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Abstract

This paper introduces a novel method for real-time estimation of slowly varying parameters in nonlinear dynamical

systems. The core concept is built upon the principles of symbolic dynamic filtering (SDF) that has been reported in

literature for anomaly detection in complex systems. In this method, relevant system outputs are measured, at different

values of a critical system parameter, to generate an ensemble of time series data. The space of wavelet-transform

coefficients of time series data is partitioned to generate symbol sequences that, in turn, are used to construct a special class

of probabilistic finite state automata (PFSA), called the D-Markov machine. The parameter is estimated based on the

statistical information derived from the PFSA. The bounds and statistical confidence levels, associated with parameter

estimation, are also computed. The proposed method has been validated in real time for two nonlinear electronic systems,

governed by Duffing equation and van der Pol equation, on a laboratory apparatus.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Various analytical tools have been reported in
literature for parameter estimation in nonlinear
dynamical systems. One of the early methods [1]
makes use of statistical linearization and other
methods include unscented Kalman filtering (UKF)
[2,3], Markov chain Monte Carlo (MCMC) [4],
particle filtering (PF) [5], genetic algorithms (GA)
e front matter r 2007 Elsevier B.V. All rights reserved
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[6], maximum likelihood estimation (MLE) [7] and
wavelet-based tools [8].

Early detection of small changes has motivated
the usage of symbolic dynamic filtering (SDF) [9]
for parameter estimation in nonlinear dynamical
systems. The core concept of SDF is built upon the
fundamental principles of finite state automata,
pattern recognition, and information theory, and
relies on the following two basic assumptions:
�

.

The system behavior is quasi-stationary at the
fast-time scale of system dynamics.

�
 Observable non-stationary behavior of the dyna-

mical system can be associated with parametric
or non-parametric changes evolving at a slow-
time scale.
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SDF is in some ways similar to commonly used
Bayesian filtering tools like PF. While a PF [5] is

constructed as a Markov process on a finite-
dimensional state space, SDF is constructed as a
finite state automaton with finite memory [9].
Specifically, the state variables in PF are real-valued
and the automaton states of SDF may be consid-
ered analogous to energy states in quantum
statistical mechanics [9]. Only the state transition
matrix and hence the probabilities of the automaton
states are allowed to vary with time. However, SDF
differs from PF and other Bayesian filtering
methods in many aspects. Existence of a dynamic
model in the state-space setting is an underlying
assumption for construction of PF and UKF. In
contrast, SDF does not require a model for the
system because a hidden Markov model (HMM) is
generated from time series data. In addition, SDF is
computationally a lot less intensive as compared to
other techniques such as GA and PF that requires
estimation of conditional probability density of a
continuous variable. In the case of SDF, no such
computation is necessary as state probability
vectors are determined from a counting process.
Thus, SDF is very easy to implement and is suitable
for online parameter estimation.

An important advantage of SDF is its robustness
to measurement noise [10]. A possible disadvantage
of SDF could be loss of information in conversion of
a time series data set to a symbol sequence due to
coarse graining. However, with suitable partitioning
and appropriate choice of SDF parameters, it has
been observed that information necessary for accu-
rate estimation is retained in symbol sequences [10].

Building on the earlier work of Ray [9], Rajagopalan
and Ray [10], and Chin et al. [11], this paper makes use
of SDF to formulate and validate, by laboratory
experimentation, a novel concept for real-time estima-
tion of a slowly varying parameter in nonlinear
dynamical systems. Often such dynamical systems are
stimulated with a priori known exogenous inputs, or
are self-excited, to recognize behavior patterns of
evolving dynamics from the observed quasi-stationary
response. In the sequel, two nonlinear systems are
analyzed and experimentally validated on a laboratory
apparatus; one is the Duffing system [12] that is
exogenously excited with a periodic input to capture
possible bifurcation and chaotic behavior and the other
is the van der Pol system [13] representing self-excited
nonlinear oscillations.

