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a b s t r a c t

Carbon monoxide (CO) dramatically reduces the performance of a fuel cell stack if not remediated. Reme-
diation generally requires parasitic bleeding of a small fraction (<5%) of air into the fuel stream to promote
oxidation of the CO and use of a platinum-ruthenium or other noble metal based catalyst. For enhance-
ment of system efficiency, air bleed should be controlled using real-time feedback of CO level in the
feed-stream. In this paper, a recently reported data-driven pattern identification method, called Symbolic
Dynamic Filtering (SDF), is applied for on-line sensing of CO content in an impure reformed hydrogen
fuel stream. A small fuel cell, fuelled by a diverted stream of reformate, is used as a CO sensor. CO level
uel cell
EFC
eformation
ymbolic dynamics

is determined through time series analysis of the dynamic current response of the sensor cell due to
load oscillations. The pattern identification algorithms are built upon the underlying concepts of Symbolic
Dynamics, Information Theory and Probabilistic Finite State Machines. The effect of temperature on sensitiv-
ity was analyzed, and results demonstrate the efficacy of CO sensor under different operating conditions.
The sensitivity of the CO sensor can be tailored for a particular application by changing the type of catalyst,
its loading and operation temperature. A similar approach is now being used to develop online sensors
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. Introduction

Polymer electrolyte fuel cells (PEFCs) are widely viewed as a
romising candidate for future portable, stationary and automotive
pplications [1]. In a PEFC, hydrogen and oxygen react electrochem-
cally to produce electricity, water and heat. PEFCs can be operated

ith neat hydrogen or with hydrogen generated by reformation of
rganic chemicals such as ethanol, methanol and natural gas. Due to
ack of infrastructure for hydrogen, reformation of natural gas is an
ttractive option for stationary power applications. After reforma-
ion and CO cleanup, reformed gas mixtures still typically contain
0–100 ppm of CO, which is well known to reduce performance in
EFCs.

Vogel et al. [2] reported the mechanism of CO poisoning, by
hich CO chemisorbs on platinum (Pt) sites, inhibiting hydrogen
dsorption. CO is more strongly bonded to Pt than hydrogen, and
as a greater voltage potential required for oxidation than hydro-
en. Carbon monoxide, even in small concentrations, is sufficient
o cover nearly the entire electrode, which inhibits the reaction

∗ Corresponding author. Tel: +1 814 865 0060; fax +1 814 863 4848.
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fuel cell phenomena, such as flooding and catalyst degradation.
© 2008 Elsevier B.V. All rights reserved.

f hydrogen at anode. Very rapid oxidation of hydrogen occurs at
emaining sites or holes in the compact monolayer of adsorbed CO.
urface coverage of CO, �CO, is a function of surface potential as
ell as partial pressure of CO. Polarization (voltage) loss due to CO
oisoning in phosphoric acid fuel cells was studied by Dhar et al.
3,4].

It was reported that CO adsorption is strongly favored at low
emperature due to higher negative value of standard entropy and
tandard free energy for CO adsorption. Zhang et al. [5] found that
O poisoning is aggravated with an increase in flow rate, while

ncreased oxygen pressure reduces poisoning due to increased CO
xidation. The effect of operating temperature, pressure and rel-
tive humidity on CO poisoning can be found elsewhere in Refs.
6,7].

Lee et al. performed electrocatalysis of CO poisoning on Pt/C,
tSn/C and PtRu/C electrodes in PEFCs [8]. The best catalyst to mit-
gate CO poisoning was found to be a Pt/Ru combination, which
s confirmed by many other studies [9–12]. Gottesfeld and Pafford

13] suggested a novel method of restoring the performance of a
O poisoned fuel cell when the feed stream containing a maximum
f 500 ppm of CO was injected with 2–5% oxygen, thus providing
n oxidative surface environment for CO oxidation reaction. This
itigative approach is known as air bleeding, but is parasitic and

http://www.sciencedirect.com/science/journal/09254005
mailto:mmm124@psu.edu
dx.doi.org/10.1016/j.snb.2008.06.057
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educes overall performance. For air bleeding to be efficient, precise
ystem control is needed, since CO output from reformer system is
ot constant, depending on operating conditions. Additionally, the
oist hydrogen oxygen mixture is potentially explosive. Several

ther innovative methods for the mitigation of CO poisoning has
een proposed in the literature [14–16].

Springer et al. [17] described a mathematical model of CO poi-
oning for calculation of CO and hydrogen coverage on the anode
f a fuel cell. It was shown that even a small increase in the rate of
O oxidation could have large impact in lowering the polarization

osses. Baschuk et al. reviewed CO poisoning literature for differ-
nt CO poisoning modeling approaches and mitigative methods
18]. They reported the lack of consideration of transport phenom-
na and the effect of oxygen cross-over in existing PEFC models.
non-isothermal, multidimensional mathematical model with CO

oisoning effects was developed by Baschuk et al. [19] by appli-
ation of conservation laws to the diffusion media, catalyst layer
nd polymer electrolyte. The CO electro-oxidation rate was found
o be negligible at low surface potential. At higher surface potential,
urrent density was observed to increase due to increased electro-
xidation of CO.

Due to the current unavailability of real-time accurate mathe-
atical models, several techniques have been reported in literature

or the measurement of CO and are summarized in Table 1. These
echniques include infrared absorption, sintered tin oxide, elec-
rochemical, copper chloride and dynamic response sensors [20].
nfrared sensors [21,22] based on absorption spectroscopy are
ighly accurate to the ppm level but they are voluminous and hence
ot suitable for portable fuel cell applications. They also have large
ost attached to them due to the use of infrared source and detec-
or. Tin oxide sensors measure the change in the resistance after
eduction of CO, as a measure of CO level. They consume high
ower due to heating requirements to maintain the operating tem-
erature around 300 ◦C, but they are cross-sensitive to hydrogen.
lectrochemical sensors [20,23,24] are generally amperometric, in
hich the signal comes from the measurement of the current pro-
uced by the electrochemical oxidation of carbon monoxide. The
rice of electrochemical sensors is low and they have compact
nd reliable operation. However, they are cross-sensitive to the
ydrogen and hence cannot be used with reformate gas. Another
hemi-resistance based CO sensor using copper chloride film was
eveloped by Holt et al. [25] for measuring CO level in reformate
treams. But it is cross-sensitive to H2O and cannot be used for
eformate applications, as reformate typically contains 10% mois-
ure. Sensors based on analysis of dynamic current response have
een recently suggested in literature [26–28] that are compact,

ow cost sensors, and can even be used in a hydrogen containing
nvironment. However, the limitation of these sensors is that their
erformance depend on the moisture content in the fuel stream.

