
International Journal of Control
2008, 1–14, iFirst

Autonomous robot navigation using optimal control of

probabilistic regular languages

Goutham Mallapragada, Ishanu Chattopadhyay and Asok Ray*

Mechanical Engineering Department, The Pennsylvania State University, PA 16802, USA

(Received 2 October 2007; final version received 25 January 2008)

This paper addresses autonomous intelligent navigation of mobile robotic platforms based on the recently
reported algorithms of language-measure-theoretic optimal control. Real-time sensor data and model-based
information on the robot’s motion dynamics are fused to construct a probabilistic finite state automaton
model that dynamically computes a time-dependent discrete-event supervisory control policy. The paper also
addresses detection and avoidance of livelocks that might occur during execution of the robot navigation
algorithm. Performance and robustness of autonomous intelligent navigation under the proposed algorithm have
been experimentally validated on Segway RMP robotic platforms in a laboratory environment.

Keywords: robot navigation and obstacle avoidance; discrete event supervisory control; language measure

1. Introduction

Navigation and obstacle avoidance is a widely
addressed topic in robotics research. Apparently, a
sufficiently general solution of this problem needs to
be developed to address the following issues:

. navigation in unknown terrain and noisy
environments;

. real-time processing of sensor data and code
execution;

. robustness to intermittent failures in sensors

and communication links;
. inherent vehicular dynamics of the robotic

platforms.

A majority of the reported navigation techniques
involve continuous-parameter implementation, where
the computational cost becomes a limiting factor.
Diverse techniques, such as configuration space
approach, Voronoi diagram, retraction method,
potential field function, visibility graph, accessibility
graph, and tangent graph, have been used with
reasonable success (Lozano-Perez 1983; Fujimura

1991; Hwang and Ahua 1992) to address the problem
of intelligent navigation. Among these analytical
tools, the potential field methods have emerged as a
particularly attractive choice due to their elegance
and simplicity (Koren and Borenstein 1991). However,
they suffer from several drawbacks as delineated
below.

1. Likelihood of being trapped in local minima
leading to cyclic behaviour.

2. No passage between closely spaced obstacles.
3. Oscillations in the presence of obstacles and/or

narrow passages.

In most of the above navigation techniques, either a
completely known or partially known map of the
environment is assumed. Advances in sensing technol-
ogy and on-board instrumentation have made it
possible to perceive the environment in real time with
remarkable accuracy, which has facilitated a purely
reactive approach to obstacle avoidance. However,
processing large volumes of sensor data in real time
raises open issues concerning computational efficiency
and robustness, especially under noisy environments
and intermittent failures of sensor and communication
links. A typical robot needs information from multiple
sensors (e.g., sonars, laser, infrared, and tactile) and
control inputs from external sources to arrive at
optimal commands for the lower level continuous
controller. Fusion of such diverse information
(i.e., sensor data and external commands) often leads
to conflicting output commands from the navigation
algorithm resulting in a livelock situation for the
robot (Mallapragada, Chattopadhyay and Ray 2006).

Another issue is the robot’s motion dynamics
that become increasingly important as the mass and
working velocities of autonomous platforms are
increased. So far very few techniques have been

*Corresponding author. Email: axr2@psu.edu

ISSN 0020–7179 print/ISSN 1366–5820 online

� 2008 Taylor & Francis

DOI: 10.1080/00207170801947096

http://www.informaworld.com

D
o
w
n
l
o
a
d
e
d

B
y
:

[
R
a
y
,

A
s
o
k
]

A
t
:

1
4
:
5
9

3

O
c
t
o
b
e
r

2
0
0
8

reported in open literature, which takes into account
the effects of robot dynamics in obstacle avoidance
(Brock and Khatib 1999). For example, Fox, Burgard
and Thrun (1997) have applied the Dynamic Window
concept to collision avoidance for optimising a
continuous function of (v,w) that reflects dynamics,
goal heading and the obstacle map. An immediate
consequence is high computational cost and one has to
resort to simplifying assumptions to find meaningful
solutions of (v,w). A discrete-event approach has been
proposed in Chattopadhyay, Chakraborty and Ray
(2005) for navigation but no dynamics have been
included in the model.

This paper addresses autonomous intelligent
navigation of mobile robotic platforms based on the
concept of measure-theoretic optimal control of prob-
abilistic regular languages (Chattopadhyay and Ray
2007). With the objective of dynamically computing a
time-dependent discrete-event supervisory control policy,
the proposed algorithm fuses real-time navigation sensor
data and model-based information on motion dynamics
to construct a probabilistic finite state automaton model
for representation of the (regular) language of the robot’s
dynamical behaviour. This model facilitates both local
and global path planning by assigning appropriate
characteristic weights to the automaton states.
Furthermore, a non-regular observer is constructed to
estimate the behaviour of the navigation algorithm to
detect livelock situations, if any. Upon detection, a
livelock is mitigated by sending external commands to the
navigation algorithm.

The paper is organised in six sections. Section 2
briefly reviews the fundamentals of language measure
(Ray 2005). Section 3 presents an extension of the
language measure (Ray 2005) to time-dependent
control specifications. Section 4 introduces the notion
of navigation automaton and represents the contin-
uous dynamics of the plant (e.g., mobile robot) as a
probabilistic finite state machine. This section also
provides a method to detect and avoid livelocks.
Section 5 presents simulation and experimental results
on robotic platforms. The paper is summarised and

concluded in Section 6 along with recommendations

for future research.

2. Preliminary concepts

This section briefly reviews the concept of signed real

measure of regular languages (Ray 2005; Ray, Phoha

and Phoha 2005) followed by a review of the notion of

renormalised measure. This section also reviews the

optimal supervision problem and its solution.

2.1 Brief review of language measure

Let a deterministic finite state automaton (DFSA) be

represented as Gi, (Q,�, �, qi,Qm), where Q is the

finite set of states with jQj ¼ n, and qi2Q is the initial

state; � is the (finite) alphabet of events with j�j ¼m;

the Kleene closure of � is denoted as �?, that is, the

set of all finite-length strings of events including the

empty string "; the (possibly partial) function �:Q�
�!Q represents state transitions and �?:Q��?

!Q

is an extension of �; and Qm�Q is the set of marked

(i.e., accepting) states. The system dynamics are

modelled as a probabilistic finite state automaton

(PFSA), which is a DFSA augmented by the char-

acteristic function and event generation probabilities.

