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Abstract: Failures in a plant’s electrical components are a major source of performance 
degradation and plant unavailability. In order to detect and monitor failure precursors and 
anomalies early in electrical systems, we have developed a signal processing method that can 
detect and map patterns to an anomaly measure. Application of this technique for failure 
precursor detection in electronic circuits resulted in robust detection. This technique was 
observed to be superior to conventional pattern recognition techniques such as neural networks 
and principal component analysis for anomaly detection. Moreover, this technique based on 
symbolic dynamics offers superior robustness due to averaging associated with experimental 
probability calculations. It also provided a monotonically increasing smooth anomaly plot which 
was experimentally repeatable to a remarkable accuracy. 
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1 Introduction 

Sensing and estimation of failure precursors are critical  
for operation and control of complex electrical systems; 
e.g., aerospace, electric power generation, nuclear reactors. 
Here, complex systems are non-linear systems with 
possibility of chaos. Dependability of complex systems is 
achieved by identifying and mitigating the origins of  
chaos and disorder at a very early stage through dynamic 
coordination and control of the critical subsystems.  
Failures in a plant’s electrical components are a major 
source of performance degradation and plant unavailability. 
Therefore, for real-time control and operation, it is 
necessary to develop the capability of sensing failure 
precursors. Installing failure sensors at specific sites is 
expensive. Moreover, there are cases where direct 
measurements at an early stage are not possible due  
to the lack of appropriate sensing hardware. 

Early detection of failure precursors in a complex 
system requires knowledge of its dynamical behaviour, 
which is derived either from physics-based models  
or time series data or both. Since accurate and 
computationally tractable modelling of complex system 
dynamics is often infeasible solely based on the 
fundamental principles of physics, it is necessary to rely  
on time series data from sensors and other sources of 
information. Along this line, Ray (2004) reported a  
new concept of anomaly detection in complex dynamical 
systems via Symbolic Time Series Analysis (STSA).  
This concept is the basis for the development of a  
computer-integrated failure precursor/anomaly sensing 
system based on available input/output information.  
The structure of this precursor sensing system has the 
capability to combine the inputs from a network of several 
distributed systems.  

The structures of failure estimator models have  
been predominantly static or linear dynamic. Anomaly 
monitoring algorithms, based on these models, are 
computationally simple and easy to implement. Although 
these algorithms are capable of diagnosing faults that have 
already occurred, they are unsuitable for early detection of 
failure precursors which follow non-linear dynamics.  
Hence they are often inadequate for prognosis in practical 
applications. This problem could be alleviated by extracting 
the hidden information from the data, especially in the  
early failure precursor regime. From this perspective,  
the roles of physics-based modelling and signal processing 
of non-linear time series data have become significantly 
more critical due to the need to capture the complex 
dynamics. 

In most systems, failures, even if they appear to be 
sudden, are a result of a slowly growing, non-stationary 

anomaly. In contrast, the mundane system dynamics is very 
fast. This physical fact about anomalies is ignored by the 
conventional anomaly detection algorithms; but we have 
exploited this fact. From this perspective, anomaly  
detection via symbolic dynamics (Lind and Marcus, 1995) 
and information theory (Cover and Thomas, 1991) was 
ideally suited to filter out the dominant part of the  
response, due to fast dynamics, from the small-signal 
deviations in the data due to anomaly evolution in its  
early stages. Maps of these textural changes into an anomaly 
measure were formulated for early failure precursor 
observation and sensing. STSA was used to process the time 
series data from the constructed electronic circuit board 
experiment to estimate the extent of failure precursors, 
much earlier and with much less uncertainty than  
what was possible with the current state-of-the-art  
pattern recognition methods such as Principal Component 
Analysis and Neural Networks. This is due to the fact  
that unlike other techniques, STSA exploits the slow  
non-stationary dynamics of anomaly compared to the rest of 
the system dynamics. As the anomaly grows slowly,  
there is a small change in the pattern followed by the state 
variables under stationary conditions. After a while,  
a small change in anomaly could result in a sudden  
change in the pattern (phase plot) followed by the state 
variables. This sudden change is analogous to a failure  
and it is easily detected by many data processing techniques. 
The small change in the pattern that precedes the sudden 
change is the failure precursor which is not easily detected 
by PCA or neural networks. We have successfully 
implemented STSA on a circuit board experiment to detect 
this precursor.  