The paper is organized in five sections including
the present one. Section 2 briefly reviews the salient
features of SDF. Section 3 describes the two
nonlinear dynamical systems investigated in the
paper and Section 3.3 presents a brief description of
the laboratory apparatus that has been used for
conducting the experiments. The experimental
results, including the details of statistical parameter
estimation, are discussed in Section 4. Section 5
summarizes and concludes the paper with recom-
mendations for future work.

2. Review of Symbolic dynamic filtering (SDF)

This section summarizes the salient features of
Symbolic dynamic filtering (SDF) that has been
reported in literature [9,11,10,14]. Behavior identi-
fication in dynamical systems with a slowly varying
parameter can be formulated as a two-time-scale
problem if the physical process is assumed to have
quasi-stationary dynamics on the fast-time scale and
any observable non-stationary behavior is asso-
ciated with changes occurring on the slow-time

scale. In other words, the variations in the internal
dynamics of the system are assumed to be negligible
on the fast-time scale, while pattern changes due to
parameter variations may become significant on the
slow-time scale. In general, a long time span in the
fast-time scale is a tiny (i.e., order(s) of magnitude
smaller) interval in the slow-time scale, over which
the system dynamics are assumed to have stationary
behavior. Nevertheless, the notion of fast-time and
slow-time scales is dependent on the specific
application and operating environment.

From the above perspectives, the problem of
slowly varying parameter estimation is categorized
into two subsets: (i) The forward problem and
(ii) the inverse problem.

2.1. Forward problem

The primary objective of the forward problem is
identification of the changes in behavioral patterns
of the system dynamics due to evolving parameter
changes on the slow-time scale. Specifically, the
forward problem aims at detecting the deviations in
the statistical patterns in the time series data,
generated at different time epochs in the slow-time
scale, from the nominal behavior pattern. The
solution procedure of the forward problem requires
the following steps:
F1.
 Collection of time series data sets (at the fast-

time scale) from the available sensor(s) at
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different slow-time epochs: Relevant informa-
tion-bearing outputs of the nonlinear system
under consideration are sampled at a suitable
rate to generate an ensemble of time series data.
The period of data acquisition is required to be
significantly small compared to the period of
parameter changes.
F2.
 Generation of wavelet coefficient data sets:
Wavelet transform [15] is adopted because the
time series data may be noisy and undergo non-
stationary variations under slow variations of
the parameters. In this context, an appropriate
wavelet basis is chosen and the scales for
wavelet analysis are then selected based on
frequencies of interest [10].
F3.
 Partitioning of the wavelet coefficient space for

symbol sequence generation: The partition is
determined based on the data set under the
nominal condition. This partition remains
invariant in further analysis. Symbol sequences
are generated from all data sets based on this
partition.
F4.
 Construction of a special class of probabilistic

finite state automata (PFSA), called the

D-Markov machine [9]: The structure of the
D-Markov machine remains fixed for all slow-
time epochs but the elements of the resulting
state transition matrix do change with varia-
tions of the parameter in the slow-time scale.
F5.
 Computation of pattern vectors, defined as the

(quasi-stationary) state probability vectors of

the PFSA of the D-Markov machine at slow-

time epochs: Measures of the deviations of the
current pattern vector from the nominal pattern
vector, called deviation measures, are obtained
in the slow-time scale as the parameter varies.
An appropriate distance function from different
viable options is adopted for this purpose [9,11].
2.2. Inverse problem

The objective of the inverse problem is to infer
anomalies and to provide estimates of parameters
associated with anomalies in real time. The deci-
sions are based on the information generated from
the forward problem. In case of deterministic
systems, the solution of the inverse problem is
straightforward, i.e., the estimates can be obtained
by mapping the results of the forward problem.
However, in case of stochastic systems, the problem
may be ill-posed. That is, it may not always be
possible to identify a unique anomaly pattern based
on the observed behavior of the dynamical system.
In such cases, estimates can only be obtained with
certain confidence intervals (CIs).