Definition 1: The characteristic function �: Q!

[�1, 1] assigns a signed real weight to each state qi,

i¼ 1, 2, . . . , n such that relatively more positive weights

are assigned to relatively more desirable states.

Definition 2: The event generation probabilities

are specified as ~� : �? �Q! ½0, 1� such that 8qj2Q,

8�k2�, 8s2�?,

1. ~�½�k, qj�, ~�jk 2 ½0, 1Þ;
P

k ~�jk ¼ 1;
2. ~�½�, qj� ¼ 0 if �(qj, �) is undefined; ~�½", qj� ¼ 1;
3. ~�½�ks, qj� ¼ ~�½�k, qj� ~�½s, �ðqj, �kÞ�.

The ~&-matrix is defined as ~&ij ¼ ~�ðqi, �jÞ, qi2Q,

�j2�.

Remark 1: The ~&-matrix is analogous to the morph

matrix of a Markov chain in the sense that an element
~�ij represents the probability of the jth event occurring

at the ith state.

Definition 3: The probabilistic state transition map

of the probabilistic finite state automaton (PFSA) is

defined as a function �:Q�Q! [0, 1) such that

The &-matrix, defined as &ij¼�(qi, qj), qi, qj2Q.

Remark 2: The &-matrix is analogous to the state
transition probability matrix of a Markov chain in the
sense that an element �jk is analogous to the transition
probability from state qj to state qk. The language
generated by a PFSA is defined to be a probabilistic
regular language.

�ðqj, qkÞ ¼
0 if f� 2 �: �ðqj, �Þ ¼ qkg ¼ ;P
�2�:�ðqj, �Þ¼qk

~�ð�, qjÞ,�jk otherwise:

8<
: ð1Þ

2 G. Mallapragada et al.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
R
a
y
,

A
s
o
k
]

A
t
:

1
4
:
5
9

3

O
c
t
o
b
e
r

2
0
0
8

2.2 Measure of probabilistic regular languages

The regular language generated by the PFSA under

consideration is a sublanguage of the Kleene closure

�* of the alphabet �.

Definition 4: The formal measure of the generated

language of a PFSA with respect to a defined

characteristic weight vector (Chattopadhyay and Ray

2006) is defined as

lð�Þ ¼ �mð�Þ ¼ �½I�&ð1� �Þ��1x with � 2 ð0, 1Þ:

ð2Þ

Proposition 1: The limiting measure vector �(0),
lim�!0þ l(�) exists and km(0)k14 1.

Proof: Given in Chattopadhyay and Ray (2006). œ

Proposition 2: Let P be the transition matrix of a finite

Markov chain (or equivalently a probabilistic regular

language). Then, as the parameter �! 0þ, the limiting

measure vector is obtained as: l(0)¼Ps where the

matrix operator

P, lim
k!1

1

k

Xk�1
j¼0

P j:

Proof: Given in Chattopadhyay and Ray (2006). œ

Corollary 1 (to Proposition 2): The expression Pl(�)
is independent of �. Specifically, the following identity

holds for all � 2 (0, 1).

Plð�Þ ¼ Px: ð3Þ

Proof: Given in Chattopadhyay and Ray (2006). œ

2.3 Supervision of probabilistic finite state

automaton (PFSA)

Plant models considered in this paper are deterministic

finite state automata with well-defined event occur-

rence probabilities. In other words, the occurrence of

events is probabilistic, but the state at which the plant

ends up, given a particular event has occurred, is

deterministic. Furthermore, no emphasis is laid on

the initial state of the plant and it is assumed that the

plant may start from any state. Furthermore, having

defined the characteristic state weight vector s, it is

not necessary to specify the set of marked states,

because if �i¼ 0, then qi is not marked and if �i 6¼ 0,

then qi is marked.

Definition 5 (control philosophy): Disabling any

transition � at a given state q results in reconfiguration

of the automaton structure as: Set the self-loop

�(q, �)¼ q with the occurrence probability of � from

the state q remaining unchanged in the supervised and
unsupervised plants.

Remark 3: The control philosophy in Definition 5 is
natural in the following sense. If qi !� qk, and the
controllable event � is disabled at state qi, then the sole
effect of the supervisory action is to prevent the
plant from making a transition to the state qk. That is,
the plant is forced to stay at the original state qi and
this is represented by the additional self-loop at state qi
instead of the original arc from qi to qk.

Definition 6 (controllable transitions): For a given
plant, transitions that can be disabled in the sense of
Definition 5 are defined to be controllable transitions
in the sequel. The set of controllable transitions in a
plant is denoted C. Note controllability is state-based.

It follows from Definition 2 and Definition 6 that plant
models are completely specified by a sextuple as

G ¼ ðQ,�, �,e�,�,CÞ: ð4Þ

2.4 The optimal supervision problem:
formulation and solution

A supervisor disables a subset of the set C of
controllable transitions and hence there is a bijection
between the set of all possible supervision policies and
the power set 2C. That is, there exists 2jCj possible
supervisors and each supervisor is uniquely identifiable
with a subset of C and the language measure � allows
a quantitative comparison of different supervision
policies. The following notations are needed for
elementwise comparison of finite-dimensional vectors
and matrices for the analysis developed in the sequel.

Notation 1: Let Va and Vb be r-dimensional real
vectors. The following elementwise equality and
inequalities imply that�

Va ¼E Vb
�
,
�
Va

i ¼ Vb
i

�
8i 2 f1, . . . , rg ð5aÞ�

VaAE V
b
�
,
�
Va

iAVb
i

�
8i 2 f1, � � � , rg ð5bÞ�

Va4EV
b
�
,
�
Va

i4Vb
i

�
8i 2 f1, . . . , rg ð5cÞ

Definition 7: For an unsupervised plant G¼ (Q,�, �,e�,�,C), let Gy and Gz be the supervised plants with
sets of disabled transitions, Dy�C and Dz�C,
respectively, whose measures are ly and lz. Then, the
supervisor that disables Dy is defined to be superior
to the supervisor that disables Dz if ly=E l

z and
strictly superior if ly4E l

z.

Definition 8 (optimal supervision problem): Given a
(non-terminating) plant G¼ (Q,�, �,e�,�,C), the
problem is to compute a supervisor that disables a
subsetD?

