where the two-dimensional vector c is defined as

c = 1

N

N∑
i=1

yi . (18)

The value of c in Eq. (18) is found to be [0.0698 0.0548].
The sequence {s} is obtained by evaluating the functional for
all yi . The alphabet size |�| is chosen to be 6 and the depth
D = 1. The bounds of the partitions are then determined from
the sequence {s}. The partitions are depicted in Fig. 10.

5.2.2. Pattern identification
Symbol sequences are generated from for all data sets, based

on the partition defined above. As the dynamics of the system
change due to variations in 	, the statistics of the symbol se-
quences are also altered and so are the state probability distri-
butions that are viewed as patterns. The probability distribution
is uniform at 	 = 3.0. As 	 decreases, the distribution devi-
ates from uniform distribution as seen in the histograms of the
bottom-row plates of Fig. 9.

Fig. 11 depicts the Kullback measure as the parameter 	
varies from the nominal condition of 	 = 3.0. It can be ob-
served from the plot that the measure is approximately zero for
category 1 (	 > 2.0) while it varies in the range (0.04–0.2) for
category 2 (	 ∈ (1.2, 2.0)). The measure for category 3 is in
the range (0.4–0.6) and for category 4 it is approximately equal
to 0.95. Thus, the Kullback measure classifies the patterns into
their respective categories accurately.

Fig. 12 provides the angle measure plot. The angle mea-
sure shows a gradual increase as 	 decreases from its nomi-
nal value. This helps in distinguishing patterns even when they
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Fig. 10. Partitions for Van der Pol system.

appear apparently the same. For example, the Kullback mea-
sure was unable to distinguish between patterns that belong to
the severe distortion category. But the angle measure is able to
identify their variations as seen by its monotonic increase in
that category. Thus, it is possible to both classify the patterns
and identify the variations in them by choosing the appropriate
measure.

SFNN partitioning was not able to detect patterns in Van der
Pol system despite numerous trials. Hence, it is not compared
with ME partitioning. The execution time for multi-dimensional
ME partitioning was found to be ≈ 200 ms.
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Fig. 11. Kullback distance plot for the Van der Pol system.
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Fig. 12. Angle measure plot for the Van der Pol system.

6. Summary, conclusions and future research

This paper presents a novel method of pattern identifica-
tion based on symbolic time series analysis (STSA) of multi-
dimensional measurement data and its experimental validation
on a laboratory apparatus. The time series data are converted
into a symbol sequence by partitioning the phase space. The
symbol sequences are modeled by finite state automata and pat-
terns are identified from the statistics of the symbol sequences.
Specifically, the symbols were obtained with maximum entropy
(ME) partitioning. The ME partitioning methodology has been

extended to multiple dimensions in this paper. The symbol se-
quences are modeled by a special type of PFSA with finite
memory, known as the D-Markov machine. A new procedure
for determining the structure of the D-Markov, based on entropy
rate, is introduced and validated. The efficacy of the proposed
technique is demonstrated by validation with experimental data
obtained from two nonlinear systems described by the Duffing
and the Van der Pol equations.

A major conclusion of this investigation is that pattern iden-
tification, based on STSA of multi-dimensional measurement
data, can be achieved with both accuracy and computational ef-
ficiency. Analytical and experimental research is necessary in
the laboratory environment before this tool can be applied to
real-life applications. In this context, future research is recom-
mended in the following areas:

• noise reduction in time series for robust pattern identification
and

• finding a (possibly) universal design procedure for the parti-
tioning functional.
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