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a b s t r a c t

This paper addresses online monitoring of fatigue damage in polycrystalline alloy structures based on

statistical pattern analysis of ultrasonic sensor signals. The real-time data-driven method for fatigue

damage monitoring is based on the concepts derived from statistical mechanics, symbolic dynamics and

statistical pattern identification. The underlying concept is detection and identification of small changes

in statistical patterns of ultrasonic data streams due to gradual evolution of anomalies (i.e., deviations

from the nominal behavior) in material structures. The statistical patterns in terms of the escort

distributions from statistical mechanics are derived from symbol sequences that, in turn, are generated

from ultrasonic sensors installed on the structures under stress cycles. The resulting information of

evolving fatigue damage would provide early warnings of forthcoming failures, possibly, due to

widespread crack propagation. The damage monitoring method has been validated by laboratory

experimentation in real time on a computer-controlled fatigue damage testing apparatus which is

equipped with a variety of measuring instruments including an optical travelling microscope and an

ultrasonic flaw detector.

& 2008 Published by Elsevier Ltd.

1. Introduction

Damage due to fatigue phenomena in polycrystalline alloys is
one of the most commonly encountered sources of structural
degradation in human-engineered complex electromechanical
systems (e.g., aircraft, electric power generation units, and
petrochemical plants). Accumulation of fatigue damage may
cause catastrophic failures, leading to potential loss of life and
expensive equipment. Therefore, it is necessary to develop
capabilities for online detection of incipient fatigue damage to
ensure safety and reliable operation of human-engineered com-
plex systems as well as for enhancement of their service life. In
the current state of the art, direct observation of fatigue damage at
an early stage (e.g., crack initiation) is not feasible due to lack of
adequate analytical models and sensing devices. Several model-
based approaches have been proposed for structural health
monitoring and life prediction of mechanical structures [1,2].
Apparently no existing model, solely based on the fundamental
principles of material physics, can adequately capture the

dynamical behavior of fatigue damage at the grain level.
Specifically, random distribution of flaws in the material micro-
structure leads to different behavioral trend of fatigue damage
evolution in identically manufactured structural components.
Consequently, both theoretical and experimental analysis of time
series data [3,4] from the available sensors is essential for real-
time monitoring of fatigue damage evolution in polycrystalline
alloys.

A variety of damage detection techniques, based on different
sensing devices (e.g., ultrasonics, acoustic emission, and eddy
currents), have been proposed in recent literature for fatigue
damage monitoring [5,6]. Acoustic emission technique has been
investigated by several researchers for its sensitivity to the
activities occurring inside the material microstructure for early
detection of fatigue and fracture failures [7,8]. However, the major
drawback of acoustic emission technique is poor performance in
noisy environments where signal-noise separation becomes a
difficult task. The eddy current technique is based on the principal
of electromagnetic induction. When a source of alternating
current is supplied to a conductor, a magnetic field develops
which induces eddy currents in the material. The presence of
faults in the material affect the eddy current flow patterns, which
can be measured for detection of structural damage [6,9]. The
advantages of eddy current inspection technique include sensi-
tivity to small defects, portability of sensor equipment, minimum
part preparation, and non-contact evaluation. However, the
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limitations of the eddy current inspection technique are the depth
of penetration and it can be used to detect only surface and near
surface defects. Furthermore, only conductive materials can be
inspected.

Ultrasonic sensing technique functions by emitting high
frequency ultrasonic pulses that travel through the specimen
and are received by the transducers at the other end. As with the
propagation of any wave, it is possible that discontinuities in the
propagation media will cause additive and destructive inter-
ference. Since material characteristics (e.g., voids, dislocations and
short cracks) influence the ultrasonic impedance, a small fault in
the specimen is likely to change the signature of the signal at the
receiver end [10–13]. Specifically, ultrasonic impedance is very
sensitive to small microstructural changes occurring during early
stages of fatigue damage evolution. Therefore, it is logical to
detect the incipient damage from changes in statistical patterns
of ultrasonic data due to gradual evolution of anomalies
(i.e., deviations from the nominal behavior) in material micro-
structures. Ultrasonic sensing is suitable for real-time applications
and on site installation of the sensing probes is very simple.
Ultrasonic sensing technique is also robust to noisy environments
since the externally excited waves are of very high frequency and
they do not interfere with small disturbances.

The above discussions evince the fact that time series analysis of
ultrasonic data is essential for real-time detection and monitoring of
fatigue damage. However, appropriate signal processing and pattern
identification methods must be incorporated for extraction of
relevant information from the ultrasonic time series data. Although
there exist diverse techniques of pattern identification [14], only very
few of these tools (e.g., artificial neural networks, and principal
component analysis) have been applied for online damage detection.
Moreover, such applications are largely restricted to the crack
propagation regime after a substantial part of the useful service life
has already been expended.

This paper presents a novel multidisciplinary approach of
pattern identification through integration of the concepts derived
from statistical mechanics and symbolic dynamics. The statistical
patterns are identified from observed time series data of sensors
for detection of small changes in the underlying process
characteristics. The algorithms based on the proposed concept
are applied to ultrasonic data for real-time fatigue damage
monitoring in polycrystalline alloys. The ultrasonic signals are
converted from the time domain to quasi-stationary symbolic
sequences by symbolic dynamic encoding [15] using a recently
reported statistical pattern identification tool, called symbolic
dynamic filtering (SDF) [16]. This procedure enables noise
suppression due to symbolization by coarse graining [17],
extraction of relevant information by maximum entropy partition-

ing and information compression into low-dimensional probabil-
ity vectors. Subsequently, behavioral patterns are derived from
these probability vectors using escort distributions [18] that are
also known as generalized canonical distributions in the statistical
physics literature [19].

