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Abstract: Wavelet transform allows adaptive usage of windows to extract pertinent information from 
sensor signals, and symbolic dynamic analysis provides coarse graining of the underlying information 
for enhanced computational speed and robustness of sensor-data-driven decision-making. These two 
concepts are synergistically combined for real-time intelligent sensing of faults whose signatures are 
small compared to coefficients of dominant frequencies in the signal. Feasibility of the proposed 
intelligent sensing method is demonstrated on an experimental apparatus for early detection of rotor 
bar breakage in an inverter-fed induction motor. Copyright © 2008 IFSA. 
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1. Introduction 
 
Wavelet transform is a powerful tool for multi-scale representation of non-stationary signals. Wavelet 
analysis allows adaptive usage of long windows for retrieving low frequency information and short 
windows for high frequency information [1]. This property is particularly critical for detection of faults 
that manifest at multiple frequencies. The ability to perform flexible localized analysis is one of the 
striking features of the wavelet transform. Hence, they have been extensively used for fault detection 
[2]. A symbolic dynamic approach to fault detection was first introduced in [3] and later has been 
experimentally validated in different applications [4-6]. An important practical advantage of working 
with symbols is that the efficiency of numerical computations is significantly enhanced over what it 
would be for the original data; this is critical for real-time monitoring and control applications. 
Another advantage is that analysis of symbolic data is often less sensitive to measurement noise. 
Therefore, applications of symbolic methods are favored in circumstances where robustness to noise, 
speed, and/or cost is of paramount importance [7]. 
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This paper presents an application that combines the merits of wavelet transform and symbolic 
dynamic analysis for intelligent sensing of both gradually evolving and abrupt faults. In this context, 
the problem of detecting broken rotor bars in three-phase squirrel-cage induction motors is 
investigated. The analysis of broken rotor bars, in line-fed motors, has been well studied [8]. In the 
experimental apparatus, reported in this paper, an induction motor is operated as part of an open loop 
V/Hz drive system; these drive systems are used in various applications such as locomotives and 
cranes. Detection of rotor bar faults becomes difficult due to the inverter harmonics that tend to mask 
the fault signatures [9]. This information needs to be identified, extracted and represented properly in 
order to provide an appropriate assessment of the motor’s health status. 
 
The paper is organized into six sections including the present section. Section II presents the basic 
principles of wavelet transform analysis as needed for analysis in subsequent sections. The concept of 
symbolic dynamic analysis that is recently reported in literature [3] is briefly described in Section 3. 
Section 4 analyzes the effects of induction motor currents with broken rotor bars that generate 
additional harmonics in the line frequency. Section 5 describes the experimental apparatus and 
discusses the results on detection of broken rotor bars. Section 6 summarizes and concludes the paper 
with recommendations for future research. 
 
 
2. Wavelet Transform Analysis 
 
Preprocessing of time series data is often necessary for extraction of pertinent information. Although 
Fourier analysis is adequate if the signal to be analyzed is stationary and if the time period is 
accurately known. Therefore, Fourier analysis may not be appropriate for non stationary signals (e.g., 
signals subjected to drifts, abrupt asynchronous changes and frequency trends). Wavelet analysis 
alleviates these difficulties via adaptive usage of long windows for retrieving low frequency 
information and short windows for high frequency information [1]. The ability to perform flexible 
localized analysis is one of the striking features of wavelet transform. 
 
In multi-resolution analysis (MRA) of wavelet transform [10], a continuous signal , where  is a 
Hilbert space, is decomposed as a linear combination of time translations of scaled versions of a 
suitably chosen scaling function  and the derived wavelet function . Let the sequence  
belong to another Hilbert space  with a countable measure, where the scale  and time 
translation . If the sequence  is a frame for the Hilbert space  with a frame 
representation operator , then there are positive real scalars  and  such that: 
 
  (1)
 
where  and  is an appropriate norm, e.g.,  is 

a candidate norm; and  is the inner product of  and , both belonging to . 
 