The advantages of our novel STSA approach for PHM 
and anomaly detection are summarised below: 

• capability of very early prognosis of failures  
in electrical systems 

• real-time execution of the failure precursor sensing 
algorithm on inexpensive general-purpose 
microcomputers 

• robustness of the algorithm resulting from its 
dependence on coarse graining of the time series data, 
instead of heavily relying on large order differential 
equations 

• compatibility with commercial-of-the-shelf  
equipment with available signals without any  
additional sensors 

• proof of concept with highly repeatable experimental 
validation on non-linear hybrid electronic circuit 
boards. 
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The Symbolic Time Series based methodology is briefly 
described here. Relevant system outputs are sampled at a 
suitable rate to obtain time series data. The time series is 
then transformed into wavelet coefficients. The wavelet 
coefficients are converted to symbols by partitioning.  
The partition is obtained with one particular data set chosen 
as nominal. The partition remains invariant in the 
subsequent analysis. As the dynamical behaviour of the 
system changes due to anomalies, symbol sequences 
generated are expected to change as well. Probabilistic 
Finite State Automata (Vidal et al., 2005) are used to model 
the dynamics of the symbol sequences. A special class of 
PFSA called the D-Markov Machine (Ray, 2004) is utilised 
for representing symbol sequences. The probability 
distributions, obtained from D-Markov Machines,  
provide a statistical representation to the symbol sequences.  
The variations in symbol patterns are quantified by the 
divergence among the probability distributions. A salient 
feature of this approach is that symbols are generated  
from wavelet coefficients instead of time series data.  
The advantages of using wavelet coefficients for symbol 
generation are provided in Rajagopalan and Ray (2006). 

This paper is organised into six sections including  
the current one. Section 3 describes wavelet based  
pre-processing of time series data. The various aspects of 
Symbolic Dynamics analysis such as symbol generation,  
D-Markov machine construction are described in Section 3. 
Section 4 presents the STSA based anomaly detection 
methodology. Section 5 describes the experimental 
apparatus and provides the anomaly detection results on a 
non-linear system described by the Van der Pol equation 
(Khalil, 1996). Section 7 summarises and concludes the 
paper with recommendations for future work. 

2 Preprocessing with wavelets 

Preprocessing of time series data is often necessary for 
extraction of pertinent information. Fourier analysis is 
sufficient if the signal to be analysed is stationary and if the  
time period is accurately known. However, Fourier analysis 
may not be appropriate if the signal has non-stationary 
characteristics such as drifts and frequency trends.  
To mitigate this problem, small sections of the signal are 
analysed at various time instants. This technique is known 
as Short-Time Fourier Transform (STFT). It maps a signal 
into a two dimensional function of time and frequency.  
The STFT represents a sort of compromise between time 
and frequency-based views of a signal and it provides some 
information about both. However, the information can be 
obtained with limited precision, and that precision is 
determined by the size of window. Fixed size of window is 
the main drawback of STFT. 

The wavelet transform was introduced to overcome the 
difficulties mentioned before. Wavelet analysis alleviates 
these difficulties via adaptive usage of long windows for  
 
 
 

retrieving low frequency information and short windows for 
high frequency information (Mallat, 1998). The ability to 
perform flexible localised analysis is one of the striking 
features of wavelet transform. In addition to this,  
wavelet preprocessing helps in noise mitigation. Wavelet 
preprocessing for STSA consists of two steps namely: 

• selection of appropriate wavelet basis 

• selection of scales and obtaining the wavelet 
coefficients for the chosen scales. 

Choice of wavelet primarily depends on the signal that is 
being analysed. In this paper, Daubechies wavelets  
(Mallat, 1998) are utilised for pre-processing. Daubechies 
wavelets are provide the compactly supported wavelets  
with extremal phase and highest number of vanishing 
moments for a given support width. The last property  
is particularly beneficial since, in nonlinear systems, 
anomalies may manifest as higher order harmonics in 
system outputs. 

For every wavelet, there exists a certain frequency 
called the centre frequency Fc that has the maximum 
modulus in the Fourier transform of the wavelet.  
The pseudo-frequency fp (Abry, 1997; Wavelet Toolbox, 
2006) of the wavelet at a particular scale α is given  
in terms of the centre frequency Fc and the sampling  
interval ∆t as  

.c
p

Ff
tα

=
∆

 (1) 

The Power Spectral Density (PSD) of the signal provides 
the information about the frequency content of the signal. 
This information along with equation (1) can be used for 
scale selection. The procedure of selecting the scales is 
summarised below: 

Perform PSD analysis on the time series data to find the 
frequencies of interest. 