�C, such that l?=E l
y
8Dy�C where l? and

International Journal of Control 3

D
o
w
n
l
o
a
d
e
d

B
y
:

[
R
a
y
,

A
s
o
k
]

A
t
:

1
4
:
5
9

3

O
c
t
o
b
e
r

2
0
0
8

ly are the measure vectors of the supervised plants G?

and Gy under D? and Dy, respectively.

The solution to the supervision problem is reported

in Chattopadhyay and Ray (2007) as an optimal

control policy for a terminating plant (Garg 1992a,b)

with a substochastic transition probability matrixe�ð1� �Þ with � 2 (0, 1). To ensure that the computed

optimal policy coincides with the one for �¼ 0, the

suggested algorithm chooses a small value for � in

each iteration step of the design algorithm. However,

choosing � to be too small may cause numerical

problems in convergence. Two pertinent algorithms,

reported in Chattopadhyay and Ray (2007), are

presented below.
Algorithm 1 computes how small a � is actually

required, i.e., computes the critical lower bound �?.
Thus Algorithm 2, in conjunction with Algorithm 1

solves the optimal supervision problem for a generic

PFSA as reported in Chattopadhyay and Ray (2007).
Next we present Propositions 3–6 that are critical

for development of the autonomous navigation

algorithm in the sequel are presented here without

proof for the sake of brevity. The complete proofs

are provided in Chattopadhyay and Ray (2007).

Proposition 3: Let m[k] be the language measure vector

computed in the kth iteration of Algorithm 2.

The measure vectors computed by the algorithm

form an elementwise non-decreasing sequence, i.e.,

m[kþ1]=E m[k] 8k.

Proposition 4 (Effectiveness): Algorithm 2 is an

effective procedure (Hopcroft, Motwani and Ullman

2001), i.e., it is guaranteed to terminate.

Proposition 5 (Optimality): The supervision policy

computed by Algorithm 2 is optimal in the sense of

Definition 8.

Proposition 6 (Uniqueness): Given an unsupervised

plant G, the optimal supervisor G?, computed by

Algorithm 2, is unique in the sense that it is maximally

permissive among all possible supervision policies with

optimal performance. That is, if D? and Dy are the

disabled transition sets, and m? and my are the language

measure vectors for G? and an arbitrarily supervised

plant Gy, respectively, then m?¼E my!D?
�Dy�C.

3. Supervisory control with

time-dependent specifications

This section modifies and extends the supervisor

design procedure, presented in Algorithm 2, to time-

dependent control specifications. The key general-

isations are presented below.

Definition 9: The parametric characteristic function
�(�(t)) assigns a signed real weight to each state qi as
a time-dependent Riemann-integrable function of a

finite set of parameters �(t)¼ {�1(t), . . . , �k(t)}2R
k,

where the parameter t denotes the continuous time.

Definition 10: Given a plant G� (Q,�, �, ~�,
�(�(t)),C), the generalised language measure is

defined, for a given initial time t0, as:

g ¼ lim
tf!1

1

tf � t0

� �Z tf

t0

lð�Þdt 2 R
n,

where n is the number of states.

Algorithm 1: Computation of the critical lower bound �?

input : P, s
output: �?
begin

Set �?¼ 1; / ? set to the supremum ? /
Set �curr¼ 0; / ? set to the infimum ? /
Compute P; / ? Stable Prob. Dist. See [9] ? /
Compute M0 ¼ ½I� PþP��1;

Compute M1 ¼ I� I� PþP½ �
�1

� �
;

Compute M2 ¼ inf�6¼0 ½I� Pþ �P��1k1;
��

for j¼ 1 to n do
for i¼ 1 to n do

if (Ps)i� (Ps)j 6¼ 0 then

�curr ¼
1

8M2

�� Pxð Þi� Pxð Þj

��
else

for r¼ 0 to n do

if (M0s)i 6¼ (M0s)j then
Break;

else

if M0M
r
1x

� �
i
6¼ M0M

r
1x

� �
j
then

Break;
endif

endif

endfor

if r¼¼ 0 then

�curr ¼
j ðM0 �PÞx
	

i
� ðM0 �PÞx
	

j
j

8M2
;

else

if r40 AND r4 n then

�curr ¼
j M0M1xð Þi� M0M1xð Þjj

2rþ3M2
;

else
�curr¼ 1;

endif

endif

endif
endfor

endfor

end

Algorithm 2: Computation of optimal supervisor

input: P, s, C
output: Optimal set of disabled transitions D?

begin

4 G. Mallapragada et al.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
R
a
y
,

A
s
o
k
]

A
t
:

1
4
:
5
9

3

O
c
t
o
b
e
r

2
0
0
8

Assuming that the state set Q and the event
alphabet � are invariants, the optimisation procedure
can be formalised as follows:

Lemma 1: Let G(t), (Q,�, �, ~�,� (�(t)),C) be a
plant model and let G?(t) be a time-dependent supervisor
that disables the transition set D?(t) at the time instant t.
Then, G?(t) is optimal for every t2 [0,1] in the sense
of Definition 8 if and only if G?(t) is the optimal
supervisor at every fixed t, computed by Algorithm 2
for the plant (Q,�, �, ~�,� (�(t)),C).

Proof: The result follows by noting that, for two
arbitrary (but integrable) measure vectors l?(�(�(t)),
l(�(�(t))2R

n, we have

l? �ð�ðtÞð ÞAE l
�
�ð�ðtÞ

�
8t 2 ½0,1�

¼) lim
tf!1

1

ðtf � t0Þ

Z tf

t0

l?
�
�
�
dtAE lim

tf!1

1

ðtf � t0Þ

Z tf

t0

l
�
�
�
dt:

œ

If the control specification varies on a slow time scale
such that it can be sampled at a preset sampling rate
�T, Lemma 1 yields the optimal control algorithm
shown in Algorithm 3.