The above relationship is a norm equivalence and represents the degree of coherence of the signal  
with respect to the frame set of scaling functions; it may be interpreted as enforcing an approximate 
energy transfer between the domains  and . In other words, for all signals , a scaled 
amount of energy is distributed in the coefficient domain where the scale factor lies between  and 

[1]. However, the energy distribution is dependent on the signal’s degree of coherence with the 
underlying frame . For a signal , which is coherent with respect to the frame , norm 
equivalence in the frame representation necessarily implies that a few coefficients contain most of the 
signal energy and hence have relatively large magnitudes. Similarly, pure noise signal  being 
incoherent with respect to the set , must have a frame representation in which the noise energy is 
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spread out over a large number of coefficients. Consequently, these coefficients have a relatively small 
magnitude. The orthogonal wavelets, utilized for analysis, form a tight frame with  [10]. 
 
Let f ̃ be a noise-corrupted version of the original signal  expressed as: 
 
  (2)
 
where  is additive white Gaussian noise with zero mean and unit variance and  is the noise level. 
Then, the inner product of  and  is obtained as: 
 
  

(3)

 
The noise part in Eq. (3) may further be reduced if the basis and the scales over which coefficients are 
obtained are properly chosen. 
 
 
2.1. Selection of the Wavelet Basis 
 
Several properties of a wavelet determine its suitability as a basis. Much depends on the characteristics 
of the signal like frequency trends and discontinuities. The properties that are relevant to the problem 
of detecting broken rotor bars are discussed below. 
 
• Time-Frequency Localization: Localization in time facilitates identification of abrupt changes in the 
temporal behavior. In contrast, localization in frequency is essential for identification of faults in 
narrow frequency bands. For example, the ‘db1’ or ‘Haar’ wavelet basis is well localized in time, 
whereas the ‘sinc’ wavelet is well localized in frequency [1]. In general, Wavelets with compact support 
yield good time localization. 
 
• Vanishing moments: Vanishing moments of the wavelet are related to its ability to suppress 
oscillations. For example, if the wavelet basis has  vanishing moments, it will suppress all 
polynomials of degree . Therefore, a wavelet basis with large number of vanishing moments tends to 
capture the change in the “higher-order" of power-series decomposition. Since faults are usually 
associated with higher order terms; this property will ensure that even small faults will not go 
undetected. 
 
• Regularity: Regularity defines smoothness of the wavelet basis and is useful for separating the 
frequency components in the fault signals. This property is derived from vanishing moments. 
 
• Symmetry: This property is useful for factoring out phase information that may lead to false alarms. 
Enforcing symmetry causes the wavelet basis to be a complex function. In fact, except the ‘Haar’ 
wavelet, there is no other compactly supported wavelet is symmetric [1]. 
 
Many wavelets may satisfy one or more of the above desirable properties. In such a case, it is 
advantageous to choose a wavelet basis that is coherent with the signal. A measure of coherence 
between the signal and wavelet could be obtained from their cross-correlation that is defined as: 
 
  , (4)

 
where  is the signal and  is the suitably scaled wavelet.  is the inner product between the 



Sensors & Transducers Journal, Vol. 94, Issue 7, July 2008, pp. 150-160 

 153

vectors  and  and  is the Euclidean norm of . 
 
 
2.2. Selection of the Wavelet Scales 
 
For every wavelet, there exists a certain frequency called the center frequency  that has the 
maximum modulus in the Fourier transform of the wavelet [11]. As an example, Fig. 1 depicts the 
center frequency associated with the Daubechies wavelet ‘db4’. 
 
For a given scale  and the sampling interval , the pseudo-frequency α

pf  of the wavelet is defined 
as [11]: 
 
  (5)
 

 

 
 

Fig. 1. Center Frequency Approximation for Wavelet db4. 
 
 

The wavelet coefficients of a signal have the maximum magnitude at the scale corresponding to the 
pseudo-frequency. Hence, it would be appropriate to choose scales such that the pseudo-frequency 
corresponds to the frequency of interest. Multiple scales can be chosen as per Eq. (5) if necessary. 
 