Wal et al. [23] tested the stability of electrochemical sensors and
eported that response of the electrochemical sensor deteriorates
f operated over a long period with dry membrane. For stable oper-
tion it was necessary to operate sensor with a water reservoir. In
nother approach, Kirby et al. [26] proposed to use pattern recogni-
ion for the reduction in current at a fixed cell potential to measure
O content. The reduction in current was obtained by cycling cell
etween reformate stream (poisoning) and humid air (recovery). It
as observed that reduction in Pt loading from 0.1 to 0.005 mg/cm2

ncreased CO poisoning and reduced the time to reach poisoned
teady state at 50 ppm CO, from 10 min to 2 s. Further reduction in

t loading was found to result in unstable sensor output. Mukundan
t al. developed a low temperature CO sensor based on differential
oisoning of electrodes [27]. Planje et al. [24] described a method
or measurement of CO from the current response. A fuel cell with
ater reservoir at the cathode for constant humidification of mem-
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rane was used as CO sensor. The CO sensor was cycled through
he measurement (0.35 V) and cleanup (1 V) mode by changing the
node voltage measured with respect to the cathode. In the mea-
urement mode CO adsorption was allowed to occur over an 800 ms
eriod. The value of cell current at the end of 800 ms was measured
o find CO ppm level from the mathematical model. In the cleanup

ode, the adsorbed CO was removed from the anode by increasing
he potential applied at the anode.

In fuel cell stacks and systems, there is still an urgent need for
on-intrusive, robust, rapid, compact and inexpensive sensors to
nable both stable performance and extended lifetime operation
f stack. Achieving this goal is complicated by the desire to obtain
ctive control with a minimal number of sensors. In a stack, a lim-
ted number of basic physical signals are available (e.g. voltage,
urrent, temperature, and manifold pressure). The thermophysical
nd electrochemical processes involved are highly coupled. Fur-
her, it is impractical to apply many of the diagnostic tools which
re used to study single cells in a laboratory environment to a full-
ized stack. With the above constraints, sensors based on analysis
f current response [26–28] have been recently suggested in liter-
ture that are compact, low cost sensors, and can even be used in a
ydrogen containing environment.

Along this line, this paper reports development and experimen-
al validation of a dynamic current response sensor based on a novel
attern identification tool, called symbolic dynamic filtering (SDF)
29] for measurement of CO in the fuel stream [28]. SDF-based pat-
ern recognition algorithms have been experimentally validated for
eal-time execution in different applications, such as electronic cir-
uits [30] and fatigue damage monitoring in polycrystalline alloys
31,32]. It has been shown that SDF yields superior performance
n terms of early detection of anomalies and robustness to mea-
urement noise by comparison with other existing techniques such
s Principal Component Analysis (PCA) and Artificial Neural Net-
orks (ANN) [30,31]. The proposed CO sensor based on SDF analysis

f dynamic current response can be used to determine the con-
rol strategy for the reformer output. It will provide feedback for
ir bleeding to determine the amount of air in the reformate for
ontrolling sporadic overshoots in the CO level. It can also provide
eedback to control the output level of the reformer. The sensor is
ot cross-sensitive to hydrogen in the reformate.

This paper presents development of a CO sensor for fuel cell
pplications and demonstrates the efficacy of symbolic dynamic
ltering method for CO sensing. In this paper, the operation of
O sensor was validated in an experimental setup of an electro-
hemical system using certified hydrogen gas bottles premixed
ith carbon monoxide. Analysis of the effect of change in opera-

ion temperature on the sensitivity of the developed CO sensor is
resented.

. Operating principle of the developed CO sensor

This section presents the operating principle of the developed
nline CO sensing method in polymer electrolyte fuel cells. For most
ommercial applications and compact design, a fuel cell stack of
everal single cells connected in series is utilized [1]. In a fuel cell
tack in series, the total current is same for each cell and is propor-
ional to active area of each cell. Fig. 1 shows schematic of a PEFC
tack operating on reformate. Reformate feed contains a mixture
f H2, CO2, N2 and typically a small level of CO. Control of humid-

fication of PEFC stack temperature and coolant flow rate plays a

ajor role in water management, which has a strong effect on the
erformance of the stack.

Fig. 2 explains the mechanism of CO poisoning at the anode
f PEFC. Hydrogen and carbon monoxide present in the reformate
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Table 1
Summary of CO sensing methods

Method Physical principle Advantages Disadvantages References

Infrared absorption Absorption spectroscopy High accuracy, rapid response High cost, large system [21,22]
Tin oxide Chemi-resistance Compact, low cost, rapid response High power consumption, cross-sensitive to H2
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algorithms based on symbolic dynamic filtering.

Symbolic dynamic filtering (SDF) includes preprocessing of time
series data using the wavelet analysis [33], which is well suited
for time-frequency analysis of non-stationary signals and enables
noise attenuation and reduction of spurious disturbances from the
lectrochemical Amperometry Compact, low cost, ra

ynamic response Pattern recognition Low cost, tolerant wit
opper chloride Chemi-resistance Rapid response, tolera

iffuse through the porous gas diffusion layer (GDL) before reach-
ng the anode catalyst layer. Carbon monoxide forms a stronger
dsorption bond and covers large fraction of electrode surface thus
reating a compact monolayer. The adsorption of hydrogen occurs
t the remaining sites left unoccupied by CO, which is followed by
he rapid hydrogen oxidation reaction. However, voltage potential
enerated due to the hydrogen oxidation reaction is not sufficient
o oxidize CO. If the anode over-potential is greater than 0.4 V, CO
xidation occurs at a higher rate, creating more sites for H2 oxida-
ion.