The escort distributions have the advantage that they are
capable of scanning the original probability distribution for
increasing the sensitivity of anomaly detection without any
significant increase in the computational requirement. Fault
signatures are usually hidden in a few elements of the original
probability vector (i.e., information is carried by a few symbols)
and therefore, the use of escort distribution provides the
capability of zooming into certain regions of the partition that
reveal more information about the microscopic anomaly progres-
sion. As anomalies gradually progress in cyclically stressed
structures, the escort distributions evolve relative to the nominal
condition and thereby facilitate early detection of small changes
in the material microstructure.

The pattern identification algorithms are executable on
commercially available inexpensive platforms, thereby allowing
real-time implementation. A combination of time series data
symbolization and low-dimensional escort pattern generation
enables information compression and robust anomaly detection
in real time with enhanced sensitivity, especially at early stages of
fatigue damage. From the above perspectives, the major contribu-
tions of this paper are delineated below:

(1) Development of a data-driven pattern identification algorithm
for real-time fatigue damage monitoring based on the
statistical mechanical concept of escort distributions and
symbolic dynamic filtering (SDF) of ultrasonic sensor signals.

(2) Application of the above damage monitoring method for
detection of small changes in the material microstructures,
especially at early stages of fatigue damage evolution (e.g.,
crack initiation).

(3) Experimental validation of the proposed concept on a special-
purpose computer-controlled fatigue damage testing appara-
tus that is equipped with a variety of measuring instruments
including an optical traveling microscope and arrays of
ultrasonic flaw detectors.

The paper is organized in five sections including the present
one. Section 2 outlines the concept of statistical pattern
identification using tools of symbolic dynamics and statistical
mechanics. Section 3 describes the experimental apparatus on
which the proposed concept is validated for early detection of
fatigue damage. Section 4 presents the results and discussion and
the paper is concluded in Section 5 along with recommendations
for future research.

2. Problem formulation for behavioral pattern identification

This section presents the behavioral pattern identification
problem for anomaly detection in complex dynamical systems.
Specifically, the theory of SDF is presented and the concept of
escort distributions in statistical mechanics is described for
pattern identification and detection of fatigue damage evolution
in polycrystalline alloys.

The study of dynamical systems using the tools of statistical
mechanics has been a subject of immense interest over the last
few decades and is known as thermodynamic formalism of complex
systems [17,18]. As discussed earlier, detailed models of complex
physical processes often prove to be mathematically untractable
and computationally intensive especially in the high dimensional
phase space. In statistical mechanics, similar issues are dealt with
by estimating the macroscopic properties (e.g., pressure, tem-
perature, and chemical potential) of the entire system from the
distribution of the elementary particles in various microstates
[19]. Following this concept, the behavior of a dynamical system is
investigated from both microscopic and macroscopic perspectives.
From the point of view of statistical mechanics, a dynamical
system is conceptually visualized to be analogous to a thermo-
dynamic system, where each data point in a sequence of time
series data can be treated as a particle in the statistical mechanical
sense. The macroscopic behavior of the dynamical system is
estimated from the time series data sequences by describing
statistical distributions of the (so-called) data particles at different
energy levels that are defined by partitioning the time series data
sequence as explained in Section 2.1.

Pattern identification of a quasi-stationary process is recog-
nized as a two-time-scale problem. The fast-time scale refers to the
local behavior of the dynamical system and is defined as the time
scale over which the behavior of system dynamics is assumed to
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remain invariant (i.e., the process is assumed to have stationary
dynamics). From the perspectives of statistical mechanics, the
dynamical system remains in quasi-static equilibrium on the same
energy hyper-surface in its phase space. In other words, even though,
individual particles migrate from one microstate to the other, the
probability densities and hence, the macroscopic properties, char-
acteristic of that particular system behavior remain constant over
the fast time scale. On the other hand, the slow-time scale refers to
the long-term behavior of the system, where the patterns of the
process dynamics might deviate from those under the nominal
condition. It is assumed that any observable non-stationary behavior
pattern is associated with changes occurring on the slow time scale.
In statistical mechanical analogy, the dynamical system may quasi-
statically traverse a path from one energy hyper-surface to another
in between two slow time epochs.

In general, a long time span in the fast time scale is a tiny (i.e.,
several orders of magnitude smaller) interval in the slow time
scale. For e.g., evolution of fatigue damage in structural materials
(causing a detectable change in the dynamics of the system)
occurs on the slow time scale (possibly in the order of months);
fatigue damage behavior is essentially invariant on the fast time
scale (approximately in the order of seconds or minutes). Never-
theless, the notion of fast and slow time scales is dependent on
the specific application and operating environment. As such, for
anomaly detection time series data sets are generated on the fast
time scale at different slow time epochs.

2.1. A brief review of SDF

This section reviews the underlying concepts and essential
features of SDF for anomaly detection in dynamical systems [16].
A comparative evaluation of this novel analytical method has
shown its superior performance relative to other existing pattern
recognition tools in terms of early detection of anomalies [20–22]
and robustness to noisy environments [23]. While the details are
reported in previous publications [16,23,24], a brief review of the
essential concepts of space partitioning and symbol sequence
generation is presented here for self-sufficiency, clarity and
completeness of the paper. A data sequence is converted to a
symbol sequence by partitioning a compact region of the phase
space of the dynamical system, over which the trajectory
evolves, into finitely many discrete blocks. Each block is labeled
as a symbol, where the symbol set S is called the alphabet

that consists of jSj different symbols. As the dynamical system
evolves in time, it travels through or touches various blocks in its
phase space and the corresponding symbol s 2 S is assigned to it,
thus converting the data sequence into a symbol sequence, as
shown in Fig. 1. Each symbol is analogous to an energy state in the
statistical mechanical sense and therefore the symbols in the
alphabet S are referred to as states in the sequel. (Note: jSjX2,
i.e., there are at least two states in this statistical mechanical
representation.)