The solution to inverse problem requires the
following steps:
I1.
 Based on anomaly measure profiles generated in
the forward problem, a statistical relationship is
determined between anomaly measure and the
value of parameter associated with the anomaly.
In particular, probability distributions of para-
meter for various values of anomaly measures
are obtained. Hypotheses tests are performed to
determine goodness-of-fit of the distributions.
For example, mean and variance associated with
a two-parameter distribution provide adequate
statistical information on the bounds and
confidence levels of the estimated parameter.
I2.
 Time series data are collected (in the fast-time
scale) under the similar operating conditions as
in Step F1 of the forward problem. Data are
analyzed as discussed previously to generate
pattern vectors. The anomaly measure at the
current time epoch is then calculated by
quantifying the deviation of the current pattern
vector from the nominal vector.
I3.
 Detection, identification and estimation of an
anomaly (if any) based on the computed
anomaly measure and the probability distribu-
tion derived in Step I1 of the inverse problem.
2.3. The parameter estimation procedure

The details of the forward problem in SDF,
pertaining to the Duffing equation, have been
reported in [9,10] and its performance is demon-
strated to be superior to that of other standard
pattern identification tools in [11,14]. The SDF
analysis of van der Pol system is presented in this
paper. Efficacy of the inverse problem in SDF for
statistical estimation of system parameter(s) has not
yet been demonstrated.

This paper presents a solution to the inverse
problem in SDF and illustrates its usage in real-time
parameter estimation for both externally stimulated
and self-excited systems. The Duffing equation
represents an externally stimulated system and the
van der Pol equation represents a self-excited
system. In the present experimental setting of both
Duffing and van der Pol systems, a single critical
parameter is changed in small steps to show that the
SDF method is capable of distinguishing, in real
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Fig. 1. Schematic diagram for symbolic dynamic filtering (SDF).
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time, variations due to gradually evolving anoma-
lies. For statistical analysis, the experiments in the
forward problem are repeated a sufficiently large
number of times by replacing selected component(s)
(e.g., a resistor) in the laboratory apparatus, each
time with a similar component. The objective here is
to establish robustness of the estimate with respect
to component-induced parametric uncertainties in
identically manufactured systems.

Fig. 1 exhibits a schematic representation of the
complete SDF procedure for parameter estimation,
where the forward problem is solved offline to
generate the information for online execution of the
inverse problem that relies on the deviation measure
at the current (slow-time) epoch in addition to the
information generated in the forward problem.

3. Nonlinear system models and the laboratory

apparatus

This section describes the governing equations of
two nonlinear dynamical systems that are analyzed
and validated on a laboratory apparatus.

3.1. The Duffing system

The externally excited Duffing system [12] is
governed by a second-order non-autonomous non-
linear differential equation:

d2yðtÞ

dt2
þ b

dy

dt
þ yðtÞ þ y3ðtÞ ¼ A cosðotÞ. (1)

The amplitude A was equal to 22.0 and
o ¼ 5:0 rad=s. Behavior of the Duffing system is
sensitive to changes in the parameter b. For b in the
range of 0.10–0.27, the behavior of the Duffing
system in Eq. (1) is largely similar though there are
small variations. However, as b increases to � 0:28,
the Duffing system undergoes a period doubling
bifurcation and the behavior remains essentially
unchanged for further increases in b. The phase
plots for selected values of b can be found in [9].
In each experiment, 12,000 data points of the
two phase variables y and dyðtÞ=dt sampled at a
uniform rate of 100Hz were collected for different
values of b.

3.2. The van der Pol system

The unforced van der Pol system [13] is governed
by a second order autonomous nonlinear differen-
tial equation

d2yðtÞ

dt2
� mð1� y2ðtÞÞ

dyðtÞ

dt
þ yðtÞ ¼ 0. (2)

Behavior of the van der Pol system is sensitive to
changes in the parameter m. For small values of m,
the stationary phase trajectory is a smooth orbit,
largely similar to a circle of radius 2.0. As m
increases, this shape gets distorted and the distor-
tion is very high around m equal to 3.0. In each
experiment, 4500 data points of the two phase
variables y and dyðtÞ=dt sampled at a uniform rate
of 100Hz were collected for different values of m.