The behavior of a complex dynamical system, such as a fuel cell
tack, can change due to the development of small anomalies (e.g.,
O poisoning). In this regard, the anomaly in a dynamical system can
e defined as deviation from the nominal condition that is viewed as
he desired, healthy behavior. As discussed in the previous section, it
s often difficult to rely on physics based modeling for identification
f behavioral patterns in complex system, because of the inability
o develop models with requisite accuracy and precision. Hence the
roblem of identification of statistical patterns, which constitutes
he dynamical characteristics of the system, can be formulated in
erms of observation based estimation of the process variables. In
bsence of a feasible mathematical model, the inherent dynamics
nominal or anomalous) of a complex system can be inferred from
ime series data generated from sensing devices that are capable of

apturing the essential details of the system.

Therefore, a CO sensor has been developed for online monitoring
f the CO content in the reformate stream of a fuel cell stack. The
O sensor as shown in Fig. 1 is actually a single 5 cm2 fuel cell with
.4 mg/cm2 Pt loading on both cathode and anode (for details please

Fig. 1. CO sensor b
sponse Cross-sensitive to H2, freezes if water reservoir
used, unstable with dry membrane

[20,23,24]

Fixed value of RH [26–28]
th H2 Cross-sensitive to H2O [25]

efer to Section 3). This sensor operates on a humidified reformate
ydrogen and air stream diverted from the main fuel cell stack.
ue to the presence of CO in the reformate stream, the sensor is
oisoned and reaches a steady state at a constant cell temperature,
umidity and flow rate. A drop rate of 0.2 mA/cm2/min in the cell
urrent density, is considered as an indication of steady state. In this
oisoned condition, the steady state current response of the sensor

s monitored under an external excitation of voltage pulses for the
urpose of CO sensing. The current response is recorded in terms
f time series data and analyzed using the pattern identification
Fig. 2. CO poisoned anode of PEFC.

ased on SDF.
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aw time series data without any significant loss of pertinent infor-
ation [34]. The wavelet-transformed data is partitioned using the
aximum entropy principle [34] to generate the symbol sequences.

ubsequently, statistical patterns of evolving anomalies are iden-
ified from these symbolic sequences through construction of a
probabilistic) finite-state machine [29] that captures the system
ehavior by means of information compression. The state probabil-

ty vectors, which are derived from the respective state transition
robability matrices of the finite state machine under the nomi-
al and anomalous conditions, yield the statistical patterns of the
volving anomalies.

These algorithms analyze the time series data of current
esponse of the fuel cell sensor and generate pattern vectors that are
he probability distributions of the states of a finite state machine
for details please refer to Appendix A). In this procedure, the
attern vectors are generated from the current response of the
ensor at the nominal condition, i.e., 0 ppm CO, and from the corre-
ponding current response at different anomalous conditions, i.e.,
O > 0 ppm. The statistical deviation of these pattern vectors from
he nominal condition, is termed as anomaly measure that is an
ndicator of the CO level in the feed stream as it measures the devia-
ion of system from healthy to an anomalous condition. Calibration
f the sensor is required prior to measurement of CO using this
ynamic system response approach. The details of implementation
f the CO sensor in a fuel cell stack are provided in Section 3. The fol-
owing sections clarify these concepts by providing the necessary
etails.

. Experimental validation of the concept

In order to validate the concept of CO sensing in a fuel cell stack
ystem based on symbolic dynamic filtering, a set of experiments
ere performed on the laboratory protocol of a single small CO

ensor.

.1. Experimental setup

Experiments were performed using a 850 C fuel cell test sta-
ion (Scribner Associates Inc.) and a cell with active area of 5 cm2

ith serpentine channels. A commercially available 5 cm2 mem-
rane electrode assembly (MEA) with Pt loading of 0.4 mg/cm2 was
sed in the cell. The MEA and SGL 10 BB series gas diffusion layer,

ere compressed in the cell. Both air and hydrogen streams were
umidified by passing the dry gases through the separate humidi-
ers. Anode and cathode humidifier temperatures were controlled
o meet a specific relative humidity value at the cell operating tem-
erature.

(
u
t
t
a

Fig. 3. Schematic of the exp
Fig. 4. Polarization curves at 0, 10, 50, 100 ppm CO at 65 ◦C.

Fig. 3 shows the experimental arrangement used in the valida-
ion of the sensor. As described earlier, the CO sensor is actually
single 5 cm2 fuel cell with 0.4 mg/cm2 Pt loading on both cath-

de and anode. The cell temperature was kept constant during
he entire set of experiments. For nominal case, ultra high purity
ydrogen was used and experiments were performed with this pure
ydrogen. For anomalous cases, i.e., with hydrogen containing CO,
ertified hydrogen gas bottles with premixed CO, supplied by GTS
nc. were used. Flow rates were controlled with calibrated mass
ow controllers.

In these experiments, the sensor is poisoned for anomalous
ases and reaches a steady state at a constant cell temperature,
umidity and flow rate. A drop rate less than 0.2 mA/cm2/min in
urrent density was considered as a criterion to indicate attain-
ent of steady state. Once the steady state is reached, the CO sensor

s excited with an external excitation of voltage pulses and the
orresponding current response of the sensor is measured for the
urpose of CO sensing. In order to generate input voltage pulses
or exciting the CO sensor, a circuit with potentiostats to control
he sensor voltage was used. A time delay relay was used to switch
he load on the sensor between two limits and thus controlling the
ulse time for which it maintains the cell voltage at 0.65 and 0.45 V
see Section 3.2 for further details). Current response was measured

sing a Hall sensor. The current and voltage signal were passed
o IOtech Inc. data acquisition (DAQ) system. Using this procedure
he current response in terms of time series data was generated
t the nominal condition (i.e., CO = 0 ppm) and also at different

erimental test setup.
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Fig. 5. Current density vs. time at a fixed cell voltage of 0.6 V and 65 ◦C.

nomalous conditions (i.e., CO > 0 ppm). These time series data
ets of the current response were analyzed using the pattern iden-
ification algorithms based on symbolic dynamic filtering.

.2. Measurement and data analysis

In all experiments, the anode stoichiometry was set to 2 and that
f cathode was set to 3 at a current density of 1 A/cm2, so therefore
epresents a constant flow rate condition. During the experiment,
he cell temperature was maintained at 65 ◦C. Humidification tem-
eratures were maintained such that RH at anode and cathode were
8% and 100% RH, respectively.