 
2.3. Discrete Wavelet Transform 
 
The Continuous Wavelet Transform ( ) of a signal  is defined as: 
 
  , (6)

 
where  is the mother wavelet with  being the scale and  being the time shift. The average 
and detail coefficients of  are obtained as: 
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(7)

 
A combination of the above equation pair yields an expression for computation of the detail 
coefficients of  as: 
 
  (8)

 
Computation of the  detail coefficients in Eq. (9) is computationally more efficient than that of 
the  coefficients in Eq.(9) because a filter-bank implementation is used for computing  [1]. 
Only orthogonal wavelets have been used in this paper as these wavelets have tight frames and hence 
reduce the computational load. Unless the signal to be analyzed exhibits fractal behavior,  at 
dyadic scales are adequate. 
 
Enforcing the orthogonality conditions causes the wavelet transform to lose its shift-invariance [12]. 
Symbolic dynamics partially mitigate this limitation by extracting the statistical properties of the 
signal. 
 
 
3. Symbolic Analysis of Wavelet Coefficients 
 
Application of Symbolic Dynamic Filtering ( ) to fault detection in complex dynamical systems 
has been introduced in [3], where the space of continuous wavelet coefficients is partitioned to 
generate symbols. Various aspects of symbol generation with wavelet coefficients, such as the 
selection of the alphabet size and the advantages of using wavelet coefficients with regard to noise 
mitigation and robustness are discussed in [13]. The Maximum Entropy (ME) scheme of partitioning 
introduced in [13] is presented briefly below. 
 
Let  be the length of the data sequence and  be the cardinality of the (finite) alphabet . The data 
set is sorted in the ascending order. Starting from the first point in the sorted set, every consecutive 
segment of length  forms a distinct element of the partition, where  represents the greatest 
integer less than or equal to . Each partition is then labeled with one symbol from the alphabet. If the 
data point lies in a particular region, it is coded with the symbol associated with that region. Thus, a 
sequence of symbols is created from a sequence of wavelet-transformed time series data, hereafter 
called scale series data. 
 
With such a partition, a region with large information content is allocated more symbols and hence a 
finer partitioning is achieved in such a region. Similarly, a region with sparse information content is 
allocated fewer symbols and hence a coarser partitioning is achieved in such a region. Thus, even 
small changes in the system behavior will be reflected in the symbol sequence obtained under ME 
partitioning. 
 
The discrete wavelet coefficients are obtained for various dyadic scales. The detail coefficients are 
stacked to obtained the scale series. The scale series data corresponding to normal condition is 
partitioned with maximum entropy scheme to generate the partitions. These partitions remain invariant 
for all conditions. The probability distribution of the symbols represents the status of the system at any 
given time. As the fault occurs, the characteristics of the signal change and this is reflected in the 
wavelet coefficients. The symbol sequence generated from the coefficients also changed and so do 
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their probabilities. In order to quantify change, a scalar measure is induced on the probability 
distributions, denoted as an anomaly measure . One such measure of anomaly is  
where  is the probability distribution corresponding to the reference test #1 and  is the current 
probability distribution for the test #k; and ),( ••d  is a scalar distance between two probability vectors 
of the same dimension. The relative entropy or the Kullback-Leibler distance [14] has been found 
suitable as the measure of anomaly in this paper. It is noted that there are other alternative choices of 
the distance function for the anomaly measure [3]. 
 
 
4. Fault Analysis in Induction Motors 
 
Analysis of three-phase induction motor currents with broken rotor bars yields additional frequency 
components in the line frequency [8]. 
 
  , (9)

 
where ,  and  are, respectively, the electrical supply frequency, number of pole pairs, and the per-
unit slip;  due to the normal winding configuration. For , the 
additional components in the current spectrum are , due to the broken rotor bar, and , 
owing to the speed oscillations. In the case of line-fed machines, the frequency  is usually 60 Hz. 
Inverters introduce harmonics due to the switching action. The harmonics introduced have the 
following frequencies , where . Since the motor under investigation is 3-phase, 
triple harmonics are eliminated. So the harmonics present in the stator current waveform 
are . The higher harmonics are weighted by  where  is the harmonic number, so 
harmonics beyond 15 are ignored. In this way, several frequency bands are available for analysis of 
fault signatures. 
 