A crucial step in SDF is partitioning of the phase space for
symbol sequence generation. Several partitioning techniques have
been reported in literature for symbol generation [25], primarily
based on symbolic false neighbors. These techniques rely on
partitioning the phase space and may become cumbersome and
extremely computation intensive if the dimension of the phase
space is large. Therefore, as an alternative, symbol sequences can
be generated from the measured time series data of available
sensors. Fig. 2 presents an illustrative example of partitioning
the time series data for symbol sequence generation at a given
slow time epoch. Since wavelet transform [26] is particularly
effective for noise filtering, the time series data can be pre-
conditioned using the wavelet transform [23]. The paper has
adopted a partitioning scheme that is called the maximum entropy

partitioning [16,23]. In this method, the regions with more
information are partitioned finer and those with sparse informa-
tion are partitioned coarser. This is achieved by maximizing the
Shannon entropy [27], which is defined as

S ¼ �
XjSj
i¼1

pi logðpiÞ (1)

where pi is the probability of the ith state and summation is taken
over all possible states. Each partition region is identified as an
energy state (i.e., a symbol of the alphabet S) in the statistical
mechanical sense, as illustrated in Fig. 2. Under the nominal
operating condition, uniform probability distribution of energy
states, i.e., pi ¼ 1=jSj for i ¼ 1;2; . . . ; jSj, is a consequence of
maximum entropy that makes the partition coarser in regions of
low data density and finer in regions of high data density [23].
This implies that, under the nominal condition, all energy states
are equally likely and have maximum entropy in the statistical

ARTICLE IN PRESS

Fig. 1. Concept of phase space partitioning for symbol sequence generation.
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Fig. 2. Illustration of data partitioning for symbol sequence generation.
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mechanical sense. However, this uniform distribution changes to
some other distribution as the dynamical system undergoes
degradation, due to growth of anomalies on the slow time epoch.

Once the partitioning is done with alphabet size jSj at the
nominal condition (i.e., the slow time epoch t0), it is kept constant
for subsequent slow time epochs ft1; t2; . . . ; tk; . . .g. In essence, the
structure of the partition is invariant from the nominal condition.
The quasi-stationary probability of transitions from state i to state
j is denoted as pij. Thus, stochastic matrix (i.e., each row summing
to unity) P � ½pij� describes all transition probabilities between
the energy states. Although the algebraic structure of the matrix
P is invariant, the matrix elements may change at different slow
time epochs possibly due to gradually evolving anomalies. For
quasi-static equilibrium at each epoch, P is an irreducible
stochastic matrix having exactly one eigenvalue equal to unity
[28]. The left eigenvector p corresponding to the unity eigenvalue
of P is the state probability vector under the (fast time scale)
quasi-stationary condition of the dynamical system [16].

The symbol sequence generated from time series data set under
the nominal condition, i.e., at time epoch t0, is set as the reference
point. The state transition matrix P0 at the nominal condition is
generated to obtain the state probability vector p0, i.e., the left
eigenvector of P0 corresponding to the (unique) unity eigenvalue,
whose elements are the stationary probabilities of the energy states.
(Note: the superscript indicates the slow time epoch.) Subsequently,
state probability vectors p1;p2; . . . ;pk; . . . are obtained at slow-time
epochs t1; t2; . . . tk; . . . based on the symbol sequences generated
from the respective time series data sets.

2.2. Escort distributions for pattern identification

As described in the previous subsection, the uniform distribu-
tion of the energy states is obtained at the nominal condition as a
consequence of maximum entropy partitioning. This represents
an internal equilibrium condition of the system under no
constraint where all energy states are equally likely. However,
this uniform distribution changes to some other distribution as
the dynamical system undergoes degradation on the slow time
epoch. This means that the system undergoes a transition from
the nominal equilibrium condition to another equilibrium condi-
tion at a slow time epoch under a constraint that is induced by the
growth of anomalies. Therefore, under this changed equilibrium
condition, all states are not equally likely and the probability
distribution exhibits a deviation from the nominal behavior. This
subsection presents the concept of equilibrium distribution as
derived from statistical mechanics and its application in dynami-
cal systems theory for pattern identification.

In statistical mechanics, the equilibrium probability distribu-
tion of the energy states, called the generalized canonical

distribution, is estimated by maximizing the entropy of the system
for a given macroscopic parameter, such as the energy [18]. This
distribution is obtained using the method of unbiased guess of the
probabilities for a given value of the macroscopic parameter. Let E

be a random variable which takes a value Ej in the energy state j

and let Pj2 P be the equilibrium probability of that state (see Fig. 2).
The objective is to estimate the equilibrium probability vector P
given a macroscopic parameter, such as the total average energy
hEi, with the following constraints:

hEi ¼
XjSj
j¼1

PjEj (2)

and

XjSj
j¼1

Pj ¼ 1. (3)

This implies that the equilibrium distribution P must satisfy
Eq. (2) such that the total average energy of the system is hEi.
Eq. (3) is the necessary condition of a probability distribution. In
order to obtain the equilibrium distribution, the method of
Lagrange multipliers is used [18] for maximization of the entropy
function S ¼ �

PjSj
j¼1Pj lnðPjÞwhile the constraints given by Eqs. (2)

and (3) are satisfied. Therefore, for infinitesimal variations dPj,
that satisfy Eqs. (2) and (3) in the following form:

XjSj
j¼1

EjdPj ¼ 0, (4)