The polarization curves and transient current density curves
re presented here to illustrate the effect of CO poisoning on fuel
ell performance and to verify the experimental test setup. The
olarization curves in Fig. 4 indicate the expected drop in perfor-
ance with increasing CO level. Polarization curves were obtained

y using a current scan method with a time period of 1 min at
ach step, which allowed for stabilization of cell after the load was
hanged. Finer steps were used in the initial low current density
egion marked by steep changes. It can be inferred from the polar-

zation curves that largest drop of 60% in power occurs at 10 ppm
evel at 0.61 V, followed by a further drop at 50 and 100 ppm level.
or the platinum loading used (0.4 mg/cm2), the sensor reaches
aturation above 100 ppm of CO.

Fig. 6. Voltage pulse applied to the fuel cell.

p
C
t

u

F
1

ig. 7. Current response of the fuel cell to the voltage pulse at 65 ◦C for 0, 5 and
0 ppm CO.

At each ppm level, the fuel cell was poisoned completely
efore subjecting it to voltage pulsations for recording the current
esponse. Fig. 5 shows the transient response of the fuel cell at a
xed cell voltage of 0.6 V. The time required to reach a completely
oisoned steady state is a function of catalyst loading, CO level and
emperature of operation. At a CO level below 10 ppm, a large time
>5 h) is required to achieve a steady state.

In order to generate the time series data of current response for
ach CO level, it is necessary to perturb the fuel cell system using a
oltage pulse when fuel cell reaches a poisoned steady state. During
oisoning, the cell voltage was maintained constant at 0.6 V. Once
he cell reached steady state, it was excited with an input voltage
ulse which varies cell potential cyclically from 0.65 to 0.45 V with
period of 1.2 s using rheostats and a time delay relay switch. Fig. 6

hows the voltage pulse used in the experiments. The input voltage
xcitation was the same for the different CO levels as well as for
he healthy (i.e. pure H2 or 0 ppm CO) system. The step change in
oltage from 0.65 to 0.45 V increases the anode overpotential and
ccelerates the CO oxidation reaction. However, CO poisoning is
dynamic phenomena in which both adsorption and desorption

ccur simultaneously. When the applied cell voltage is 0.45 V, CO
oisoning is still occurring along with removal of CO by oxidation.

onsequently, the current at 0.45 V for a poisoned cell is lower than
hat for an un-poisoned cell.

During data acquisition, a sampling frequency of 200 Hz was
sed. A time series containing a total of 10 000 data points was

ig. 8. Current response of the fuel cell for the voltage pulse at 65 ◦C for 20, 50 and
00 ppm CO.
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Fig. 9. Probability measure plot at

ollected over 50 cycles. The number of data points are governed
y a stopping rule [35], which is required to find a lower bound on
he length of the symbol sequence. Sampling frequency and pulse
ime were optimized for minimal sensing time to generate a suf-
cient length of data. The time series data were further analyzed
sing the symbolic dynamic filtering method (Appendix A) to detect
he anomaly measure at each CO level. After each experiment, the
oisoned membrane was recovered by passing a pure hydrogen
tream for 2 h. Recovery was confirmed by comparing the polariza-

ion curves obtained after recovery and the one obtained with pure
ydrogen.

The dynamic current response of the cell under voltage exci-
ation for 0, 5 and 10 ppm CO levels is shown in Fig. 7. With

ig. 10. Normalized anomaly measure plot at 65 ◦C for 0, 5, 10, 20, 50 and 100 ppm
O.

s
o
o
0

F
0

or 0, 5, 10, 20, 50 and 100 ppm CO.

ncreased CO ppm in the feed stream, the poisoning effect increases,
hich leads to a drop in the fuel cell current. When the voltage
as reduced from 0.65 to 0.45 V, an overshoot in the current was
bserved as shown in Region b of Fig. 7. This overshoot was due
o an initially higher transient oxygen concentration present in the
atalyst layer, in Region a. Overshoot in the current asymptotes to
steady value corresponding to the CO level in the feed stream

s shown in Region c. In this region, cell voltage was 0.45 V, and
urrent density is a function of CO content.

When the cell voltage was restored to 0.65 from 0.45 V, an under-

hoot, shown by Region d, in the current was observed because
f the initially lower oxygen concentration in Region c. The lower
xygen concentration originates from the higher current density at
.45 V. Current increased to a steady value with a further increase

ig. 11. Current response of the proposed CO sensor to the voltage pulse at 27 ◦C for
, 5 and 10 ppm CO.
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ig. 12. Current response of the proposed CO sensor to the voltage pulse at 27 ◦C for
0, 50 and 100 ppm CO.

n the oxygen concentration, as shown in Region e. Fig. 8 shows the
urrent response of the fuel cell under same voltage excitation for
0, 50 and 100 ppm CO level at 65 ◦C. Notice that at a given tem-
erature of operation, the response pattern at lower ppm level is
ifferent from the one obtained at higher ppm level. It is therefore
ppropriate to use a pattern recognition method to identify the CO
evel based on the changes in the current density.

.3. Pattern recognition using symbolic dynamics
Time series data sets of current density obtained by the voltage
ulse excitation of the fuel cell at the nominal and different anoma-

ous conditions were analyzed using the symbolic dynamic filtering
lgorithms for CO sensing as described in Appendix A. The nominal

4

d
A

Fig. 13. Probability measure plot at 27 ◦C
tuators B 134 (2008) 803–815 809

ondition, i.e., 0 ppm CO, was set as a reference for data analysis
t different anomalous conditions. As described in Appendix A, the
ominal data was analyzed using wavelet based maximum entropy
artitioning scheme to generate the symbol sequence. The partition
egments are not equal in size; however, all symbols have equal
robability under nominal condition as a consequence of maxi-
um entropy partitioning. Subsequently, a finite state machine was

onstructed using alphabet size |˙| = 8 and window length D = 1.
hus total number of PFSM states are n = |˙|D = 8. With this selec-
ion of parameters, the PFSM yields very fast computation and low

emory requirements and the algorithm was capable of sensing CO
ontent at different anomalous conditions. The symbol sequence
as passed through the finite state machine to generate the nomi-
al state probability vector q. (Note: The partitioning structure and
he finite state machine generated at the nominal condition, i.e.
ero ppm CO, serves as the reference frame for data analysis at
ubsequent anomalous conditions.)