Substitute the above frequencies in place fp of in 
equation (1) to obtain the respective scale α in terms of the 
known parameters Fc and ∆t. 

The wavelet coefficients of the signal are significantly 
large when the pseudo-frequency fp of the wavelet 
corresponds to the locally dominant frequencies in the 
underlying signal. Upon selection of the wavelet basis and 
scales, the wavelet coefficients are obtained at the  
chosen scales. These coefficients are stacked at selected 
time-shift positions, starting with the smallest scale and 
ending with the largest scale and then back from the  
largest value to the smallest value of the scale at the next 
instant of time shift. In the sequel, this one-dimensional 
array of arranged wavelet coefficients is called the scale 
series data. For symbol generation, the scale series data is 
handled in a similar way as time series data (Ray, 2004). 
The next section provides a brief review of symbolic 
dynamics. 
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3 Review of Symbolic Time Series  
Analysis (STSA) 

Continuously varying physical processes are often modelled 
as a finite-dimensional dynamical system: 

0
d ( ( ), ); (0)
d
x f x t x x
t

θ= =  (2) 

where t ∈ [0, ∞] is time; x ∈ Rm is the state vector in the 
phase space; and θ ∈ Rn is the (slowly varying) parameter 
vector. Formally, a solution to equation (2) can be expressed 
as a continuous function of the initial state x0 as x(t) = Φt x0, 
where Φt represents a parametric family of maps of the 
phase space into itself. This evolution of phase trajectory  
in (discrete) time t can be viewed as a flow of points  
in the phase space. A symbolic description is derived  
by partitioning the phase space into mutually disjoint 
regions as illustrated in Figure 1. A brief discussion on 
partitioning follows. 

Figure 1 Continuous dynamics to symbolic dynamics 

 

A compact (i.e., closed and bounded) region Ω within  
which the stationary part of the phase trajectories are 
contained is identified. Encoding of Ω is accomplished by 
introducing a partition B ≡ {B0, …, Bm–1} consisting of m 
mutually exclusive and exhaustive cells. The dynamical 
system describes an orbit o ≡ {x0, x1, …, xn, …} in Ω,  
which passes through or touches the cells of the partition  
B. Each cell is labeled by a symbol s ∈ A. The set A of m 
distinct symbols that label the partition elements is called 
the symbol alphabet. 

In general, every initial state x0 ∈ Ω generates a unique 
sequence of symbols defined by a mapping from the  
phase space to the symbol space: x0 6 si0

 si1si2 … sil …  
This mapping is called Symbolic Dynamics (Lind and 
Marcus, 1995) as it attributes a legal symbol sequence to the 
system dynamics starting from an initial state. Since the size 
of each cell is finite and also the cardinality of the alphabet 
is finite, any such symbol sequence represents, through 
iteration, a phase trajectory that has the compact support Ω. 
In general, a dynamical system would only generate a subset 
of all possible sequences of symbols as there could be some 
illegal (i.e., physically inadmissible) sequences. 
 
 

Symbolic dynamics can be viewed as coarse graining of 
the phase space, which is subjected to (possible) loss of 
information resulting from measurement imprecision  
and sensitivity to initial conditions. However, the essential 
robust features (e.g., periodic behaviour or chaotic 
behaviour of an orbit) are expected to be preserved  
in the symbol sequences through an appropriate partitioning 
of the phase space.  

3.1 Symbol generation  

Various methods have been suggested in literature for 
symbolisation. These include variance-based (Veenman  
et al., 2002) and entropy-based (Chau and Wong, 1999) 
methods as well as hierarchical clustering. A survey of 
various clustering techniques is provided in Warren  
Liao (2005). In addition to these methods, another scheme 
of partitioning, based on symbolic false nearest neighbours 
(SFNN), was introduced in Kennel and Buhl (2003).  
The objective of SFNN partitioning is to ensure that  
points that are close to each other in symbol space  
are also close to each other in phase space. Partitions  
that yield a smaller proportion of symbolic false nearest 
neighbours are considered optimal. However, this 
partitioning method may become computationally very 
inefficient if the dimension of the phase space is large  
or if the data set is contaminated by noise, since noise 
induces false symbols. 

In this paper, an entropy based partitioning  
scheme (Rajagopalan and Ray, 2006) is employed to 
generate the symbols. A partition that maximises the 
entropy of the generated symbol sequence is chosen  
as the candidate partition. In other words, this partition 
induces a uniform distribution of symbols for the nominal 
pattern. This method of maximum entropy partitioning is 
abbreviated as ME partitioning in the sequel. The procedure 
for obtaining a ME partition, for one dimensional data, is 
described below. 