XjSj
j¼1

dPj ¼ 0 (5)

it is required to have

XjSj
j¼1

ð1þ lnðPjÞÞdPj ¼ 0 (6)

for entropy maximization. Therefore, using the Lagrange method
we get from Eqs. (4)–(6)

XjSj
j¼1

ðln Pj �Cþ bEjÞdPj ¼ 0, (7)

where �C and b are the Lagrange multipliers. Since dPj’s are
arbitrary each of the terms in the summation in Eq. (7) must be
zero [18]. Therefore, the equilibrium probability distribution, i.e.,
the generalized canonical distribution [18], is obtained from Eq. (7)
as follows:

Pj ¼ expðC� bEjÞ; j ¼ 1; . . . ; jSj. (8)

Using Eq. (3),

Pj ¼
expð�bEjÞPjSj
i¼1 expð�bEjÞ

; j ¼ 1; . . . ; jSj, (9)

where the parameter b is identified as the inverse of the
temperature of the system and expð�CÞ ¼ ZðbÞ is defined as the
partition function that appears as the normalizing factor in Eq. (9),
given by the relation

ZðbÞ ¼
XjSj
i¼1

expð�bEiÞ. (10)

As described earlier in Section 2.1, the sensor time series data is
partitioned to generate the symbol sequences and the state
probabilities are obtained for each energy state as described by
the probability vector p. The objective now is to assign the
equilibrium distribution, i.e., the generalized canonical distribu-
tion (using Eq. (9)), to the energy states, as shown in Fig. 2. This is
achieved by relating the statistical mechanical concepts using the
equilibrium distribution as described above to the original state
probability vector p. For dynamical systems, using the thermo-

dynamic formalism as shown in Ref. [18], the energy states Ej’s are
related to the state probabilities pj’s by the following relation:

Ej ¼ � ln pj; j ¼ 1; . . . ; jSj, (11)

where pj is observed probability (obtained from partitioning the
experimental data using SDF as described in Section 2.1) of the jth
energy state. The rational for the above substitution are given
below:

� Since � ln pjX0, this implies 0pEjp1.
� The partition levels that have low frequency of visit (i.e.,

regions with low information content) have corresponding
high energies (less reachable) and the partition levels that have
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high frequency of visit (i.e., regions with high information
content) have corresponding low energies (more reachable) in
the statistical mechanical sense. E.g., if state j is never visited,
i.e., pj ¼ 0, then it corresponds to infinite energy state that is
never reached by a particle.

Using Eq. (11) in Eq. (9) we get,

Pj ¼
ðpjÞ

bPjSj
j¼1ðpjÞ

b ; j ¼ 1; . . . ; jSj (12)

which provides the generalized canonical distribution P, also
called as the escort distribution of p of order b. The escort
distribution P has the ability to scan the structure of the original
probability distribution p. The order b that is analogous to inverse
temperature in the statistical mechanical sense, affects the
relative importance of how the microstates j enter into the escort
distribution. Therefore, the escort distribution P reveals more
information of the system than the original probability distribu-
tion p. Note that the escort distribution P is equal to the original
probability distribution p at the nominal condition (i.e., uniform
distribution at time epoch t0) irrespective of b, such that

P0
j ¼ p0

j ¼ 1=jSj; j ¼ 1; . . . ; jSj. (13)

Since b�1=T , where T is the effective temperature, evaluation of
the probability distribution p at different values of b (see Eq. (12))
is interpreted as analogous to a change of temperature in a
thermodynamic system [18]. This statistical mechanical analogy
of temperature does not represent the true temperature of the
stressed structure and only serves as a dynamical system
parameter for sensitivity analysis.

When b! 0, the temperature T tends to 1 in the statistical
mechanical sense, which means that the system becomes random
and the uncertainty in the system becomes very high such that all
the energy states become equally excited. This leads to equal
escort probability ðPj ¼ 1=jSj; j ¼ 1; . . . ; jSjÞ of each energy state
and due to the maximum uncertainty, the information content
obtained from the system is minimized. The escort distribution P
approaches the uniform distribution at any anomalous condition
for b! 0; this is different from the nominal condition in Eq. (13),
where P is the uniform distribution irrespective of b because the
original distribution p is itself uniform as a consequence of
maximum entropy partitioning [23] (see Section 2.1). On the other
hand as b!1, the escort distribution approaches the dirac-delta
distribution in the lowest energy state and the system freezes to
no activity. As seen in Eq. (11), the value of this lowest possible
energy state is zero whose probability is one. In between these
two extreme cases, as the value of b is increased from zero (i.e.,
the temperature T is decreased), the uncertainty is reduced and
more information is revealed. Therefore, at a higher b (i.e., a lower
temperature T), many new facets of the system are revealed. As b
is increased, the higher (lower) probability states become more
(less) dominant and vice versa. Therefore, the escort distribution
with a higher b yields a better revelation of the system
information during early stages of fatigue damage evolution and
is capable of providing early warnings of catastrophic failure,
which can be used for appropriate control action. Further details
are provided in Section 4.

The major advantages of the pattern identification
method presented in this paper for anomaly detection are listed
below:

(a) Robustness to measurement noise and spurious signals due to
coarse graining of the continuous data (i.e., partitioning into
finite blocks) and generation of a symbol sequence that
eliminates small measurement noise [16,23].

(b) Adaptability to low-resolution sensing due to coarse graining
in space partitions [16].

(c) Capability for early detection of anomalies because of
enhanced sensitivity to signal distortion using escort dis-
tributions.

(d) Real-time execution on commercially available inexpensive
platforms [20,21].