Time series data for anomalous conditions, i.e., CO > 0 ppm,
ere analyzed and converted to the corresponding symbol

equences using the partitioning generated at the nominal con-
ition. These symbol sequences were then passed to the finite
tate machine constructed at the nominal condition to generate the
orresponding state probability vectors, such that the probability
ector p was calculated for each CO level. The statistical distance
Euclidean norm in this case) between the probability vectors of the
ealthy system with pure hydrogen and an anomalous system with
O > 0 ppm gives the anomaly measure value at that particular CO

evel (see Eq. (A.8)).
. Results and discussion

Histograms in Fig. 9 show change in the state probability vectors
ue to increasing CO level for the operating temperature of 65 ◦C.
t the nominal condition (pure hydrogen) there was a uniform dis-

for 0, 5, 10, 20, 50 and 100 ppm CO.
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ig. 14. Normalized anomaly plot at 27 ◦C for 0, 5, 10, 20, 50 and 100 ppm CO.

ribution of probability among the states, as a consequence of the
aximum entropy partitioning. As the anomaly level, i.e., CO con-

ent, in the system increased, the probability distribution changed
rom the nominal condition which fundamentally indicates the

ynamic response characteristic of the CO level. Therefore, differ-
nt anomalous conditions are represented by different probability
istributions as shown in the histograms in Fig. 9.

ig. 15. Current response of the proposed CO sensor to the voltage pulse at 90 ◦C for
, 50 and 100 ppm CO.

1
d
m
(
c

t
m
s
I
t
m
u
d
u
u
p

4

t
C
a

Fig. 16. Probability measure plot at 9
Fig. 17. Normalized anomaly plot at 90 ◦C for 0, 50 and 100 ppm CO.

Fig. 10 shows the normalized anomaly measure plot for different
O levels for the operating temperature of 65 ◦C. A large increase

n the anomaly measure occurs as system moves from 0 to 10 ppm
O. Further increase in the CO level results in a more subtle drop

n the performance and hence anomaly curve asymptotes beyond
0 ppm, which corresponds to a CO saturated catalyst layer. A large
rop in the system performance is associated with a large anomaly
easure in the system. The maximum value of anomaly measure

e.g. the maximum value of CO level detectable) can be adjusted by
hanging the system catalyst loading, type, or temperature [28].

The anomaly measure curve obtained in Fig. 10 has key impor-
ance in the calibration of the CO sensor. It can be used for

easuring the CO level when the sensor is fed with the hydrogen
tream containing an unknown CO level (i.e., the inverse problem).
n the inverse problem, the anomaly measure is calculated from
he sensor response for the unknown CO level. From the anomaly

easure in the system, we can calculate the unknown CO level
sing the interpolation from the anomaly measure plot. However,
etailed statistical analysis of the inverse problem in presence of
ncertainties is still an area of active research and is currently
nder investigation [32]. This work would be reported in future
ublications.

.1. Effect of operating temperature
CO poisoning is strongly affected by temperature, as tempera-
ure of operation affects the rate of adsorption and desorption of
O on the anode of the sensor. CO adsorption is strongly favored
t room temperature, but CO sticking reduces with increasing

0 ◦C for 0, 50 and 100 ppm CO.
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Fig. 18. Concept of symbolic dyna

emperature. The temperature of operation thus changes the sen-
itivity of the sensor, particularly at higher CO levels, where the cell
aturates beyond 100 ppm CO.

Fig. 11 shows the response of the fuel cell for 0–10 ppm CO at
7 ◦C to the voltage pulse that was similar to the other experiment at
5 ◦. The response of the sensor to the voltage pulse for 20–100 ppm
O level at 27 ◦C is shown in Fig. 12. From these figures, it is clear
hat the sensor output is saturated for any CO level above 5 ppm
t room temperature. Thus, room temperature operation with the
ested catalyst loading can be used for a highly sensitive sensor in
he low ppm range.

This is also reflected in the probability plot shown in Fig. 13,
here system moves from uniform probability distribution for all

tates at nominal condition to almost a delta distribution at a sin-
le state for anomalous conditions beyond 5 ppm CO. Fig. 14 shows
he normalized anomaly plot obtained after calculation of anomaly

easure from the probability measures at 27 ◦C. As mentioned ear-
ier, at room temperature, the anode catalyst becomes saturated

ith CO at low levels. Thus, the anomaly plot asymptotes almost

fter the 5 ppm level. Beyond 10 ppm CO, there is practically no
ifference between the anomaly measure.

In another experiment, designed to increase the range of CO
ensitivity, the cell temperature was raised to 90 ◦C. At this higher

Fig. 19. An example of maximum entropy partitioning.

e
5

f
b
t
r
t
t

ltering for pattern identification.

emperature CO sticking on the catalyst is reduced, which leads to
eduction in the CO poisoning effect. An automatic voltage con-
roller was used to generate the voltage pulses as described before.
he time period of voltage pulse was increased to 2 s in order to be
ufficient for the voltage controller to bring the cell voltage to the
et value. The experiment at an elevated temperature was intended
o study the sensitivity between 50 and 100 ppm CO and hence it
as carried out for these two CO levels only.

Fig. 15 shows the response of the sensor for the voltage
ulse (0.65–0.45 V), described in earlier section. Peaks in current
esponse due to gas transport limitations are found to be reduced
ue to the increased vapor pressure at 90 ◦C, which reduces the
xygen mole fraction.

Fig. 16 shows the probability distribution plot at 90 ◦C, for
–100 ppm CO range. The probability distribution at 50 ppm CO

evel is much different from the 100 ppm CO level. The normalized
nomaly plot obtained after pulsating the cell voltage is shown in
ig. 17. Increased differential current between 50 and 100 ppm CO
evel, reflects the increased sensitivity between the two CO lev-
ls. Lower anomaly measure will be obtained at ppm levels below
0 ppm, which was not shown here.