3.3. Description of the laboratory apparatus

The laboratory apparatus is a combination of
hardware electronic circuit designed with resistors
(R), capacitors (C) and operational amplifiers and a
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computer interfaced with the circuit. The circuit
consists of R–C networks which model the linear
dynamics of the process. The nonlinearity is
generated in the computer. The adder sums up the
input signal and the terms generated by the
computer and feeds it back to the circuit, thereby
making the overall system nonlinear.

Linear IC LM-741 chips were chosen to build
the voltage amplifier and adder circuits since the
operating frequencies are low ðo10 rad=sÞ. The
R–C values of both the networks were chosen to
be equal. The resistance R was chosen to be 500O
and the capacitance C to be 1.00mF. The software
controlling the setup is coded in MATLAB. The
software utilizes functions from the Data Acquisi-
tion toolbox of MATLAB. A single module of the
apparatus can simulate differential equations of
order four. Multiple modules in cascade can be used
to realize higher-order equations.

Keithley KPCI 1801-HC plug-in board was used
to interface the computer with the circuit. This
board has the maximum sampling rate of 333 kilo-
samples/s, 64 A/D channels (12 bit), 2 D/A channels
and operates in the range of �5 to þ5V. The 12 bit
A/D converters provide quantization levels of
approximately 2.5mV. The process dynamics in
the experiments were of the order of hertz ðo5HzÞ.
The process is sampled at 2000Hz. The derivative
and other terms were computed numerically using
such samples. This plug-in board can be used in
conjunction with the Data Acquisition toolbox of
MATLAB.

4. Experimental results and discussion

This section presents the experimental results of
parameter estimation in Duffing system and the van
der Pol system. The analysis problem for the
Duffing system is explained in detail in [9,10]. A
similar procedure is followed for the van der Pol
system as well.

This section focuses on the inverse problem of
parameter estimation based on computed values of
the deviation measure (see item F5 in Section 2).
The parameter is a slowly varying random process
and is therefore assumed to be a random variable at
each slow-time epoch, for which the deviation
measures are the only observables. To account for
the inherent uncertainties in the system components
and to ensure robust estimation, a large number of
experiments are performed and the deviation
measures are calculated from observed time series
data during every experiment, with the objective of
estimating the unknown parameter.

The range of the computed deviation measure is
discretized into finitely many levels. A pattern
matrix is created where each column represents the
spread of the parameter for a particular value of the
deviation measure. A statistical distribution is
hypothesized for the spread of the parameter and
the goodness-of-fit of the hypothesized distribution
is assessed with w2 and Kolmogorov–Smirnov tests.
CIs are then assessed for confidence levels at 99%
and 95%.

4.1. Results on the Duffing system

Section 4.1.1 briefly presents the results of
forward problem. The inverse problem results are
provided in Section 4.1.2.

4.1.1. Solution to forward problem

The first step in the forward problem is selection of
the wavelet basis. Wavelet ‘gaus1’ [15] is chosen as
the wavelet basis. The next step is selection of scales.
Following the procedure described in [10], the scales
are selected to be 64.76 and 71.23. The wavelet
coefficients are obtained at these scales and stacked
to form the scale series. The alphabet size is chosen to
be jSj ¼ 6. The maximum entropy (ME) partition is
obtained with scale series data corresponding to the
nominal condition at b ¼ 0:11. The scale series is
then converted to symbols based on the partition.
With the selection of depth D ¼ 1, the number of
states in the D-Markov machine becomes jSjD ¼ 6.

Using the above partition, symbol sequences are
generated from all other scale series data sets. As the
dynamics of the system change due to variations in
b, the statistics of the symbol sequences are also
altered and so are the probability distributions.
Because of the ME criterion, the probability
distribution is uniform at the nominal condition of
b ¼ 0:11. As b gradually increases, the distribution
deviates from being uniform. The angle measure,
defined in [9], is used for quantifying the changes
in the statistical patterns of the PFSA of the
D-Markov machine. The profile of the angle
measure, for one experiment, is shown in Fig. 2,
where the dynamical system approaches a bifurca-
tion point at b � 0:29.