2.3. Damage evolution and anomaly detection

The pattern changes are quantified as deviations from the
nominal behavior (i.e., the escort distribution at the nominal
condition). The resulting anomalies (i.e., deviations of the evolving
patterns from the nominal pattern) are characterized by a scalar-
valued function, called anomaly measure c that is quasi-static in
the fast time scale and is monotonically non-decreasing in the
slow time scale. The escort probability vector at any time epoch
corresponds to a singleton point on the unity-radius hypersphere.
During fatigue damage evolution, the tip of the escort probability
vector moves along a path on the surface of this hypersphere. The
initial starting point of the path is the escort probability vector P0

with uniform distribution obtained with maximum entropy
partitioning [23]. As the damage progresses, the escort distribu-
tion (for a non-zero, finite and constant value of order b) changes;
eventually when a very large crack is formed, complete attenua-
tion of the ultrasonic time series data occurs (see Section 3).
Consequently the tip of the escort probability vector reaches a
point where all states have zero probabilities of occurrence except
one which has a probability one (i.e., a delta distribution Pf ); this
state corresponds to the partition region where all data points are
clustered due to complete attenuation of the signal. In the context
of an irreversible process such as fatigue crack growth phenom-
ena, the anomaly measure is based on the following assumptions:

� Assumption #1: The damage evolution is an irreversible process
(i.e., with zero probability of self healing) and implies the
following conditions:

cðtÞX0; cðt þ dÞ � cðtÞX0 8tXt0 8d40. (14)

� Assumption #2: The damage accumulation between two time
epochs is a path function, i.e., dependent on the path traversed
to reach the target state from the initial state.

At the initial stages of fatigue damage, there can be multiple
short cracks oriented in different directions. Therefore, crack
length alone does not provide complete information on fatigue
damage evolution. Since ultrasonic signals are highly sensitive to
small microstructural changes, signal distortion is a good index of
anomaly growth. As such, the following distance function is used
between the escort probability vectors at two time epochs:

dðPk;Pl
Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pk
� Pl

� �T
Pk
� Pl

� �r
. (15)

The escort probability vector depends on the distribution p,
which might be affected by measurement and computation noise.
The algorithm for computation of the anomaly measure c
compensates for spurious measurement and computation noise
in terms of the sup norm kek1 �maxðje1j; . . . ; jemjÞ of the error in
the state probability vector (i.e., the maximum error in the
elements of the state probability vector p). The algorithm is
presented below:

(i) c0
¼ 0, dc1

¼ 0, eP ¼ P0, ep ¼ p0, and k ¼ 1.
(ii) if kpk � epk14� then dck

¼ dðPk; ePÞ, ep pk, and eP Pk.
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(iii) ck
¼ ck�1

þ dck, and k kþ 1.
(iv) dck

¼ 0; go to step (ii),

where the real positive parameter �, associated with robustness of
the anomaly measure for measurement and computation noise, is
identified by performing an experiment with a sample with no
notch (see Section 3). Since there is no notch, there is practically
no stress augmentation and relatively no fatigue damage, and the
parameter � is estimated as

� � max
l2f1;...;Ng

ðkplþ1 � plk1Þ (16)

from N consecutive observations with Nb1. The algorithm works
in the following way.

The reference point eP is initialized to be the nominal escort
distribution P0 and ep is initialized to be the nominal state probability
vector p0, and the anomaly measure c0 is set to 0. At any subsequent
slow time epoch tk, if the state probability vector moves such that
the distance moved in any particular direction (i.e., the sup norm
k � k1) is greater than � as specified in step (ii), then the anomaly
measure is incremented by dck

¼ dðPk; ePÞ and the reference points
are shifted to the current points Pk and pk. The procedure is repeated
at all slow time epochs. As such, the total path travelled by the tip of
the escort probability vector represents the associated damage.

2.4. Summary of the steps followed

1. Time series data acquisition from appropriate sensor(s) (here
ultrasonic transducers) at time epoch t0, i.e., the nominal
condition, when the system is assumed to be in the healthy
state (i.e., zero anomaly measure).

2. Generation of the maximum entropy partition based on the
nominal time series data set after signal conditioning for noise
removal using wavelets [23]. The partitioning is fixed for
subsequent time epochs t1; t2; . . . ; tk; . . ..

3. Calculation of the state probability vector p0 (see Section 2.1)
and the corresponding escort probability vector P0 for a certain
order parameter b (see Section 2.2) at time epoch t0. P0 is a
uniform distribution because of maximum entropy partition-
ing [23].

4. Collection of ultrasonic time series data sets at slow time
epochs t1; t2; . . . ; tk; . . . and calculation of the corresponding
escort probability vectors P1;P2; . . . ;Pk; . . ..

5. Computation of the scalar anomaly measures c1;c2; . . . ;ck; . . . ;
at time epochs t1; t2; . . . ; tk; . . . : (see Section 2.3).

3. Description of the experimental apparatus

The experimental apparatus, shown in Fig. 3, is a special-
purpose uniaxial fatigue testing machine, which is operated under
load control or strain control at speeds up to 12.5 Hz; a detailed
description of the apparatus and its design specifications are
reported in [29]. The test specimens are subjected to tensile–
tensile cyclic loading by a hydraulic cylinder under the regulation
of computer-controlled electro-hydraulic servo-valves. The da-
mage detection subsystem consists of data analysis software and
the associated computer hardware.