It should be noted that due to the relatively simplistic nature of
uel cell response, peak-to-peak data or other correlations can also
e used to achieve similar results predictive of CO levels. However

he development of a CO sensor based on this approach is more
obust than some other approaches and serves to demonstrate
he possibilities of its use for more complex, longstanding elec-
rochemical system sensing issues such as life time degradation.

Fig. 20. Example of Finite State Machine with D = 2 and ˙ = {˛, ˇ}.
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ngoing efforts at Penn State Fuel Cell Dynamics and Diagnostics
ab (FCDDL) are aimed at development of other sensors for online
ealth monitoring of fuel cell stacks.

. Conclusions and future work

This paper presents formulation and experimental validation of
CO sensor system for fuel cells based on an anomaly detection

echnique. The underlying algorithms are built upon a data-driven
attern identification tool, called symbolic dynamic filtering (SDF)
29]. The CO sensor will be useful in the fuel cell application where
he feed stream is reformate with traces of CO. The response of the
ensor to a step change in voltage was used to generate the dynamic
urrent response data that is analyzed using SDF to generate statis-
ical patterns for nominal and anomalous conditions. The difference
etween these patterns provide an indication of the CO content in
he reformate stream and appropriate mitigative strategy can be
mployed.

Such a sensor is non-intrusive and offers a robust method of
easurement. It can be made into a small, easily replicable and

nexpensive component. Unlike electro-chemical sensors it does
ot have cross-sensitivity to hydrogen. It can have tailored mea-
urement range for a given CO levels, by changing catalyst type,
atalyst loading and temperature of operation. Increased temper-
ture of operation results in a higher maximum CO levels sensing
ange, whereas a room temperature sensor can be used with high
ensitivity in the extremely low ppm range. After calibration it can
e used in the dilute hydrogen streams.

It should be noted that an alternate approach based on normal-
zation of current values could also be used for calibration of the
ensor. However, the purpose of this investigation is to develop and
emonstrate a method of CO sensing in electrochemical systems
ased on dynamic response of the sensor. This method of sensing
radually evolving anomalies in the system is now being extended
o identify several other important phenomena like flooding and
atalyst degradation.

At present the sensing time for CO measurement is on the order
f a few minutes, due to the time required to reach the steady state
or the 5 cm2 cell at 0.4 mg/cm2 Pt loading. Use of Pt loading as
mall as 0.005 mg/cm2 and much smaller surface area electrode can
educe the time required to reach steady state to around a second.
ll of the data acquisition, pulsing and anomaly calculation can
e embedded into a compact rapid response sensor for practical
pplication.
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ppendix A. Symbolic dynamic filtering concept

This section presents a brief summary of the underlying con-
epts and essential features of a recently reported data-driven
attern identification tool called symbolic dynamic filtering (SDF)
29]. The concept of SDF is built upon the principles of several
isciplines including Symbolic Dynamics [36,37], Statistical Pattern
ecognition [38], Information Theory [39] and Probabilistic Finite

tate Machines [40].

While the details are reported in recent publications [29,41,34],
he essential concepts of space partitioning, symbol sequence gen-
ration, construction of a finite-state machine from the generated
ymbol sequence and pattern recognition are consolidated here and

[

t
r
t

tuators B 134 (2008) 803–815

uccinctly described for self-sufficiency, completeness and clarity
f the paper. Fig. 18 exemplifies the partitioning of the phase space
here each block is assigned a particular symbol such that a symbol

equence is generated from the phase space at a given time epoch.
nce the symbol sequence is obtained, the next step is construc-

ion of a finite state machine [40] and generation of state probability
ectors for pattern identification. These steps are described below.

.1. Symbolic dynamic encoding

This subsection briefly describes the concepts of Symbolic
ynamics for:

1. Encoding nonlinear system dynamics from observed time series
data for generation of symbol sequences, and

. Construction of a probabilistic finite state machine (PFSM) from
symbol sequences for generation of pattern vectors as represen-
tation of the dynamical system’s characteristics.

The continuously-varying finite-dimensional model of a dynam-
cal system is usually formulated in the setting of an initial value
roblem as:

dx(t)
dt

= f (x(t), �(ts)); x(0) = x0, (A.1)

here t ∈ [0, ∞) denotes the (fast-scale) time; x ∈Rn is the state
ector in the phase space; and � ∈R� is the (possibly anoma-
ous) parameter vector varying in (slow-scale) time ts. The gradual
hange in the parameter vector � ∈R� due to possible evolution of
nomalies (for e.g., CO content in the reformate stream) can alter
he system dynamics and hence change the state trajectory.

Let ˝ ⊂ Rn be a compact (i.e., closed and bounded) region,
ithin which the trajectory of the dynamical system, governed by

q. (A.1), is circumscribed as illustrated in Fig. 18. The region ˝ is
artitioned as {˚0, . . . , ˚|˙|−1} consisting of |˙| mutually exclu-

ive (i.e., ˚j ∩ ˚k = ∅, ∀j /= k), and exhaustive (i.e., ∪|˙|−1
j=0 ˚j = ˝)

ells, where ˙ is the symbol alphabet that labels the partition cells.
trajectory of the dynamical system is described by the discrete

ime series data as: {x0, x1, x2, . . .}, where each xi ∈ ˝. The trajec-
ory passes through or touches one of the cells of the partition;
ccordingly the corresponding symbol is assigned to each point xi

f the trajectory as defined by the mapping M : ˝ → ˙. Therefore,
sequence of symbols is generated from the trajectory starting from
n initial state x0 ∈ ˝, such that:

0�s0s1s2 . . . sj . . . (A.2)

here sk �M(xk) is the symbol generated at the (fast scale) instant
. The symbols sk, k = 0, 1, . . . are identified by an index set I :
→ {0, 1, 2, . . . |˙| − 1}, i.e., I(k) = ik and sk = �ik

where �ik
∈ ˙.

quivalently, Eq. (A.2) is expressed as:

0��i0 �i1 �i2 . . . �ij
. . . (A.3)

The mapping in Eqs. (A.2) and (A.3) is called Symbolic Dynamics
s it attributes a legal (i.e., physically admissible) symbol sequence
o the system dynamics starting from an initial state. The partition
s called a generating partition of the phase space ˝ if every legal
i.e., physically admissible) symbol sequence uniquely determines
specific initial condition x0. In other words, every (semi-infinite)

ymbol sequence uniquely identifies one continuous space orbit

42].