4.1.2. Solution to inverse problem

Time series data are generated for different values
of b, and the experiment is repeated about 40
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number of times to acquire stochastic information on
the system dynamics. For each run of the experiment,
deviation measures M are calculated for different
values of the parameter b. The ensemble of deviation
measure plots is presented in Fig. 3. The profiles of
individual samples are plotted up to b ¼ 0:27 before
the bifurcation point is reached, because the char-
acteristics of the dynamical system drastically
changes as the dynamical system approaches bifurca-
tion condition at b � 0:29.

The range of deviation measure is discretized into
n ¼ 20 levels. A pattern matrix is constructed where
each column represents the spread of the parameter
b for a particular segment of the deviation measure.
For the elements of each column, a two-parameter
log-normal distribution is hypothesized, and its
goodness-of-fit is examined by both w2 and Kolmo-
gorov–Smirnov tests [16]. For each of the 20 data
sets, the hypothesis of two-parameter log-normal

distribution passed the w2-test at 10% significance
level [16]. This satisfies the conventional standard of
5% significance level. Also, for each of the 20
measure levels, the hypothesis passed the Kolmo-
gorov–Smirnov test at 30% significance level, which
again exceeds the conventional standard of 5%
significance level. The fitted two-parameter log-
normal density plots are presented in Fig. 4 presents
for selected values of deviation measures M.

Once the two-parameter log-normal distributions
are obtained, the bounds of parameter estimation
for different confidence levels are computed. Table 1
provides the mean and variance of the hypothesized
distributions and the CIs. It is seen that the
parameter estimate b̂ is significantly greater than
the standard deviation ŝ. This suggests that the
estimate is close to the true value of the parameter.

For testing validity of the proposed distribution,
experiments were conducted with three arbitrarily
chosen resistances belonging to the allowable
tolerance levels. Time series data were generated at
different b values and the measures were computed.
The plot in Fig. 5 depicts the deviation measure M

and the associated bounds for 90% CI. It is seen
that all three measure plots lie within the 90% CI
bounds.

4.2. Results on the van der Pol system

Section 4.2.1 presents the results of forward
problem. The inverse problem is described in detail
in Section 4.2.2.

4.2.1. Solution to forward problem

Wavelet ‘gaus1’ [15] is chosen as the wavelet
basis. The suitable scales are found to be 28.57 and
50.00. The wavelet coefficients are obtained at these
scales and stacked to form the scale series [10]. The
alphabet size is also chosen to be jSj ¼ 6. The ME
partition is obtained with scale series data corre-
sponding to the parameter m ¼ 0:2. The scale series
is then converted to symbols based on this partition.
With depth D ¼ 1, the number of states in the
D-Markov machine becomes 6. Symbol sequences
are then generated from all other scale series data
sets, based on the partition mentioned above. As the
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Fig. 4. Probability density plots for the Duffing system.

Table 1

Predicted value of b and confidence intervals for the Duffing system

Observed measure M Estimates

b̂ ŝ 99% 95% 90%

bmin bmax bmin bmax bmin bmax

0.0778 0.1689 3:233� 10�3 0.1607 0.1774 0.1626 0.1753 0.1636 0.1743

0.2335 0.2228 2:550� 10�3 0.2163 0.2295 0.2178 0.2278 0.2186 0.2270

0.3114 0.2393 2:762� 10�3 0.2323 0.2466 0.2340 0.2448 0.2348 0.2439

0.4282 0.2600 2:920� 10�3 0.2525 0.2676 0.2543 0.2657 0.2552 0.2648
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dynamics of the van der Pol system change due to
variations in the parameter m, the statistics of
the symbol sequences are altered and so are the
probability distributions. As m changes, the dis-
tribution deviates from being uniform. The angle
measure [9] is used for quantifying the changes in
the distributions. The profile of the angle measure,
for one experiment, is shown in Fig. 6.
4.2.2. Solution to inverse problem

Time series data sets are generated for different
values of the parameter m, and the experiment is
repeated about 40 times to acquire ensemble of
statistical information about the system dynamics.
For each run of the experiment, measures are
calculated for different m values. The ensemble of
measure plots is presented in Fig. 7.
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The range of measure is next discretized into
n ¼ 20 levels. A pattern matrix is constructed where
each column represents the spread of the parameter
m for a particular value of measure. For the elements
of each column, a two-parameter log-normal dis-
tribution is hypothesized, and its goodness-of-fit is
examined by both w2 and Kolmogorov–Smirnov
tests [16]. For all 20 measure levels, the hypothesis
of two-parameter log-normal distribution passed
the w2 test at 10% significance level the Kolmogorov–
Smirnov test [16] at 30% significance level, which
satisfies the conventional standard of 5% signifi-
cance level. The probability density plots are
presented in Fig. 8 for selected values of deviation
measures.