Algorithm 3: Optimal control with time-dependent
specifications

input : Plant model, parametric time-dependent character-
istic function

output: Optimal supervisor with possible time-dependent
enablings/ disablings

begin

t ¼ 0;
while t51 do

Set control specification: � ¼ �(�(t�T));
Compute optimal supervisor for current plant

ðQ,�, �, ~�,�
�
�ðt�TÞ

�
,CÞ by Algorithm 2;

while t�T5 (tþ 1)�T do

Enforce computed supervisor;
Increment t;

endw

endw

end

The navigation algorithm, developed in the sequel,
determines the specification weights from sensory
observation of the obstacle distribution in an environ-
ment that may change slowly relative to the dynamics
of robot motion. In this regard, the algorithm is
formulated based on the concept of singular perturba-
tion (Kokotovic, Khalil and O’Reilly 1999) to address
the two-time-scale behaviour in the presence of both
fast and slow dynamics. The parameters of slow
dynamics due to environmental changes are approxi-
mated to be constants in the fast time scale of robot
motion. On the other hand, the governing equations of
fast dynamics are reduced to algebraic expressions by
assuming the robot motion to be instantaneous relative
to the slow time scale of the environment (i.e., obstacle
dynamics). Uniform asymptotic stability and conver-
gence of the two-time-scale composite system is
established by an application of Tikhonov’s theorem
(cited and explained in Kokotovic et al. (1999)) under
the following two assumptions:

1. Internal stability of the fast scale dynamics, i.e.,
the real part of each eigenvalue of the Jacobian
in fast-scale dynamics is less than or equal to
an a priori fixed strictly negative real number.

2. Uniform asymptotic stability of quasistatic
equilibria in the fast-scale dynamics under
small perturbations in the slow-scale param-
eters, i.e., all such equilibria must be contained
within a domain of attraction that is deter-
mined by the pre-specified upper bounds of the
exogenous perturbations.

The key requirement here is that the above assump-
tions must be valid. The first assumption is assured
to be valid by the product design of the robot
manufacturer (i.e., Segway in the present experiments).
The second assumption is satisfied by prohibiting
any major perturbations of the environment, such as
large movements of the obstacles, during the execution
of each iteration of Algorithm 3. In other words, the
obstacles are restricted to be either stationary or slowly
moving objects. This assertion is not very restrictive
because Algorithm 2 is executed significantly fast
relative to the data refresh rate.

Set D[0]
¼;; / ? Initial disabling set ? /

Set e�½0� ¼ e�; / ? Initial event prob. matrix ? /
Set �½0�? ¼ 0:99; / ? set as an upper bound ? /
Set k¼ 1;
Set Terminate¼ false;
While (Terminate¼¼ false) do

Compute �½k�? ; / ? Algorithm ? /

Set e�½k� ¼ 1� �½k�?

1� �½k�1�?

e�½k�1�;
Compute l[k];
for j¼ 1 to n do

for i¼ 1 to n do

Disable all controllable transitions qi !
�

qj
such that l½k�j 5l½k�i ;

Enable all controllable transitions qi !
�

qj
such that l½k�j @l½k�i ;

endfor
endfor

Collect all disabled transitions in D[k];
if D[k]

¼¼D[k� 1] then

Terminate¼ true;
else

k ¼ k þ 1;
endif

endw

D?
¼ D[k]; / ? Optimal disabling set ? /

end

International Journal of Control 5

D
o
w
n
l
o
a
d
e
d

B
y
:

[
R
a
y
,

A
s
o
k
]

A
t
:

1
4
:
5
9

3

O
c
t
o
b
e
r

2
0
0
8

Operation of the navigation sensors (e.g., laser

range finders and sonars) at higher frequencies

effectively increases the data refresh rates. Since the

obstacle dynamics are sufficiently slow (i.e., in the

sense of Tikhonov) compared to the robot motion,

the effects of variations in the sampling rate and

other issues such as inter-sample transient behaviour

and the nature of samplers are insignificant from the

perspectives of robot control.

4. Application to intelligent navigation

This section introduces the notion of navigation

automaton as a probabilistic finite state machine

(PFSA) (see Equation 4). Let us consider a generic

plant, equipped with a continuous controller at the

lower level of the hierarchy. A typical example of such

a plant is a mobile robotic platform (e.g., Segway

RMP, or PIONEER DX) running the open-source

PLAYER server (Gerkey, Vaughan and Howard 2003).

It is further assumed that the low-level controller can

accept commands of velocity set-points. Such a

situation is easily realisable by running the PLAYER
server (Gerkey et al. 2003) on a Segway RMP and

using a client program to write velocity commands to

the robot via the PLAYER position drivers. In this

model, only a finite set of velocity set-points serve as

commands from the higher level.
The navigation automaton is constructed with the

following components.

1. A finite alphabet � ¼ C
S

�D of events,

where C is the set of controllable commands,

and �D is the set of uncontrollable dynamic

events.
2. A finite set Q ¼ QD

S
QI of states, where QD is

set of decision states from which a robot is

given a command cj2C, and QI is the set of

intermediate states through which the robot

traverses while a command from a decision

state is in execution. The robot settles down

to another decision state via an uncontrollable

transition �i 2 �D from an intermediate state

qIi 2Q
I.

3. The transition function �: Q��!Q is

restricted such that only controllable transi-

tions may occur from a decision state qD2QD

and only uncontrollable transitions may occur

from an intermediate state qIi 2Q
I. It follows

that the plant must visit an intermediate state

in between two decision states and vice versa.
4. The event cost matrix ~� (see Definition 2).
5. The time-dependent state weight vector �(�(t))

(see Definition 9).

The above concepts are formally defined as follows.

Definition 11: The command set C is the set of

(controllable) symbolic commands that a higher level

supervisor may issue to the lower level of continuous

dynamics. Each controllable symbol (i.e., command)

corresponds to a specific velocity set-point that is

written to the low-level continuous controller of the

robot. The individual commands are denoted by cj2C

and the cardinality of C (i.e., total number of

commands) is denoted by jCj.

Definition 12: The set of decision states QD is a finite

partition of the achievable continuous velocity state

space of the plant. For a planar robot, each qDi 2Q
D

forms an equivalence class of velocity pairs (i.e., linear

velocity and turn rate) that the robot can achieve.

Let �D be another finite set having the same

cardinality as QD such that QD \�D ¼ ;.

Remark 4: The set QD can also be seen as a partition

of the entire dynamic state space. The partitions are

functions of only velocity components and do not

depend on the acceleration components. The set �D

consists of uncontrollable events corresponding to the

uncontrollable transitions of the physical system

upon execution of a command when the robot is in a

state belonging to QD.

Next, we introduce the concept of navigation

automaton.