Symbolic dynamics may also be viewed as coarse graining of
he phase space, which is subjected to (possible) loss of information
esulting from granular imprecision of partitioning boxes. However,
he essential robust features (e.g., periodicity and chaotic behavior
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f an orbit) are expected to be preserved in the symbol sequences
hrough an appropriate partitioning of the phase space [43].

Fig. 18 pictorially elucidates the concepts of partitioning a finite
egion of the phase space and the mapping from the partitioned
pace into the symbol alphabet, where the symbols are indicated
y Greek letters (e.g., ˛, ˇ, �, ı, . . .). This represents a spatial and
emporal discretization of the system dynamics defined by the tra-
ectories. Fig. 18 also shows conversion of the symbol sequence into
finite-state machine and generation of the state probability vec-

ors at the current and the reference conditions. The states of the
nite state machine and the histograms in Fig. 18 are indicated by
umerics (i.e., 1, 2, 3 and 4); the necessary details are provided later

n Appendix A.3. Although the theory of phase-space partitioning
s well developed for one-dimensional mappings [42], very few
esults are known for two and higher dimensional systems. Further-
ore, the state trajectory of the system variables may be unknown

n case of systems for which a model as in Eq. (A.1) is not known
r is difficult to obtain. As such, as an alternative, the time series
ata set of selected observable outputs can be used for symbolic
ynamic encoding as explained in the following subsection.

.2. Wavelet space partitioning

As described earlier, a crucial step in symbolic dynamic filtering
SDF) is partitioning of the phase space for symbol sequence gen-
ration [37]. Several partitioning techniques have been reported
n literature for symbol generation [44,45], primarily based on
ymbolic false nearest neighbors (SFNN). These techniques rely on
artitioning the phase space and may become cumbersome and
xtremely computation-intensive if the dimension of the phase
pace is large. Moreover, if the time series data is noise-corrupted,
hen the symbolic false neighbors would rapidly grow in number
nd require a large symbol alphabet to capture the pertinent infor-
ation on the system dynamics. Therefore, symbolic sequences

s representations of the system dynamics should be generated
y alternative methods because phase-space partitioning might
rove to be a difficult task in the case of high dimensions and pres-
nce of noise. The wavelet transform [33] largely alleviates these
hortcomings and is particularly effective with noisy data from
igh-dimensional dynamical systems [34]. As such, this paper has
sed a wavelet-based partitioning approach [29,34] for construc-
ion of symbol sequences from time series data.

In wavelet-based partitioning approach, time series data are first
onverted to wavelet domain, where wavelet coefficients are gener-
ted at different time shifts. The choice of the wavelet basis function
nd wavelet scales depends on the time-frequency characteristics
f individual signals. Guidelines for selection of basis functions and
cales are reported in literature [34].

The wavelet space is partitioned with alphabet size |˙| into
egments of coefficients on the ordinate separated by horizontal
ines. The choice of |˙| depends on specific experiments, noise level
nd also the available computation power. A large alphabet may be
oise-sensitive while a small alphabet could miss the details of sig-
al dynamics [34]. The partitioning is done such that the regions
ith more information are partitioned finer and those with sparse

nformation are partitioned coarser. This is achieved by maximizing
he Shannon entropy [39], which is defined as:

= −
|˙|−1∑

pi log(pi) (A.4)
i=0

here pi is the probability of a data point to be in the ith parti-
ion segment. Uniform probability distribution, i.e., pi = (1/|˙|) for
= 0, 1, . . . , |˙| − 1, is a consequence of maximum entropy parti-
ioning [34]. In the illustrative example of Fig. 19, the partitioning

f
p

D
c

tuators B 134 (2008) 803–815 813

ontains 10 cells (i.e., line intervals in this case), where the size of
he cells is smaller for regions with higher density of data points to
nsures an unbiased partition such that each cell is allocated equal
umber of visits at the nominal condition.

Each partition segment is labelled by a symbol from the alpha-
et ˙ and accordingly the symbol sequence is generated from the
avelet coefficients. The structure of the partition is fixed at the
ominal condition, which serves as the reference frame for symbol
equence generation from time series data at anomalous condi-
ion(s).

.3. Probabilistic finite state machine (PFSM) and pattern
dentification

Once the symbol sequence is obtained, the next step is the
onstruction of a Probabilistic Finite State Machine (PFSM) and cal-
ulation of the respective state probability vector as depicted in
he lower part of Fig. 18 by the histograms. The partitioning (see
ig. 19) is performed at the nominal condition that is chosen to be
he healthy state having no anomalies.

A PFSM is then constructed at the nominal condition, where
he states of the machine are defined corresponding to a given
lphabet set ˙ and window length D. The alphabet size |˙| is the
otal number of partition segments while the window length D
s the length of consecutive symbol words [29], which are chosen
s all possible words of length D from the symbol sequence. Each
tate belongs to an equivalence class of symbol words of length D,
hich is characterized by a word of length D at the leading edge.

herefore, the number n of such equivalence classes (i.e., states)
s less than or equal to the total permutations of the alphabet
ymbols within words of length D. That is, n ≤ |˙|D; some of the
tates may be forbidden, i.e., these states have zero probability of
ccurrence. For example, if ˙ = {˛, ˇ}, i.e., |˙| = 2 and if D = 2,
hen the number of states is n ≤ |˙|D = 4; and the possible states
re words of length D = 2, i.e., ˛˛, ˛ˇ, ˇ˛, and ˇˇ, as shown in
ig. 20.