Let N be the length of the data set and |A| be the size of 
the alphabet (i.e., the number of the disjoint elements  
in the partition). The data is sorted in ascending order.  
Starting from the first point in the sorted data, every 
consecutive data segment of length N/|A| forms a distinct 
element of the partition. (Note: x represents the greatest 
integer less than or equal to x.) 

With ME partitioning, information-rich regions are 
allocated more symbols and hence a finer partition is 
achieved in such regions. Similarly, regions with sparse 
information content are allocated fewer symbols leading to a 
coarser partition in those regions. Hence, even small 
variations in patterns are more likely to be detected in the 
symbol sequence obtained under ME partitioning than other 
partitioning. Figure 2 shows a ME partitioning for the noise 
contaminated signal sin (2πt) with |A| = 4. As expected,  
the sizes of the partitions are not equal, but the probabilities 
of the symbols are equal. 
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Figure 2 Maximum entropy partitioning with |A| = 4 

 

3.2 Pattern representation with D-Markov machine 

This section describes the D-Markov machine for modelling 
symbol sequences. The core assumption here is a stochastic 
symbolic process can be approximated to a desired level of 
accuracy as a Dth order Markov chain where D ∈ N, the set 
of positive numbers. 

Definition 1: A stochastic symbolic process S is called  
Dth order Markov process if the probability of the current 
observation depends only on the previous D observations, 
i.e., ∀k, ∀sk ∈ A 

1 2 0 1 2[ / ] [ / ].k k k k k k k DP s s s s P s s s s− − − − −=…… ……  (3) 

In other words, the process has a memory of length D. Such 
a process can be represented as a Probabilistic Finite State 
Automaton. The states of the automaton are represented by 
symbol strings of length D, defined over the alphabet A.  
For example, with an alphabet A = {0, 1} and depth D = 2, 
the possible states are {00, 01, 10, 11}. The machine 
transitions from one state to another upon occurrence of a 
symbol sk ∈ A. Figure 3 depicts a D-Markov Machine  
with |A| = 2 and D = 2. 

The D-Markov machine can be represented by its state 
transition matrix П or by its state probability vector p.  
The П matrix is a stochastic matrix, i.e., all row sums are 
equal to one. The elements of the П matrix represent the 
probabilities of transition from one state to another.  
For example, π23 represents the probability of transition 
from state 2 to state 3. The state transition probabilities of a 
D-Markov can be experimentally determined from the 
symbol sequence by frequency counting. The elements of 
state probability vector p represent the probability of states 
of the D-Markov Machine. 

The construction of a D-Markov machine is fairly 
straightforward. For a specific D ∈ N, the states are defined 
as above. On a given symbol sequence, a moving window of 
length (D + 1) is used to count the occurrence of finite 
symbol strings si1 si2 … siD si(D + 1) and si1 si2 … siD, which  
are respectively denoted by N(si1 si2 … siD si(D + 1)) and 
N(si1 si2 … siD). Note that if N(si1 si2 … siD) = 0, then the state 

si1 si2 … siD ∈ Q has zero probability of occurrence.  
For N(si1 si2 … siD) ≠ 0, the transition probabilities are then 
obtained by these frequency counts as follows: 

1 2 1 2

1 2 1 2

( ) ( )
( ) ( )

i i iD i i iD
jk

i i iD i i iD

P s s s s N s s s s
P s s s N s s s

π = ≈
" "
" "

 

where, the corresponding states are denoted as: 
qj ≡ si1 si2 … siD and qk ≡ si2 … siD s. The total number of 
states in a D-Markov machine is less than or equal to |A|D 

since some of the states might be forbidden, implying that 
the probabilities of these states are zero.  

Figure 3 D-Markov machine and П matrix 

 

The depth of the D-Markov machine is a crucial parameter 
since the number of states varies exponentially with D.  
A very small depth could mean insufficient memory for  
the D-Markov machine to appropriately represent the 
symbolic dynamics of the process. On the other hand,  
an unnecessarily large D would result in a large number  
of states, leading to extremely small values of state 
probabilities and an inaccurate П matrix. A procedure based 
on entropy rate has been developed for selecting the depth 
of the D-Markov machine. The key idea is that increasing 
the depth beyond a certain value does not lead to any 
appreciable change in entropy; equivalently, the entropy rate 
would be very small. 