Definition 13: A navigation automaton is a PFSA

G, ðQ,�, �, ~�,�ð�ðtÞÞ,CÞ with the following

structure:

Q ¼ QD
[

QI ð6aÞ

QI ¼ QD � C
� �

ð6bÞ

� ¼ C
[

�D ð6cÞ

� : QD � C! QI _QI ��D ! QD ð6dÞ

8qDi 2 QD, 8cj 2 C, ~�ðqDi , cjÞ ¼
1

jCj
, ð6eÞ

where all events in C are (controllable) commands

and all (dynamic) events in �D are uncontrollable.

Remark 5: Equation (6e) specifies that commands are

generated at each decision state with approximately

uniform probability.

Figure 1 provides an example of a navigation auto-

maton with three commands {c1, c2, c3} and two

decision states fqD1 , q
D
2 g. The intermediate states are

denoted as qij where the indices i and j denote that

6 G. Mallapragada et al.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
R
a
y
,

A
s
o
k
]

A
t
:

1
4
:
5
9

3

O
c
t
o
b
e
r

2
0
0
8

the state is reachable from the decision state qDi
with the command �j.

Next, we describe how the navigation of a
supervised autonomous plant, similar to what is
described at the beginning of the section, can be
modelled by the sequential operation of a navigation
automaton. The process is best explained by interpret-
ing the transition sequences on a tree as shown
in Figure 2, where the nodes and arcs represent the
states and transitions, respectively. In Figure 2,
the decision states are denoted by squares and the
intermediate states by circles.

Let the robot be initiated at the root of the tree at
a decision state, and a command is generated to pass a
velocity set-point to the lower level of continuous
dynamics. Due to inherent inertia, the robot does not,
in general, attain the velocity set-point instantaneously.
Let the dynamic events be reported by the robot at
a preset frequency, say 	. The velocity vector
(i.e., linear velocity v and angular velocity ! in case
of a planar robot) at the end of the time period belongs
to one of the equivalence classes of the partitioned
velocity space (see Definition 12).

Let the new decision state be qDi , which is
interpreted as a two-step transition sequence for the
navigation automaton. First the automaton moves to
an intermediate state by following the generated
command and then makes the transition to the
decision state qDi by a dynamic event. This is
represented by first two segments, initiating from the
root and denoted by the thick dashed path on the tree
of Figure 2. The next command (i.e., velocity set-point)
is generated from the current decision state and, in this
way, the process is repeated. Thus, the operation of
the plant, interpreted as the sequential operation of the
navigation automaton, generates an unique path,
denoted by a thick path in Figure 2, passing alternately
through decision and intermediate states.

In the absence of a supervisor, a random sequence
of commands is generated and the plant would execute
a random walk with the navigation automaton
following a random path down the tree. A supervisor
can modify the path of the automaton by selectively
disabling generated commands and thereby modify
the physical trajectory of the robot. Generation of
dynamic events from the intermediate states is a
function of the robot dynamics and their effects
are incorporated in the transition probabilities of the
dynamic events generated from each intermediate
state. For example, following Definition 2 in
Figure 1, ~�ðq12, �1Þ is the probability that the robot
attains a velocity vector (i.e., a decision state) qD1 being
given a velocity set-point c2 from the decision state qD1 .
In the next section, we describe how to compute the
transition probabilities for a specific system.

4.1 Computation of transition probabilities

The navigation automaton model specifies the transi-
tion probabilities of the commands from the decision
states to be uniform, i.e.,

~� qDi , cj
� �

¼
1

jCj
8qDi 2 QD 8cj 2 C: ð7Þ

However, computation of the transition probabilities
~�ðqIi , �jÞ of dynamic events �j 2 �D from intermediate
states qIi 2 QI is more involved as it is dependent on
the physical dynamics of the robot. Let the continuous
dynamical model of the robot be denoted by S.

Definition 14: Let x be the discrete-time state space
vector of the mobile robot and u¼ [vc !c] be an input
control vector of linear and angular velocities. Also let
y¼ [v !] be the observed output velocites of the plant.
Then the plant dynamics S at the time instant n is
defined as the ordered pair S¼ (f, g) of continuous
functions where

xnþ1 ¼ fðxn, unÞ

yn ¼ gðxn, unÞ:

q1 q2

q1
1

q2
1

q3
1

q1
2

q2
2 q3

2

c2

c1

c3 c2 c3

c1σ1

σ1

σ1

σ

σ2

σ2

σ1σ2

σ2σ1

σ2 σ1

Figure 1. An example of navigation automaton with
3 command inputs and 2 discretised velocity states.

Commands
Dynamic
events

Figure 2. Operation of a navigation automaton.

International Journal of Control 7

D
o
w
n
l
o
a
d
e
d

B
y
:

[
R
a
y
,

A
s
o
k
]

A
t
:

1
4
:
5
9

3

O
c
t
o
b
e
r

2
0
0
8

The model S needs to be identified from experimental
data through standard system identification techniques
(Ljung 1999). The identified plant dynamics model S
is utilised to obtain the event cost of the dynamic
events as explained below.

Let the automaton be in a decision state qDi and
a command cj be generated, which results in an
instantaneous transition to an intermediate state qIk .
Note that the velocity state of the robot must still
belong to the equivalence class of qDi to preclude an
infinite system acceleration. The command cj has
already passed a velocity set-point to the continuous
level by mapping cj to un through a discrete-event to
continuous mapping. The current acceleration is
unknown, which implies incomplete state information.
Hence, there may be more than one state space
trajectories that the robot may take and thus
visit different decision states on its way, as seen in
Figure 3.

The average settling time ts of the system is
estimated from the continuous plant model S. Then,
a Monte Carlo simulation experiment is performed by
randomly choosing a velocity vector from the equiva-
lence class of qDi and a random system acceleration
vector. The robot system reports the decision states
that it visits at a preset frequency. For each run, a
symbolic string ! ¼ qDi1 q

D
i2
� � � qDim with qDir 2 QD8r is

obtained. The frequency probabilities of the various
decision states are computed for each string. For a
sufficiently large number of simulation experiments
based on the identified model S, the average of all
runs yields the required transition probabilities
~�ðqIk , �jÞ for �j2�D. Algorithm 4 summarises the
procedure.