Once the log-normal distributions are obtained,
the bounds for different CIs are computed. Table 2
provides the mean and variance of the hypothesized
distributions and the CIs associated with different
confidence levels. It is seen that the parameter
estimate m̂ is significantly greater than the standard
deviation ŝ. This suggests that the estimate is very
close to the true value of the parameter.

For testing validity of the proposed distribution,
experiments were conducted with three arbitrarily
chosen resistances belonging to the allowable
tolerance levels. Time series data were generated at
different m values and the measures were computed.
The plot in Fig. 9 depicts the deviation measure M

and the associated bounds for 90% CI. It is seen
that all three measure plots lie within the 90% CI
bounds.
5. Summary, conclusions, and future work

This paper reports formulation and experimental
validation of a novel statistical method for real-time
parameter estimation in nonlinear systems. The core
concept is built upon the principles of symbolic
dynamic filtering (SDF), which has been reported in
literature for anomaly detection in complex dyna-
mical systems. Parameter estimation consists of the
forward problem and the inverse problem.
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Fig. 8. Probability density plots for the van der Pol system.

Table 2

Predicted value of m and confidence intervals for the van der Pol system

Observed measure M Estimates

m̂ ŝ 99% 95% 90%

mmin mmax mmin mmax mmin mmax

0.0388 0.5050 0:3� 10�3 0.4590 0.5549 0.4696 0.5424 0.4750 0.5362

0.3102 1.40618 0:012� 10�3 1.3970 1.4152 1.3992 1.4130 1.4003 1.4119

0.4266 1.8116 0:6� 10�3 1.7513 1.8737 1.7656 1.8585 1.7728 1.8510

0.5042 2.3670 0:0337� 10�3 2.352 2.382 2.3556 2.3784 2.3574 2.3766
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In the forward problem, wavelet transforms of
time series data sets of relevant system outputs are
generated at different parametric values. Then, the
space of wavelet coefficients is partitioned to obtain
symbol sequences for construction of hidden
Markov models (HMM) as probabilistic finite state
automata (PFSA), called the D-Markov machine
[9]. Distances between respective stationary statis-
tics of the PFSA states, called deviation measures,
are computed for different values of the parameter.

In the inverse problem, experiments are con-
ducted to generate an ensemble of profiles of
the computed deviation measure versus the para-
meter to be estimated. Standard statistical tools
are applied to obtain the bounds and confidence
levels associated with the estimate. A two-parameter
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Fig. 9. Confidence intervals and test results for the van der Pol

system.
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log-normal distribution has been hypothesized to
represent the spread of the estimated parameter
based on an experimentally determined value of the
deviation measure. The goodness of statistical fit
has been determined by both w2 and Kolmogorov–
Smirnov tests. The bounds and confidence levels
associated with the parameter estimate are reported
for two nonlinear systems, governed by Duffing
system [12] and van der Pol system [13].

The reported work is a step toward building a real-
time data-driven tool for estimation of slowly varying
parameters in nonlinear dynamical systems. There are
many potential applications of this tool, such as
anomaly detection and early prognosis of failures in
human-engineered systems. For example, the informa-
tion on parameter deviations could be useful for
execution of critical decision policies in real time.
However, further theoretical and experimental research
is necessary before its application in industry. Another
important issue that has not been addressed in this
paper is the impact of slow-scale ðtsÞ non-stationarity
upon the assumption of fast-scale ðtf Þ stationarity when
the ratio ðtf=tsÞ is not sufficiently small.