3.1. Instrumentation and control system

The process instrumentation and the control module of the
fatigue test apparatus are briefly described below:

� Closed loop servo-gydraulic unit and controller: The instrumenta-
tion and control of the computer-controlled uniaxial fatigue test

apparatus includes a load cell, an actuator, the hydraulic system,
and the controller. The servo-hydraulic unit can provide either
random loads or random strains to a specimen for both low-cycle
and high-cycle fatigue tests at variable amplitudes and multiple
frequencies. The control module is installed on a computer which
is dedicated to machine operation. The controller runs the
machine according to a schedule file which contains the loading
profile and the number of load cycles. The real-time data from
the extensometer and load cell are supplied to the controller for
operation under specified position and load limits.
� Subsystem for data acquisition, signal processing, and engineering

analysis: In addition to the computer for controlling the load
frame, a second computer is used for real-time image data
collection from the microscope to monitor the growth of
surface cracks. This computer controls the movement of the
microscope to focus on the region of the crack tip. The
instrumentation for ultrasonic flaw detection scheme is
connected to a third computer. This computer performs the
real-time data analysis task. These laboratory computers are
interconnected by a local dedicated network for data acquisi-
tion, data communications, and control.

Fig. 4 shows a typical 7075-T6 side notched aluminum specimen
used for testing in the fatigue damage test apparatus. The specimens
used are 3 mm thick and 50 mm wide, and have a slot of 1:58 mm�
4:57 mm on one side. The notch is made to increase the stress
concentration factor that ensures crack initiation and propagation at
the notch end. The test specimens have been subjected to sinusoidal
loading under tension–tension mode (i.e., with a constant positive
offset) at a frequency of 12.5 Hz. The DC offset was provided in the
load cycling to ensure that the specimen was always under tension.
Since inclusions and flaws are randomly distributed across the
material, small cracks appear at these defects and propagate and join
at the machined surface of the notch even before microscopically
visual cracks appear on the surface.

3.2. Sensing system for damage detection

The test apparatus is equipped with two types of sensors that
have been primarily used for damage detection:

(1) Travelling optical microscope: The travelling optical micro-
scope, shown as part of the test apparatus in Fig. 3, provides direct
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measurements of the visible portion of a crack. The resolution of
the optical microscope is about 2mm at a working distance of
10–35 cm and the images are taken at a magnification of 75�. The
growth of the crack is monitored continuously by the microscope
which takes the images of the surface of the specimen at regular
intervals. In order to take pictures the controller slows down the
machine to less than 5 Hz to get a better resolution of the images.
The crack length can be calculated automatically by movement of
the microscope from the respective notch end to the tip of the
crack. The data acquisition software also allows for manual
operation and image capture at the desired moment. Formation of
very small cracks is difficult to detect and model due to large
variability of material irregularities. This paper primarily focuses
on analyzing ultrasonic data for more accurate characterization of
the nature of small defects.

(2) Ultrasonic flaw detector: A piezoelectric transducer is used
to inject ultrasonic waves in the specimen and an array of receiver
transducers is placed on the other side of notch to measure the
transmitted signal. In these experiments, an array of two receiver
transducers was placed below the notch to detect faults on both
left and right side of the notch. The ultrasonic waves produced
were 5 MHz sine wave signals and they were emitted during a
very short portion at the peak of every load cycle. Ultrasonic
measurements were taken at stress levels that exceeded the crack
opening stress and this causes maximum attenuation of the
ultrasonic waves. Note that if crack closure occurs at low loads,
then an alternative method would be needed to detect anomalies.
The sender and receiver ultrasonic transducers are placed on two
positions, above and below the notch, so as to send the signal
through the region of crack propagation and receive it on the
other side, as seen in Fig. 5.

As with the propagation of any wave, it is possible that
discontinuities in the propagation media will cause additive and
destructive interference. Since material characteristics (e.g., voids,
dislocations and short cracks) influence ultrasonic impedance, a
small fault in the specimen is likely to change the signature of the
signal at the receiver end. The effect of these discontinuities in the
material is to distort the transmitting ultrasonic waves. Since
ultrasonic waves have a very small wavelength, very small faults
can be detected. Therefore, the received signal can be used to
capture minute details and small changes during the early stages
of fatigue damage, which are not possible to detect by an optical
microscope [11]. Prior to the appearance of a single large crack on
the surface of the specimen as detected by the optical microscope,
deformations (e.g., dislocations and short cracks) can cause
detectable attenuation and/or distortion of the ultrasonic waves
[12]. Recent literature has also shown nonlinear modeling
approaches of the ultrasonic interference with the material
microstructures [30,31]. An elaborate description of the properties
of ultrasonic waves in solid media is provided by Rose [32].

The advantages of using ultrasonic flaw detection over a
microscope are the ease of installation at the desired damage site
and detection of early anomalies before the onset of widespread
fatigue crack propagation. It is observed that a crack always starts

at the stress-concentrated region near the notch but the exact site
of crack nucleation can be treated as a random event. An optical
microscope is only capable of detecting cracks when they appear
on the front surface of the specimen. Therefore, the study in this
paper is based on analyzing the ultrasonic data for identification
of fatigue damage in the small crack regime.

3.3. Experimentation and data acquisition

The optical images were collected automatically at every 200
cycles until a crack was detected on the specimen surface by the
optical microscope. Subsequently, the images were taken at user
command and the microscope was moved such that it always
focused on the crack tip. A significant amount of microstructural
damage caused by multiple small cracks, dislocations and other
defects occurs before a single large crack appears on the surface of
the specimen when it is observed by the optical microscope [33].
This phenomenon causes distortion and attenuation of the
ultrasonic signal at the receiver end. The crack propagation stage
starts when this microstructural damage eventually develops into
a single large crack. Subsequently, the crack growth rate increases
rapidly and when the crack is sufficiently large, complete
attenuation of the transmitted ultrasonic signal occurs, as seen
at the receiver end. After the crack appears on the surface, fatigue
damage growth can be easily monitored by the microscope but
the ultrasonics provide early warnings even during the crack
initiation phase.