Algorithm 4: Transition probabilities for dynamic events

input : QI,S
output: State transition probability vector

~�ðqIi , �Þ :¼ ~�ðqIi , �1Þ � � � ~�ðqIi , �MÞ where
M ¼ j�D

j

begin

k ¼ 1;
Find qDk such that 9cj2C with qDk !cj

qIi ;

while pk Not Converged do

I. Choose random velocity vector � 2 ½qDk � such
that qDk !cj

qIi ;

II. Choose random acceleration vector;
III. Simulate plant up to average settling time ts;
IV. Obtain sequence of visited decision states
! ¼ qDi1 q

D
i2
� � � qDiM ;

V. Compute current frequency probability vector q;
VI. Compute mean frequency probability vector

pk ¼
1

2
ðpk�1 þ qÞ

endw
~�ðqIi , �Þ ¼ pk;

end

4.2 Computation of the v-vector

As described in Section 3, computation of the optimal
supervisor requires the characteristic vector � as a
time-dependent control specification that is updated as
new sensor data becomes available. In general, � can
be a function of the current velocity vðtÞ, local obstacle
map �(t), goal heading �(t) and a global map �(t)
if available. The characteristic vector � reflects how the
supervised plant handles the sensor data. By suitable
modifications, the plant behaviour can be made more
or less aggressive. For the robotic experiments at hand,
� is selected to be a function of the observed local
obstacle map. Specifically, the weight of a decision
state is assigned a particular value based on the current
intermediate state qIj . All qIj s reachable from qDs
with the same command c2C are assigned the same
weight. If a global map and a goal is available, the
characteristic weights (i.e., �-values of the decision
states) that take the system away from the goal are
further penalised. Furthermore, external directional
commands are incorporated from a higher level in the
hierarchy, while still maintaining obstacle avoidance,
by introducing selective bias on the characteristic
weights of the decision states. Once the transition
matrix parameters and the characteristic weights are
available, an optimal supervisor that maximises
the measure
(�,�) is computed and imposed. Thus,
the trajectory is modified by selectively disabling the
generated commands.

The proposed scheme is illustrated in Figure 4,
where a change in the local environment of the robot
causes the instantaneous control specification to
change, thereby altering the supervisory decisions.
The underlying assumption is that the environment
does not change faster than the time required to
compute the optimal supervisor at each step. This is
not restrictive since the number of iterations required
for the convergence of Algorithm 2 is sub-linear in n

•

•

•

•

•

•

q1

q2

linear velocity

angular
velocity

Figure 3. System trajectories with the identical initial
decision state.

8 G. Mallapragada et al.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
R
a
y
,

A
s
o
k
]

A
t
:

1
4
:
5
9

3

O
c
t
o
b
e
r

2
0
0
8

Chattopadhyay and Ray (2007), where n is the number

of states in the automaton) and therefore can be

executed efficiently. For example, the PLAYER server

(Gerkey et al. 2003) executes data reporting at a

frequency of 10Hz (mostly to accommodate the

standard laser range finders) while the described

optimisation can be carried out at speeds well

over 100Hz even on a moderately powerful PC104

architecture.

4.3 Livelock avoidance

This section addresses the livelock avoidance

(including deadlock avoidance). For a finite state

automaton, livelock means existence of a set of

unmarked states with no transition out of this state

set. To detect the presence of a livelock, a (non-regular-

language-based) observer is built to observe the events

allowed by the obstacle avoidance controller.

Whenever a string of events is accepted by this

observer, the navigation automaton is said to be in a

livelock. The observer is constructed with the following

four basic ingredients.

1. A non-empty finite alphabet � of event

symbols
2. A binary set {q0, q1} of attributes, where q0

indicates that an event does not belong to a

livelocked string and q1 indicates that an event

does belong to a livelocked string
3. A special counting symbol B where �\ {B}¼;
4. An event-driven state transition function �

Definition 15: A livelock observer is defined by the

following three-stack pushdown automaton:

Ol ¼ fQ,�,�1,�2,�3, �,Qmg

where Q¼ {q0, q1}�� is the set of states and

Qm¼ {q1}�� is the set of all accepted states; � is

the event alphabet; �1¼� is the first stack alphabet;

�2¼ {B} and �3¼ {B} are the second and third

stack alphabets; and � : ðQ� �?1 � �?2 � �?3Þ ��!

ðQ� �?1 � �?2 � �?3Þ is the set of transitions defined
as follows:

ð½q0 ��,!,B
k,BnÞ���!

�
ð½q0 ��,!�,B,B

nþ1Þ

� 6¼ � and n5N

ð½q0 ��,!,B
k,BnÞ���!

�
ð½q0 ��,!,B

kþ1,BnÞ

k5K and n5N

ð½q0 ��,!�,B
k,BnÞ���!

�
ð½q0 ��,!, ",B

n�1Þ

k ¼ K and n40

ð½q0 ��,!,B
k,BnÞ���!

�
ð½q1 ��,!�,B,B

nþ1Þ

� 6¼ � and n5N

ð½q1 ��,!,B
k,BnÞ���!

�
ð½q1 ��,!,B

kþ1,BnÞ

k5K and n5N

ð½q1 ��,!�,B
k,BnÞ���!

�
ð½q1 ��,!, ",B

n�1Þ

k ¼ K and n5N

ð½q1 ��,!�,B
k,BnÞ���!

�
ð½q0 ��,!, ",B

n�1Þ

k ¼ K and n5N

where the parameters K and N are chosen based on
the problem at hand and need to be tuned to control
the behaviour of the robot.

It is well known that a push-down automata with more
than one stack has the same expressive power as a
Turing machine (Hopcroft et al. 2001). The livelock
observer is modelled by three stacks to represent
what actually happens in the computation procedure.
The first stack, known as the event stack, stores the
events and the length of this stack determines whether
a livelock is detected or not. The second stack, called
event multiplicity stack, counts the occurrence of the
last event while the third stack, called the counting
stack, counts the number of elements in the event
stack. The observer remembers the last occurred event
using the composite state in Q. The transitions of the
observer perform the following functions in the
order listed in Definition 15.

1. As a new event (� 6¼ �) is added to the event
stack, the counter stack is incremented by one
by pushing the counting symbol B. The event
multiplicity stack is cleared and B is pushed
on to it. The observer changes the state from
{q‘, �} to {q‘, �}, i¼ 0 or 1, to remember the
last event.

2. If new event is the same as the last event, the
multiplicity of the last event is incremented

Figure 4. Schematic representation of supervised navigation.