The choice of |˙| and D depends on specific applications and the
oise level in the time series data as well as on the available com-
utation power and memory availability. As stated earlier, a large
lphabet may be noise-sensitive and a small alphabet could miss
he details of signal dynamics. Similarly, while a larger value of D
s more sensitive to signal distortion, it would create a much larger
umber of states requiring more computation power and increased

ength of the data sets. In the results section of this paper, the analy-
is of time series data sets is done using the window length equal to
= 1; consequently, the set of states Q is equivalent to the symbol

lphabet ˙. With the selection of the parameters D = 1 and |˙| = 8,
he PFSM has n = 8 states. With this choice of parameters, the SDF
lgorithm is shown to be capable of detecting the CO content in
he fuel cell stack experimental setup. However, other applications
uch as two-dimensional image processing, may require larger val-
es of the parameter D and hence possibly larger number of states

n the PFSM.
Using the symbol sequence generated from the time series data,

he state machine is constructed on the principle of sliding block
odes [36]. The window of length D on a symbol sequence is shifted
o the right by one symbol, such that it retains the most recent
D − 1) symbols of the previous state and appends it with the new
ymbol at the extreme right. The symbolic permutation in the cur-
ent window gives rise to a new state. The PFSM constructed in this

ashion is called the D-Markov machine [29], because of its Markov
roperties.

efinition Appendix A.1. A symbolic stationary process is
alled D-Markov if the probability of the next symbol depends
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nly on the previous D symbols, i.e., P(sj|sj−1 . . . sj−Dsj−D−1 . . .) =
(sj|sj−1 . . . sj−D).

The finite state machine constructed above has D-Markov prop-
rties because the probability of occurrence of symbol � ∈ ˙ on a
articular state depends only on the configuration of that state, i.e.,
he previous D symbols. The states of the machine are marked with
he corresponding symbolic word permutation and the edges join-
ng the states indicate the occurrence of a symbol �. The occurrence
f a symbol at a state may keep the machine in the same state or
ove it to a new state.

efinition Appendix A.2. Let � be the set of all states of the finite
tate machine. Then, the probability of occurrence of symbols that
ause a transition from state �j to state �k under the mapping ı :

× ˙ → � is defined as:

jk = P(� ∈ ˙|ı(�j, �) → �k);
∑

k

�jk = 1; (A.5)

Thus, for a D-Markov machine, the irreducible stochastic matrix
≡ [�ij] describes all transition probabilities between states such

hat it has at most |˙|D+1 nonzero entries. The definition above is
quivalent to an alternative representation such that,

jk ≡ P(�k|�j) = P(�j, �k)

P(�j)
=

P(�i0 · · ·�iD−1
�iD )

P(�i0 · · ·�iD−1
)

(A.6)

here the corresponding states are denoted by �j ≡ �i0 · · ·�iD−1
and

k ≡ �i1 · · ·�iD . This phenomenon is a consequence of the PFSM con-
truction based on the principle of sliding block codes described
bove, where the occurrence of a new symbol causes a transition
o another state or possibly the same state.

For computation of the state transition probabilities from a given
ymbol sequence at a particular slow time epoch, a D-block (i.e., a
indow of length D) is moved by counting occurrences of symbol

locks �i0 · · ·�iD−1
�iD and �i0 · · ·�iD−1

, which are respectively denoted
y N(�i0 · · ·�iD−1

�iD ) and N(�i0 · · ·�iD−1
). Note that if N(�i0 · · ·�iD−1

) =
, then the state �i0 · · ·�iD−1

∈ � has zero probability of occurrence.
or N(�i0 · · ·�iD−1

) /= 0, the estimates of the transitions probabilities
re then obtained by these frequency counts as follows:

jk ≈
N(�i0 · · ·�iD−1

�iD )

N(�i0 · · ·�iD−1
)

(A.7)

here the criterion for convergence of the estimated �jk, is given
n [41] as a stopping rule for frequency counting.

The symbol sequence generated from the time series data at the
ominal condition, (i.e., CO = 0 ppm), set as a benchmark, is used
o compute the state transition matrix � using Eq. (A.7). The left
igenvector q corresponding to the unique unit eigenvalue of the
rreducible stochastic matrix � is the probability vector whose ele-

ents are the stationary probabilities of the states belonging to �
29]. Similarly, the state probability vector p is obtained from time
eries data at a (possibly) anomalous condition (i.e., CO > 0 ppm).
he partitioning of time series data and the state machine structure
hould be the same in both cases but the respective state transition
atrices could be different. The probability vectors p and q are esti-
ates of the respective true probability vectors and are treated as

tatistical patterns.
Pattern changes may take place in dynamical systems due to
rogression of anomalies. The pattern changes are quantified as
eviations from the nominal pattern (i.e., the probability distri-
ution at the nominal condition). The resulting anomalies (i.e.,
eviations of the evolving patterns from the nominal pattern) are
haracterized by a scalar-valued function, called anomaly measure
tuators B 134 (2008) 803–815

. The anomaly measures are obtained as:

≡ d(p, q) (A.8)

here the d(·, ·) is an appropriately defined distance function.

.4. Summary of SDF-based pattern recognition

The symbolic dynamic filtering (SDF) method of statistical pat-
ern recognition for anomaly detection is summarized below.

Acquisition of time series data from appropriate sensor(s) vari-
ables (e.g., current response of the CO sensor) at a nominal
condition (i.e., CO = 0 ppm), when the system is assumed to be in
the healthy state (i.e., zero anomaly measure)
Generation of the wavelet transform coefficients of the data
obtained with an appropriate choice of the wavelet basis and scale
[34]
Maximum entropy partitioning in the wavelet domain at the
nominal condition (see Appendix A.2) and generation of the cor-
responding symbol sequence
Construction of the D-Markov machine and computation of the
state probability vector q at the nominal condition
Generation of a time series data sequence at another (possibly)
anomalous condition (i.e., CO > 0 ppm) and conversion to the
wavelet domain to generate the respective symbolic sequence
based on the partitioning constructed at the nominal condition
Computation of the corresponding state probability vector p
using the finite state machine constructed at the nominal con-
dition
Computation of scalar anomaly measure 	 (see Eq. (A.8)).

Capability of SDF has been demonstrated for anomaly detection
t early stages of gradually evolving anomalies by real-time exper-
mental validation. Application examples include active electronic
ircuits [30] and fatigue damage monitoring in polycrystalline
lloys [31,32]. In this regard, major advantages of SDF are listed
elow:

(i) Robustness to measurement noise and spurious signals [34]
(ii) Adaptability to low-resolution sensing due to the coarse grain-

ing in space partitions [29]
iii) Capability for small change detection because of sensitivity to

signal distortion [31] and
iv) Real-time execution on commercially available inexpensive

platforms [30,31].
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