The following transform is used to obtain the direct axis and quadrature axis currents. 
 
 

 

 
The Parks vector modulus  is then calculated. If there are broken rotor bars, the fault 
signatures can be seen at , where s is the per-unit slip. The fault signature for 
the fundamental component is expected to be at least 30 to 50 dB below the DC component. This 
number is larger for the higher harmonics and that is why rotor bar breakages are difficult to detect. 
 
 
5. Experimental Apparatus and Test Results 
 
This section describes the experimental apparatus for detection of broken rotor bar(s) in induction 
motors and discusses the associated test results. 
 
 
5.1. Description of the Experimental Apparatus 
 
The motors under test belong to the class of 3-phase, 2-HP Y-connected squirrel cage induction 
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machines, and are driven by a commercial-grade inverter in the open-loop V/Hz mode. The motors are 
loaded to a desired level by a hysteresis dynamometer (model HD-805 6N manufactured by Magtrol) 
through a flexible Lovejoy coupling. 
 
The sensing board consists of both voltage and current sensors, followed by operational amplifiers. 
These amplifiers provide sufficient gain as needed for data acquisition on a dSPACE DS-1103 PPC 
card having sixteen 14-bit ADC units, four 12-bit ADC units, and eight 12-bit DAC outputs. The 
bandwidth of the sensors are intentionally kept wide so that both high-frequency and low-frequency 
harmonics could be measured and analyzed. 
 
The rotors are made of solid aluminum construction and the rotor bars are embedded in the laminate. 
To break a rotor bar, a hole was milled deep and wide enough into the laminate such that it broke one 
rotor bar. This ensures the disruption of the current path in one of the bars. Experiments were 
conducted with tests on ten identical motors, of which five were healthy and the remaining five were 
made faulty with a single broken bar to emulate the faulty condition. The load on the motor was set to 
3Nm and the slip was observed to be  for all ten test cases. The currents were sampled at a frequency 
of  and the test data were acquired for  seconds. Out of a total of  data points for 
each test, only  seconds of data between the  and  second was selected for fault analysis to 
assure statistical stationarity. 
 
 
5.2. Test Results and Discussion 
 
The Daubechies family of wavelets satisfies many of the requirements mentioned in Section 2 and 
their salient features are: 
• Orthogonality and compact support; 
• Existence of several vanishing moments; and 
• Time-frequency localization. 
 
In this paper, standard Daubechies wavelets, ‘db3’, ‘db4’, ‘db5’, ‘db6’, ‘db7’, ‘db8’ and ‘db10’, have 
been considered as possible candidates for the wavelet basis. Table 1 lists the values of correlation  
between the wavelets and the measured signal. 
 
 

Table 1. Cross Correlation Values. 
 

Wavelet     Correlation 
        0.3353 
        0.3414 
        0.3108 
        0.2355 
        0.2145 
        0.2065 
        0.2551 

 
 
Since the wavelet ‘db4’ has the largest value of the correlation  among all the wavelets under 
consideration, it was chosen as the basis in the analysis. The rotor bar breakage faults manifest at 
frequencies mentioned in Section 4. The wavelet scales are calculated by substituting these frequencies 
in place of the pseudo-frequency  in Eq. (5). In DWT, these scales correspond to decomposition 
levels  and . 
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Wavelet decomposition has been performed on the acquired data and detail coefficients corresponding 
to levels  and  are considered for symbolic analysis. As typical examples, the detail coefficients [1] 
are shown in Fig. 2, where the top and bottom plates correspond to profiles of wavelet coefficients for 
test #1 (healthy motor) and test #6 (faulty motor), respectively. The wavelet coefficients are 
significantly different from each other and hence the choice of ‘db4’ is appropriate as it is capable of 
distinguishing between healthy and faulty motors. 
 

 
 

Fig. 2. Plot of Discrete Wavelet Coefficients. 
 