While there are many other research issues that
need to be addressed, the following research topics
are being currently pursued.
�
 Extension of the single-parameter estimation to
multi-parameter estimation, which renders the
univariate statistical problem, presented in this
paper, into a multivariate one.
�
 Construction of a real-time recursive algorithm
that takes advantage of the previous data with
trade-off between delay and robustness.

�
 Extension of the parameter estimation problem

under different types (e.g., non-polynomial) of
nonlinearities.

�
 Quantification of the effects of interactions be-

tween the slow-scale and fast-scale dynamics from
the perspectives of singular perturbation [17].

References

[1] P. Broersen, Estimation of parameters of non-linear

dynamical systems, Internat. J. Non-linear Mech. 9 (1974)

355–361.

[2] E. Wan, R. van der Merwe, The unscented Kalman filter for

nonlinear estimation, in: Proceedings of the IEEE Sympo-

sium 2000 AS-SPCC, Lake Louise, Alta., Canada, 2000.

[3] S. Julier, J. Uhlmann, A new extension of the Kalman

filter to nonlinear systems, in: International Symposium

on Aerospace/Defense Sensing, Simulation and Controls,

Orlando, FL, 1997.

[4] C. Bremer, D. Kaplan, Markov chain Monte Carlo

estimation of nonlinear dynamics from time series, Physica

D 160 (2001) 116–126.

[5] J. Ching, J.L. Beck, K.A. PorterChin, Bayesian state and

parameter estimation of uncertain dynamical systems 21 (1)

(2006) 81–96.

[6] L. Yao, W. Sethares, Nonlinear parameter estimation via the

genetic algorithm, IEEE Trans. Signal Process. 42 (4) (1994)

927–935.

[7] B. David, G. Bastin, Parameter estimation in nonlinear

systems with auto and crosscorrelated noise, Automatica 38

(2002) 81–90.

[8] R. Ghanem, F. Romeo, A wavelet-based approach for

model and parameter identification of non-linear systems,

Internat. J. Non-linear Mech. 36 (2001) 835–859.

[9] A. Ray, Symbolic dynamic analysis of complex systems

for anomaly detection, Signal Processing 84 (7) (2004)

1115–1130.

[10] V. Rajagopalan, A. Ray, Symbolic time series analysis

via wavelet-based partitioning, Signal Processing 86 (11)

(November 2006) 3309–3320.

[11] S. Chin, A. Ray, V. Rajagopalan, Symbolic time series

analysis for anomaly detection: a comparative evaluation,

Signal Processing 85 (9) (September 2005) 1859–1868.

[12] J. Thompson, H. Stewart, Nonlinear Dynamics and Chaos,

Wiley, Chichester, UK, 1986, pp. 2–3.

[13] M. Vidyasagar, Nonlinear Systems Analysis, Prentice-Hall,

Englewood Cliffs, NJ, 1993.

[14] S. Gupta, A. Ray, E. Keller, Symbolic time series analysis of

ultrasonic data for early detection of fatigue damage, Mech.

Syst. Signal Process. 21 (2) (2007) 866–884.

[15] S. Mallat, A Wavelet Tour of Signal Processing, second ed.,

Academic Press, London, UK, 1998.

[16] H. Brunk, An Introduction to Mathematical Statistics, third

ed., Xerox College Publishing, Lexington, MA, USA, 1975.

[17] P. Kokotovic, H. Khalil, J. O’Reilly, Singular Perturbation

Methods in Control, SIAM, Philadelphia, PA, USA, 1999.


	Estimation of slowly varying parameters in nonlinear systems �via symbolic dynamic filtering
	Introduction
	Review of Symbolic dynamic filtering (SDF)
	Forward problem
	Inverse problem
	The parameter estimation procedure

	Nonlinear system models and the laboratory apparatus
	The Duffing system
	The van der Pol system
	Description of the laboratory apparatus

	Experimental results and discussion
	Results on the Duffing system
	Solution to forward problem
	Solution to inverse problem

	Results on the van der Pol system
	Solution to forward problem
	Solution to inverse problem


	Summary, conclusions, and future work
	References