Definition 2: Given the current state, the entropy rate, hµ, of 
a symbolic stochastic process is defined as the uncertainty 
in the next symbol 

| |

2
1 1

log .
AL

i ij ij
i j

h pµ π π
= =

= −∑ ∑ � �  (4) 

where pi is the probability of occurrence of ith state, ijπ� is 
the probability of occurrence of jth symbol in the ith state;  
L is the number of states in the probabilistic finite state 
machine and |A| is the alphabet size. 

Being a measure of uncertainty, the entropy rate hµ 
monotonically decreases as the depth D of the D-Markov 
machine is increased. Beyond a certain point, increasing D 
may not lead to any appreciable change in the entropy rate. 
This is the asymptotical entropy rate and the corresponding 
D is optimal for the machine. With ideal noise-free data  
hµ converges to zero. However, with real world noisy data,  
hµ may only monotonically decrease to a small non-zero 
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value, depending on the magnitude and the type of noise. 
Thus, the test for the optimum D relies on how hµ converges 
as D is increased. 

For example, let us consider a data set that yields a 
symbol stream S = {000100010001 …} on the alphabet 
A = {0, 1}. Table 1 provides the entropy rate of the inferred 
D-Markov machine for various depths. It can be seen that 
the number of states in the generated machine remains the 
same for depth D ≥ 3. Correspondingly, the entropy rate 
remains at zero. This implies the optimum depth for correct 
representation for this symbol stream is three. The curve, 
shown in Figure 4 by solid lines, exhibits the plot of h¹ of 
the inferred machine as D is increased. 

Table 1 Entropy rate values 

Depth Entropy rate for ideal data Entropy rate for noisy data
0 0.810 0.818 
1 0.689 0.721 
2 0.500 0.530 
3 0.000 0.070 
4 0.000 0.050 
5 0.000 0.045 

Figure 4 Entropy rate vs. depth 

 

Next, let us consider the case where a small amount of white 
noise is added to the raw data that produced the symbol 
stream S. From Table 1, it can observed that the change in 
entropy rate is very small beyond D = 3. This means that very 
little information is gained by increasing the depth and the 
uncertainty in the system is largely due to the noise. Hence a 
criterion for the selection of optimal depth of the D-Markov 
machine can be established in terms of a lower bound  
on the change in the entropy rate. The curve, shown  
in Figure 4 by dashed lines, exhibits the plot of hµ of the 
inferred machine as D is increased. 

3.3 Anomaly measures  

The D-Markov machine, described above, is capable of 
representing patterns observed in the symbol sequences.  
 

In order to quantify the similarity or diversity in the 
patterns, a measure needs to be defined. This measure is 
called an anomaly measure M since it measures the 
deviations of anomalous patterns from the nominal pattern. 
The induced norm of the difference between the nominal 
state transition matrix П0 and the state transition matrix for 
the current pattern Пk is a viable candidate for the anomaly 
measure, i.e.,  

0|| || .k kM = Π − Π  (5) 

Alternatively, measures of anomaly may be derived directly 
from the state probability vector p of the D-Markov 
machine, which is the left eigenvector corresponding to the 
unique unity eigen value of the (irreducible) matrix.  
A measure can be defined as: 

0|| || .k kM p p= −  (6) 

Another candidate for the anomaly measure is the angle 
between the state probability vectors 

0

0

,
arccos .k

k
k

p p
M
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 

=  
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 (7) 

4 STSA based anomaly detection and calibration 
procedure  

Having discussed various tools and techniques of Symbolic 
Dynamics, this section outlines the steps of the forward 
problem and the inverse problem in the STSA approach 
introduced in earlier section. The solution of the forward 
problem allows calibration of the anomaly measure against 
the actual value of an anomalous parameter. Following are 
the steps for the forward problem: 

F1 Selection of an appropriate set of input stimuli and 
generation of time series data with chosen input 

F2 Preprocessing of time series with appropriate wavelet 
basis 

F3 Generate symbol sequences through partitioning 

F4 State machine construction from symbol sequences  
and determination of the connection matrix 

F5 Selection of an appropriate anomaly measure M 

F6 Formulation and calibration of a (possibly  
non-parametric) relation between the computed 
anomaly measure and known physical anomaly at 
different (slow-time) epochs. 