International Journal of Control 9

D
o
w
n
l
o
a
d
e
d

B
y
:

[
R
a
y
,

A
s
o
k
]

A
t
:

1
4
:
5
9

3

O
c
t
o
b
e
r

2
0
0
8

by pushing the counting symbol B2�2 on to
the second stack. Note that stacks 1 and 2
remain unchanged.

3. If the multiplicity of the last event is k¼K, then
the topmost element of the event stack is
popped out, the event multiplicity stack is
cleared, and the size of event stack is decre-
mented by popping out B from the counter
stack.

4. If the length of the event stack is n¼N, then the
observer switches its state to q1 and accepts the
string (i.e livelock is detected). It remains in q1
as long as n5N and switches back to q0
whenever the stack length becomes less than N.
All other transitions from q1 are similar to
those when the observer is in q0.

The livelock observer records all new events occurring
in the event stack and accepts the string if the event
stack’s length is greater than N. Thus, it essentially
captures alternating events as in the string
01010101010. Since it is undesirable to have strings
like 0n1n0n1n for large n, the top symbol of the
event stack is erased if the multiplicity of the last
symbol is greater than K. For example, let the event
alphabet be �¼ {0, 1}, K¼ 3, and N¼ 5. The
string 0010011001010 would be accepted by the
machine representing a livelock whereas the string
000000011111110000000011111110000000 would not
be accepted. Once a livelock is detected it is a simple
matter to avoid it by randomly choosing one of the
controllable events in the live-lock string and writing
it as an external command to the obstacle avoidance
controller. The main results on livelock observer are
summarised below.

. Livelock detection and monitoring in real
time: The decisions are made from the
observer states.

. Recovery from a livelock: Upon detection of
a livelock, the navigation algorithm is exe-
cuted to circumvent the livelock; this feature
also includes avoidance of forthcoming
livelocks.

It is important to note that the above methodology
is not exclusive in the sense that there exist parallel
approaches for effective detection and recovery from
decision saddle points. The above details demonstrate
that decision livelocks can be easily addressed in
practical implementations.

5. Implementation on a Segway RMP

The model of a Segway robotic mobile platform
(RMP) was obtained by using the system

identification toolbox for MATLAB. The robot is
excited with a psuedo-random input in its typical
work environment and the output measured by the
onboard sensors was recorded. The input is con-
strained as follows.

. 1 sec4 td4 6 sec;

. �0.8m/s4 vc4 0.8m/s;

. �0.4 rad/s4!c4 0.4 rad/s;

where v and ! are the commanded linear and angular
velocities of the robot which are held constant for a
period of td seconds. The measured outputs for linear
velocity v and angular velocity ! of the onboard
sensors were recorded. Since the Segway has the
dynamics of an inverted pendulum, an onboard
balancing controller is always active which introduces
a lot of high frequency disturbances in the response.
The subspace method for system identification (Hayes
1996) is chosen to largely attenuate these disturbances.
To choose the model order we follow standard
techniques such as the Akaike’s information criterion
(AIC) (Hayes 1996). A fourth order model was found
to be a good balance between prediction error and
modelling complexity as shown in Figure 5. The
resulting state space model with the input vector
u ¼ ½vc !c�

T and the output vector y ¼ ½v !�T is
given by

xnþ1 ¼ Axn þ Bun ð8aÞ

yn ¼ Cxn þDun, ð8bÞ

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5 x 106

0 2 4 6 8 10
−18

−17

−16

−15

−14

−13

A
ka

ik
e’

s
pr

ed
ic

tio
n

er
ro

r

Model order

Model order

A
ka

ik
e’

s
in

fo
rm

at
io

n
cr

ite
rio

n

Figure 5. Model order selection.

10 G. Mallapragada et al.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
R
a
y
,

A
s
o
k
]

A
t
:

1
4
:
5
9

3

O
c
t
o
b
e
r

2
0
0
8

where the matrices A, B, C, D are as follows:

A ¼

0:9624 �0:0263 0:1190 0:0198

�0:0293 0:6130 0:0242 0:2175

�0:1277 �0:0798 0:7695 �0:2559

�0:0052 �0:4793 �0:2170 �0:4911

0
BBB@

1
CCCA

B ¼

�0:0082 �0:0003

0:0013 0:0852

0:0368 0:0807

�0:0240 0:4032

0
BBB@

1
CCCA

C ¼
5:3435 �0:3961 �0:1457 0:0926

0:1204 1:4111 0:0013 �0:2697

� �

D ¼
0 0

0 0

� �

Figure 6 shows the input, measured response and

the response of the 4th order model that was fit to

the data.
Simulation results show that 8 decision states are

found to be sufficient for the navigation automaton.

The central points of the corresponding equivalence

classes are shown in the first three columns of Table 1.

The commands or the velocity set points are chosen

to be the central points of the classes as shown in

the fifth column. Hence we had 8 dynamic events,

8 commands, 8 decision states resulting in a total

8þ 8� 8¼ 72 states for the navigation automaton. The

transition probabilities were estimated as described in

Algorithm 4. The first few rows of the ~� matrix in

Table 2 show transition probabilities of the dynamic
events corresponding to intermediate states. Row 9
(in bold) shows probabilities of commands from the
decision state 1. The e� matrix is partially listed in
Table 2; the complete matrix could not be shown due
to space limitation.

The � vector is chosen based on the local obstacle
map as sensed by the onboard sonars. The segway
RMP has 3 sonars in the front and 3 sonars in the back
arranged as shown in Figure 7. The weight for
decision states qDi is chosen to be zero since a decision
state is reached through intermediate states fq j

i g,
i ¼ 1, . . . , jQIj via uncontrollable transitions. The
weight for each intermediate state qij 8i ¼
1, . . . , jQDj � 1 is set to the same value as q0j .
However, the weights for qij and qik j 6¼ k are different.
The weights for states fqijg for i¼ 1 and j¼ 0 . . . 7 are as
shown in Table 3 (see Table 1 for nomenclature of
commands C), where the distances d0 . . . d5 are the
instantaneous readings of sonars 1 . . . 6 of the Segway
RMP and TH¼2.0 meters and the tertiary operator
‘‘? :’’ is the same as in C/Cþþ languages. For example,
result¼ (condition?x : y) means result¼ x if condition
is true, otherwise result¼ y.