Ultrasonic waves with a frequency of 5 MHz were triggered at
each peak of the sinusoidal load to generate data points in each
cycle. Since the ultrasonic frequency is much higher than the load
frequency, data acquisition was done for a very short interval in
the time scale of load cycling. Therefore, it can be implied that
ultrasonic data were collected at the peak of each sinusoidal load
cycle, where the stress is maximum and the crack is open causing
maximum attenuation of the ultrasonic waves. The slow time
epochs for data analysis were chosen to be 1000 load cycles (i.e.,
�80 s) apart. At the onset of each slow time epoch, the ultrasonic
data points were collected on the fast time scale of 50 cycles (i.e.,
�4 s at 12.5 Hz frequency), which produced a string of 30,000 data
points. It is assumed that during this period, the system remained
in a stationary condition and no major changes occurred in the
fatigue crack behavior. The sets of time series data collected in this
manner at different slow-time epochs were analyzed to calculate
the anomaly measures at those slow time epochs.

The nominal condition at the slow time epoch t0 was chosen to
be �1 kilocycles to ensure that the electro-hydraulic system of the
test apparatus had come to a steady state and that no significant
damage occurred till that point. This nominal condition was
chosen as a benchmark where the specimen was assumed to be in
a healthy state, and thus the anomaly measure was chosen to be
zero. The anomalies at subsequent slow-time epochs,
t1; t2; . . . ; tk; . . . ; were then calculated with respect to the nominal
condition at t0. It is emphasized that the anomaly measure is
relative to the nominal condition which is fixed in advance and
should not be confused with the actual damage at an absolute
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Fig. 4. Cracked specimen with a side notch.
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level. However, inferring fatigue damage from the observed
anomaly measure is an inverse problem that is a topic of future
research.

The fatigue tests were conducted at a constant amplitude
sinusoidal load for low-cycle fatigue, where the maximum and
minimum loads were kept constant at 87 and 4.85 MPa,
respectively. For low cycle fatigue studied in this paper, the stress
amplitude at the crack tip is sufficiently high to observe the
elasto-plastic behavior in the specimens under cyclic loading. A
significant amount of internal damage caused by multiple small
cracks, dislocations and microstructural defects alters the ultra-
sonic impedance, which results in signal distortion and attenua-
tion at the receiver end. The crack propagation stage starts when
this internal damage eventually develops into a single large crack.

3.4. Real-time implementation

Fatigue damage monitoring algorithms have been successfully
implemented in real time. The function module for the pattern
identification algorithms is triggered at the start of the experi-
ment after the system obtains the steady state. The ultrasonic data
files generated in real time at different slow time epochs are read
by the pattern identification algorithms that calculate the
anomaly measure values at these time epochs. The algorithm is
computationally very fast (i.e., several orders of magnitude faster
relative to slow-time-scale damage evolution) and the anomaly
measure profile is displayed on a computer monitor in real time.
The plot is updated with the most recent value of anomaly
measure at each (slow-time) epoch. Thus, the algorithms allows
on-line health monitoring and is capable of issuing warnings of
incipient failures well in advance. Superiority of the symbolic
dynamic method relative to Bayesian methods in terms of
execution time and memory requirement is reported by Rao
et al. [22].

4. Results and discussion

This section presents the results generated from the time series
data of ultrasonic sensors for early detection of fatigue damage
using the concepts presented in earlier sections. The six triplets of
plots in Fig. 6 show two-dimensional images of the specimen
surface, the ultrasonic response, and the corresponding escort
probability distribution of energy states, with jSj ¼ 6, at six
different slow time epochs, approximately 1, 10, 18, 23, 32, and 45
kilocycles, exhibiting gradual evolution of fatigue damage. For
each time epoch, i.e., each plot in Fig. 6, the escort distribution
is shown for different values of b ¼ 0, 0.5, 1, 2, 5, and 10. In each
of the six plot triplets, the top plot exhibits the image of the
test specimen surface near the notch as seen by the optical
microscope.

The plot triplet (a) of Fig. 6 shows the image at the nominal
condition (�1 kilocycles). The maximum entropy principle used
for partitioning has led to a uniform escort probability distribu-
tion in the energy states as seen in the histograms for all values of
order b as explained earlier in Section 2.2. The anomaly measure
at this point is taken to be zero. Plot triplets (b) and (c) at �10 and
�18 kilocycles, respectively, do not yet have any indication of
surface crack but the escort distribution histograms of different
orders b exhibit deviations from the uniform probability distribu-
tions in plot triplet (a). This is an evidence that the analytical
measurements, based on ultrasonic sensor data, produce damage
information during the crack initiation stage. The detection also
becomes more distinguished at higher values of order b. The
visual inspection of the ultrasonic response seen in plots (b) and

(c) does not reveal much information; however, the escort
distributions clearly indicate progression of anomalies.

The image in plot (d) of Fig. 6 at �23 kilocycles exhibits the
first noticeable appearance of a small surface crack, this may be
considered as the boundary of the crack initiation and the
propagation phases. This indicates that a single or possibly several
small cracks might have already developed underneath the
surface before they merged into a single surface crack. The
corresponding histograms in the plot triplet (d) show further
deviation from the uniform distribution of plot triplet (a). The
image in plot triplet (e) at �32 kilocycles exhibits a fully
developed crack in its propagation phase. The corresponding
histograms show significant variation from those in earlier stages,
from plot triplets (a) to (d). The image in plot triplet (f) at �45
kilocycles exhibits a large crack or a broken specimen. The
corresponding histograms resemble a delta distribution indicating
complete attenuation of the ultrasonic data.