The solution of the inverse problem along with the forward 
problem solution allows estimation of the anomalous 
parameter value. Following are the steps for the inverse 
problem: 

I1 Excitation with known input stimuli selected in the 
forward problem and generation of the stationary 
behaviour as time series data 
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I2 Preprocessing with wavelet chosen in forward  
problem 

I3 Generating symbol sequences with partitioning 
determined in the forward problem 

I4 State Machine construction using the symbol  
sequence 

I5 Computing the anomaly measure M 

I6 Detection and identification of an anomaly,  
if any, based on the computed anomaly measure  
and the relation derived in Step F6 of the forward 
problem. 

5 Experimental results 

This section provides a description of the experimental 
apparatus and discusses the results of anomaly detection in a 
non-linear system described by the Van der Pol equation. 

5.1 Description of experimental apparatus  
Figure 5 shows the implementation of a resistance-capacitor 
circuit that is coupled with the MATLAB-based  
real-time software through A/D and D/A channels. The  
non-linearity and other parameters that modify the  
linear circuit to that of the Van der Pol oscillator are 
generated in the software and the generated signal is fed 
back to the electronic circuit via D/A channel.  
The experimental setup consists of a computer with 
Keithley 1801HC data acquisition board with 64 A/D  
and 4 D/A channels; the experimental circuit board is 
connected to the data acquisition board. A 15 volt  
dual power supply is used to power the circuit board;  
An oscilloscope is utilised to monitor circuit board  
signals. It also consists of a mouse, keyboard and  
monitor to interactively input anomalous parameter and 
monitor the predictions for the anomalous parameter.  
A signal generator is used for injecting signals into the 
circuit board. 

Figure 5 Experimental apparatus 
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5.2 Van der Pol oscillator circuit board 

This section presents the results of anomaly detection 
experimentation on the electronic circuit apparatus, whose 
dynamics are governed by the Van der Pol equation  
(Khalil, 1996) as follows.  

2
2

2

d d(1 ) 0.
dd

x xx x
tt

µ− − + =  (8) 

The parameter µ varies slowly with time. The nominal value 
of µ is 0.2 and the variations in µ are treated as anomalies. 
Figure 6 shows the phase plots of the systems for four 
different values of µ. For a small value (µ = 0.2), the phase 
plot is a fairly smooth orbit that is close to a circle of  
radius 2. For a medium value (µ = 1.0), the shape of the 
orbit is distorted as seen in Figure 6. For large values 
(µ > 2.5), the closed orbit is severely distorted. As stated 
earlier, the objective is to detect the variations in µ as early 
as possible, before they manifest as severe distortions in the 
phase behaviour. 

As evident from the phase plots in Figure 5, the  
range of the signal x(t) is almost unaffected by the  
variations in µ, whereas that of the signal dx/dt is 
significantly increases as µ increases; consequently, the  
phase-plots become significantly distorted for larger  
values of µ. Hence, it would appropriate to utilise dx/dt  
for STSA.  

Figure 6 Phase plots for different values of µ 

 

The plots in Figure 7 depict the power spectrum profile for 
the values of µ at 0.2, 1.0, 2.6 and 3.0. The power of the 
signal, in the nominal case (i.e., at µ = 0.2), is confined to a 
relatively narrow frequency band of 0.0–0.25 Hz while the 
power is gradually spread across a greater range in  
the anomalous cases as µ increases. Hence, choosing 
frequencies that are present in the anomalous cases, but are 
absent in the nominal case (µ = 0.2), would aid in anomaly 
detection. In this case, we chose frequencies in the range of 
0.7–1.0 Hz. The power in this band is almost negligible in 

the nominal case and even for small variations in µ (< 1.0). 
As the anomaly progresses, the power is increasingly 
dispersed in the afore-mentioned range. Hence, if scales are 
chosen corresponding to these frequencies, then the ranges 
of wavelet coefficients under anomalous conditions would 
be far greater in magnitude than those at the nominal or 
nearly nominal conditions. Thus, gradually evolving 
anomalies can be detected at an early stage, because 
symbols generated from such coefficients would differ from 
each other. The signal dx/dt exhibits sharp peaks as the  
anomaly progresses. Hence, it would be appropriate to 
choose a wavelet that also exhibits sharp peaks in its profile. 
With this consideration in mind, wavelet ‘db20’ was chosen 
as the mother wavelet.  

Figure 7 Power spectrum plots 

 

Wavelets coefficients are generated with wavelet ‘db20’. 
These coefficients are partitioned to generate symbols.  
Once the partitioning is created, it remains invariant.  
As the dynamical behaviour of the system changes due to 
variations in µ, the statistical characteristics of the symbol 
sequences are also altered and so are the symbol 
probabilities.  