 

The alphabet size  was chosen to be eight. The detail coefficients for test #1 (healthy motor) are 
stacked to form a set of scale series data that is partitioned under the maximum entropy (ME) criterion 
[13] as shown in Fig. 3. This partition remains invariant in the further analysis for faulty conditions. 
With the ME partition generated above, symbol sequences are generated from wavelet coefficients for 
all remaining runs, i.e., test #2 to test #10. Histograms of probability mass functions of these symbol 
sequences are obtained as statistical patterns that indicate evolution of fault growth. Examples are 
shown in Fig. 4 and Fig. 5 that are histograms of the probability mass functions for test #1 and test #6, 
respectively. 
 

 
 

Fig. 3. Maximum Entropy (ME) Partition of DWT Coefficients. 
 



Sensors & Transducers Journal, Vol. 94, Issue 7, July 2008, pp. 150-160 

 158

 

 
 

Fig. 4. Probability Mass Function (PMF) for Test #1 (Healthy Motor). 
 

 

 
 

Fig. 5. Probability Mass Function (PMF) for Test #6 (Faulty Motor). 
 

 
It is seen in Fig. 4 and Fig. 5 that the probability distributions of the two tests differ from each other. 
To quantify the difference, the relative entropy or Kullback-Liebler distance [14] between the 
distributions has been used as a measure, 
 
 

 , (10)

 
where  is the probability of symbol  in the distribution  distribution corresponding to test # ; and 

 represents the reference distribution corresponding to test #1, which is uniform as a consequence of 
maximum entropy partitioning [13]. Consequently, ’s are identically equal to  because  

8|| =Σ  is selected in these tests. It is noted that usage of relative entropy as anomaly measure is not 
unique; alternative definitions of anomaly measure have been successfully demonstrated in 
literature [4], [5]. 
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Tests #1 through #5 correspond to five different identical healthy motors while tests #6 through #10 
correspond to five similar motors after a single rotor bar was (apparently) identically damaged in each 
case. The anomaly measures of tests #1 through 5 are very small and the measures are relatively large 
for tests #6 through #10. The anomaly measures obtained for ten different tests are depicted in Fig. 6, 
where anomaly measures of the healthy motors are small ( ), which is quite distinct from faulty 
motors ( ). Therefore, it is inferred that the wavelet-based symbolic approach is capable of 
distinguishing between healthy and faulty motors. In this case, both probabilities of missed detection 
and false alarms are very low. 
 
 

 
 

Fig. 6. Anomaly Measure of Experimental Runs. 
 
 

6. Summary and Conclusions 
 
This paper presents a wavelet-based symbolic dynamic approach [3][13] for detection of both 
gradually evolving and abrupt faults. This approach makes use of discrete wavelet transform 
coefficients of the time-domain signal with appropriate choices of the wavelet basis and scales. Then, 
the sequences of wavelet coefficients are coarse-grained into symbol sequences under partitions 
generated by the maximum entropy scheme. Histograms of probability mass functions are generated 
from symbol sequences as statistical patterns of fault evolution. The Kullback-Leibler distance [14] 
between the statistical patterns (i.e., probability distributions) has been used as a measure of 
anomalous behavior to detect a fault. 
 
It has been observed that the intelligent sensing method, presented in this paper, is capable of 
distinguishing the experimental results on a healthy motor from those on a faulty motor with a 
damaged rotor bar. The computed measures of anomaly are located in distinct frequency bands, which 
alleviate the issue of false detection. 
 
Results of this investigation suggest that the wavelet based symbolic dynamic approach is a viable 
analytical tool of intelligent sensing especially for identification of faults or anomalies that have small 
signatures. However, further theoretical and experimental research is necessary before its industrial 
application as a part of the Instrumentation & Control system. From this perspective, future research is 
recommended in the following areas: 
• Theoretical research on alternative (e.g., Hilbert transform based [15]) methods for partitioning the 

data sequences into symbol sequences; 
• Application to other types of motor faults such as bearing and stator winding degradation; 
• Application to health monitoring and remaining life prediction under varying load conditions. 
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