In all the histogram plots in Fig. 6 at different time epochs, the
escort probabilities of all energy states are equal to the uniform
distribution for b ¼ 0, irrespective of the system health. This
indicates that, for b ¼ 0, i.e., T !1, the system attains a
maximum entropy state resulting in no information retrieval. In
all plots, as b is increased from b ¼ 0, more information is
revealed which is of significant importance especially during the
crack initiation when the specimen has just started developing
internal cracks with no external manifestation. Therefore, higher
order escort distributions yield a better picture of the system with
distinct probability distributions. As b is increased, the higher
probability states become more significant and lower probability
states become less significant resulting in more sensitivity to
small change detection. In all plots of Fig. 6, as b is increased from
0 to 10, the difference in escort probabilities of different states
become more noticeable.

Fig. 7 shows the profile of anomaly measure representing the
evolution of fatigue damage at different slow time epochs. The
anomaly measure profiles are plotted for different values of b ¼ 0,
0.5, 1, 2, 5, and 10 by comparison of escort distribution of like
orders using the procedure described in Section 2.3. In the region
around �20–23 kilocycles, a rapid change in the slope of anomaly
measure profiles is observed for all b that indicates the onset of
crack propagation phase. The vertical line in Fig. 7 broadly
classifies two regions, one of crack initiation and small crack
development (towards the left of the vertical line) and the other of
crack propagation where a single large crack grows rapidly
(towards the right of the vertical line). Once the crack propagation
starts the growth of anomaly measure is very fast till complete
breakage of the specimen.

For b ¼ 0, the profile of anomaly measure in Fig. 7 is uniformly
zero yielding no information. This is also evident from Fig. 6
where the escort distribution for b ¼ 0 remains the uniform
distribution for all time epochs as shown in six different plot
triplets. For smaller values of b (e.g., 0.5–1), the anomaly measure
profiles derived from the escort probability distributions effec-
tively capture the crack propagation phase; however, the crack
initiation phase is not adequately detected. This is indicated by
relatively high values of slope and magnitude of anomaly measure
profiles in the crack propagation phase as compared to the crack
initiation phase.

That is, for smaller values of b, the anomaly measure profiles
are less capable of issuing early warnings for progressive damage
in the crack initiation phase. As b is increased, the anomaly
measure profile shows a more sensitive response to damage
growth, specially in the crack initiation phase in terms of both the
magnitude and the slope of the anomaly measure. As b is
increased (e.g., b41), the anomaly measure profile shows
relatively large deviations from the nominal condition even
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during the early stages of crack initiation. In the crack propagation
phase, the profiles of all b40 are sensitive in effectively detecting
fatigue damage. However, in the crack initiation phase which is
primarily the region of interest, the anomaly measure profiles
derived from higher order escort distributions play a significant
role in early damage detection.

Increasing b to high values (e.g., 5–10) would be advantageous
in the initial stages of fatigue damage for early detection.
However, increasing b to even higher values (e.g., b410) would

make the system over-sensitive resulting in a sharp jump in the
anomaly measure profile for small changes and may possibly lead
to false alarms. A sudden jump in anomaly measure profile for
small changes is not desirable from the perspective of continuous
monitoring of fatigue damage evolution during the entire span of
the service life. As such, b should be optimized for desired
sensitivity which is an area of future research.

It is to be noted that anomaly measure for fatigue damage
detection is relative to the nominal condition and is not an
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Fig. 6. Fatigue damage evolution and corresponding information from escort distributions of different order b ¼ 0, 0.5, 1, 2, 5 and 10; (a) nominal condition at �1 kilocycles,

(b) microstructural damaged condition at �10 kilocycles, (c) microstructural damaged condition at �18 kilocycles, (d) appearance of a surface crack at �23 kilocycles, (e)

crack propagation condition with fully developed crack at �32 kilocycles, and (f) broken condition at �45 kilocycles.
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indicative of true damage in the absolute sense. Furthermore, due to
the presence of several microstructural uncertainties, fatigue
damage evolution is considered as a stochastic phenomenon and
identical specimen can reveal significantly different damage evolu-
tion profiles under similar loading conditions. Therefore, damage
quantification is a difficult task and requires statistical analysis of an
ensemble of experimental data. In this regard, the problem of fatigue
damage monitoring is divided into (i) the forward problem of
anomaly detection and (ii) the inverse problem of anomaly
quantification. The current paper has attempted to address the
forward problem, i.e., the problem of fatigue damage detection by
measurement of statistical changes in the ultrasonic data streams
relative to the nominal condition. The complete solution of the
inverse problem is still an area of active research.

5. Conclusions and future work

This paper presents the theory and experimental validation of
fatigue damage detection significantly before the onset of wide-
spread damage due to rapid crack propagation. The real-time data
analysis method makes use of the ultrasonic time series data and
is based on the concepts of symbolic dynamic filtering and escort
distributions derived from statistical mechanics. Statistical pat-
tern changes in escort distributions of the observed time series
data sequences at different slow time epochs capture the gradual
evolution of microstructural changes in polycrystalline alloys. The
concepts have been experimentally validated on a computer-
controlled special-purpose fatigue damage test apparatus.

Further analytical and experimental research is necessary
before the proposed methodology of fatigue damage monitoring
could be implemented in industrial applications. Specifically, the
following research tasks are recommended for future work:

� Comparison with other sensing methods for fatigue damage
detection such as the acoustic emission and the eddy current
techniques.
� Development of damage mitigation control strategies on the

basis of the inferred anomalies from sensor data by time series
analysis in real time.
� Development of thermodynamic formalism for time series data

analysis using the statistical mechanical tools of lattice spin
systems such as the Ising model [19,34].

� Development of statistical methods based on thermodynamic
formalism for real-time estimation [35] and prognosis of
fatigue damage in polycrystalline alloys.
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Fig. 7. Anomaly measure profiles for fatigue damage evolution derived from escort

distributions of different order b ¼ 0, 0.5, 1, 2, 5, and 10.
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