5.3 Comparison of various analyses  
of the experimental data 

This section compares the results of anomaly detection of 
three techniques: 

• Symbolic Time Series Analysis (STSA) 

• Principal Component Analysis (PCA) 

• radial basis function neural network. 

The details of PCA and Radial Basis Function Neural 
Network based anomaly detectors are provided in Chin et al. 
(2005). All anomaly measures are normalised to one for 
comparison purposes using the maximum value of the 
anomaly for the experimental range of µ. 



76 R.P. Patankar, V. Rajagopalan and A. Ray  

5.3.1 Principal Component Analysis (PCA) 

The length of the dataset L = 4995. Upon trial and error, 
each dataset was divided into d = 333 segments to obtain 
best possible results, each of length n = 15. d = L/n where 
N = 15 and L = 4995. The d segments where arranged to for 
a data matrix of size 333 × 15 (d × n). The resulting 
covariance matrix yields 15 eigen values of which only two 
are significant. The M matrix is constructed with the 
eigenvectors corresponding to these eigen values. The angle 
between M matrices at nominal and anomalous conditions is 
the anomaly measure. 

Figure 8 shows that PCA detects the anomaly once the 
distortion is apparent in the phase behaviour, but fails to 
provide early detection. It is a yes/no type of anomaly 
detection. This may be due to the fact that PCA, being a 
linear feature extractor, may not be appropriate for a system 
that is inherently non-linear. PCA tries to impose a linear 
structure to the system. When the properties of the system 
have changed (for high values of µ), the linear structure 
imposed by the PCA is significantly different from the one 
at the nominal condition (µ = 0.1). At this stage, the 
anomaly measure increases abruptly. For further distortions, 
change in the linear structure is minimal and the anomaly 
measure remains more or less the same. 

Figure 8 Anomaly measure plots 

 

5.3.2 Radial Basis Function Neural Net (RBFNN) 

The length of the dataset L = 5000 and α = 0.5. α in the 
range [0.1, 0.7] also yielded similar results. It can be seen 
that anomaly measure based on RBFNN fluctuates initially  
and lacks the monotonic property. It can be seen in Figure 8 
that anomaly measure increases monotonically with the 
anomaly after the initial fluctuations.  

5.3.3 Symbolic Time Series Analysis (STSA) 

With the following parameter values, the STSA was  
found to work quite accurately and robustly compared  
to other techniques: Number of Symbols = 8, Depth = 1,  
 
 
 

Wavelet = ‘db20’, Transform = Continuous Wavelet 
Transform and Wavelet coefficient partitioning 
scales = [95.2381 88.8889 83.3333 78.4314 74.0741 
70.1754 66.6667]. 

In Figure 8, it can be seen that the anomaly measure is 
small for low values of µ (< 1.0). Once the distortion occurs 
(beyond µ = 1.0), the anomaly measure changes rapidly. 
This increase in the slope and curvature of the anomaly 
measure provides an opportunity for early detection.  
This, however, is difficult to achieve with RBFNN since the 
increase in the measure was linear. Thus symbolic dynamics 
has a significant advantage over RBFNN as far as early 
detection is concerned. At higher values of µ > 2.4, the 
distortion of phase plot remains more or less the same.  
The anomaly measure reflects this with just a marginal 
increase in the above mentioned range. Thus anomaly 
measure obtained with symbolic dynamics adequately 
illustrates the state of the system for all values of µ in the 
experimental range. The STSA based anomaly measure is 
monotonically increasing, smooth and shows a much earlier 
rise than RBFNN based technique. The RBFNN technique 
could be theoretically improved with perhaps better tuning 
parameters but that requires significant trial-and-error to 
achieve the tuning and there is no guranteed procedure for 
success in this approach. 

6 Inverse problem solution  

The inverse problem (of predicting the anomaly given  
the time series data) was also solved. A series of 
experiments were conducted to calibrate the anomaly 
measure. Repeated experiments resulted in different time 
series data sets which were processed using STSA 
technique. The percent anomaly measure for five different 
experiments is shown in Figure 8. The repeatability and 
consistency of STSA technique in estimating anomaly is 
remarkable. It resulted in a narrow ‘anomaly band’. Due to 
the monotonic nature of the plot, each value of anomaly can 
be associated with a continuous range of values of µ.  
For convenience, a Graphical User Interface (GUI) was 
created (Figure 10). This GUI accepts a value of anomalous 
parameter µ from the user as an input and displays the 
selected actual value of µ. There is an on/off switch on the 
screen to turn on the anomaly detection. Upon turning on 
the anomaly detection, the system waits to reach a stationary 
signal behaviour and collects bursts of data. The data is 
passed through the STSA steps and an anomaly measure is 
calculated which is displayed by the pie chart as a  
percentage. Using this calculated anomaly measure and the 
chart in Figure 9, estimated values minimum µ, mean µ, and 
maximum µ are displayed on the screen. Execution of the 
complete experiment for various selected values of µ, 
resulted in accurate estimation of the range of µ and a mean 
value estimation of µ that was always within 7% of the 
actual selected µ in the range 0.5–2.0. 
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Figure 9 STSA repeatability permits inverse problem solving 

 

Figure 10 GUI interface 

 

7 Summary and conclusions 

Experimental data was collected from the electronic circuit 
board and analysed using three techniques, viz., STSA, PCA 
and neural networks. PCA did not result in a gradual 
anomaly detection technique. It resulted in yes/no type of 
anomaly prediction. This is reasonable due to linear nature 
of the technique and non-linear nature of the circuit. Neural 
networks approach took a lot of trial-error effort in coming 
up with a good neural network structure and training  
the neural network. The anomaly plots were gradual  
with slight fluctuations. The robustness of the technique was 
not the greatest compared to the symbolic dynamic 
technique. Identical experiments showed slightly fluctuating 
(decreasing anomaly measure with increasing anomaly) 
results. This lead to a thick band of anomaly plots using 
neural networks. Due to the thick band, the implementation 
of the inverse problem (prognostics) did cannot be accurate 
with neural networks. 
 
 
 
 
 
 
 
 

Symbolic dynamic technique resulted in a 
monotonically increasing smooth anomaly plot which was 
experimentally repeatable to a remarkable accuracy as 
shown in Figure 9. For the Vander Pol oscillator  
circuit board experiment, this lead to consistently accurate 
predictions for the anomaly parameter µ and its range. 

References 
Abry, P. (1997) Ondelettes et Turbulence. Multiresolutions, 

Algorithmes de Decomposition, Invariance D’chelles, Diderot 
Editeur, Paris. 

Chau, T. and Wong, A.K.C. (1999) ‘Pattern discovery by residual 
analysis and recursive partitioning’, IEEE Transactions on 
Knowledge and Data Engineering, Vol. 11, No. 6,  
pp.833–852. 

Chin, S.C., Ray, A. and Rajagopalan, V. (2005) ‘Symbolic  
time series analysis for anomaly detection: a  
comparative evaluation’, Signal Processing, Vol. 96,  
No. 9, pp.1859–1868. 

Cover, T.M. and Thomas, J.A. (1991) Elements of Information 
Theory, John Wiley, New York. 

Kennel, M.B. and Buhl, M. (2003) ‘Estimating good discrete 
partitions form observed data: symbolic false nearest 
neighbors’, Review Letters, Vol. 91, p.084102. 

Khalil, H.K. (1996) Nonlinear Systems, 2/e, Prentice-Hall Inc., 
Upper Saddle River, New Jersey, USA. 

Lind, D. and Marcus, M. (1995) An Introduction to  
Symbolic Dynamics and Coding, Cambridge University  
Press, UK. 

Mallat, S. (1998) A Wavelet Tour of Signal Processing, 2/e, 
Academic Press, San Diego, California, USA. 

Rajagopalan, V. and Ray, A. (2006) ‘Symbolic time series analysis 
via wavelet-based partitioning’, Signal Processing, Vol. 86, 
No. 11, pp.3309–3320. 

Ray, A. (2004) ‘Symbolic dynamic analysis of complex systems 
for anomaly detection’, Signal Processing, Vol. 84 No. 7, 
pp.1115–1130. 

Veenman, C.J., Reinders, M.J.T., Bolt, E.M. and Baker, E. (2002) 
‘A maximum variance cluster algorithm’, IEEE Transactions 
on Pattern Analysis and Machine Intelligence, Vol. 24, No. 9, 
pp.1273–1280. 

Vidal, E., Tollard, F., Higuera, C., Casacuberta, F. and  
Carrasco, R.C. (2005) ‘Probabilistic finite-state machines, 
part I’, IEEE Transactions on Pattern Analysis and Machine 
Intelligence, Vol. 27, No. 7, pp.1013–1025. 

Warren Liao, T. (2005) ‘Clustering of time series data – a survey’, 
Pattern Recognition, Vol. 38, pp.1857–1874. 

Wavelet Toolbox (2006) MATLAB, Mathworks Inc., Natick, 
Massachusetts, USA. 