0 10 20 30 40 50 60 70 80 90
−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time (sec)

Li
ne

ar
 v

el
oc

ity
 (

m
/s

)

0 10 20 30 40 50 60 70 80 90
−0.5

−0.25

0

0.25

0.5

A
ng

ul
ar

 v
el

oc
ity

 (
 r

ad
/s

)

Time (sec)

measured response

input signal

simulated model response

Figure 6. Response plots for system identification.

Table 1. Decision states and the respective commands.

qDi vi !i ci

Commands
C�� Description

qD0 0 0 c0 X Stop

qD1 0.2 0 c1 F Forward

qD2 0.5 0 c2 FF Fast forward

qD3 �0.2 0 c3 B Back

qD4 0 0.25 c4 L Turn left

qD5 0 0.5 c5 LL Turn fast left

qD6 0 �0.25 c6 R Turn right

qD7 0 �0.5 c7 RR Turn fast right

Table 2. Sample entries of e�.

�0 �1 �2 �3 �4 �5 �6 �7

q10 0.959 0.000 0.000 0.001 0.000 0.000 0.000 0.000

q11 0.024 0.935 0.000 0.001 0.000 0.000 0.000 0.000

q12 0.016 0.015 0.927 0.002 0.000 0.000 0.000 0.000

q13 0.023 0.001 0.000 0.936 0.000 0.000 0.000 0.000

q14 0.004 0.000 0.000 0.000 0.956 0.000 0.000 0.000

q15 0.004 0.000 0.000 0.000 0.001 0.955 0.000 0.000

q16 0.004 0.000 0.000 0.000 0.000 0.000 0.956 0.000

q17 0.004 0.000 0.000 0.000 0.000 0.000 0.001 0.955

c0 c1 c2 c3 c4 c5 c6 c7
qD1 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

International Journal of Control 11

D
o
w
n
l
o
a
d
e
d

B
y
:

[
R
a
y
,

A
s
o
k
]

A
t
:

1
4
:
5
9

3

O
c
t
o
b
e
r

2
0
0
8

5.1 Simulation and implementation results

The proposed algorithm has been extensively simulated

on the stage simulator with player robot server
(Gerkey et al. 2003). Figure 8 shows typical trajectories
in an environment with obstacles. The algorithm has
been successfully implemented on several robotic

platforms including a Segway RMP robot that is
instrumented with a variety of sensors.

Figure 9 illustrates the effects of including vehi-
cular dynamics, where normalised histograms of
probability distribution are compared based on the

same data set from 100 runs for the two cases: (i)
vehicular dynamics included, and (ii) vehicular
dynamics not included. The results indicate that the
probability of being in the obstacle vicinity (e.g.,

within 0.2m) reduces to half if the effects of vehicle
dynamics are accounted for.

Figures 10(a) and 10(b) respectively show the
performance of obstacle avoidance without and with
livelock avoidance. The plots in Figure 10 show the

position (x, y, �) of the robot with time. Without any
livelock avoidance, the robot may become stuck in
a livelock (e.g., the robot keeps moving forward and
backward as indicated by unchanging � as seen in
Figure 10(a)). In contrast, with the livelock observer
monitoring the robot’s behaviour, the livelocks
are completely avoided as seen in Figure 10(b). The
experimental results establish the following
features of the navigation algorithm and the livelock
observer.

. Robustness under disturbances: This feature
includes sensor faults (e.g., noisy and inter-
mittent sensors).

Figure 7. Sensor array on Segway RMP.

Table 3. Weights (s) for few sample states.

q
Characteristic
weight �(q) Outcomes

q10 �8.0 High neg wt for X

q11 (d14TH?(d1� 0.3):(d1� 0.3)*1.8) high pos wt for F

q12 (min(d1, d0, d2)4TH?d1*3.0:0.0) pos wt for FF

q13 d4� 2.2 B

q14 d0� 0.05 L

q15 min(d0, d3)� 0.01 LL

q16 d2� 0.06 R

q17 min(d2, d5)þ 0.01 RR

Figure 8. Simulated Segway robot motion on a STAGE
simulator.

0 200 400 600 800 1000
0

0.5

1

1.5

2

Time (sec)

O
bs

ta
cl

e
di

st
an

ce
 (

m
)

Dynamics based
No dynamics

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Obstacle proximity classes

P
ro

ba
bi

lit
y

[0 0.2]

[0.2 0.3]

[0.3 0.75]

[0.75 1.5]
[1.5 2]

Probability distribution of obstacle proximity
Dynamics based
No dynamics

Figure 9. Effect of considering vehicular dynamics and
otherwise.

12 G. Mallapragada et al.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
R
a
y
,

A
s
o
k
]

A
t
:

1
4
:
5
9

3

O
c
t
o
b
e
r

2
0
0
8

. Insignificant computational cost: This feature

ensures superior robot behaviour in real time.
. Local convergence: This feature alleviates the

problem of being ‘stuck in local optimisation

minima’, which is typical for purely contin-

uous techniques.
. Fine control of robot behaviour: This feature

is made possible through assignment of the

characteristic vector, which is superior to

‘safety distance’ assignment that is usually

adopted in robot control.

6. Summary, conclusions, and future research

This paper formulates and experimentally validates a

novel concept for autonomous intelligent navigation

of mobile robotic platforms, especially in unmapped

dynamic environments. The navigation algorithm is

formulated based on language-measure-theoretic opti-

mal control of probabilistic regular languages

(Chattopadhyay and Ray 2007). Real-time sensor

data and model-based information on the robot’s

motion dynamics are fused to construct a probabilistic

finite state automaton model that dynamically com-

putes a time-dependent discrete-event supervisory

control policy. Emphasis is laid on reduction of

computational load and algorithmic complexity in

the synthesis of the discrete-event supervisory control
algorithm. The basic behaviour of mobile robotic
platforms has been modelled as a probabilistic finite
state automaton (PFSA). At each step, its future
performance is computed in advance based on
(possibly) time-dependent characteristic weights. The

robust supervisory control algorithm is updated and
exercised in real time according to specifications that
may be dynamically updated.

The paper also addresses the issue of livelock
avoidance by constructing an observer to monitor the
behaviour of the navigation algorithm. In the event that a
livelock is detected, the observer sends external com-
mands to the navigation algorithm to circumvent the
livelock. The performance and robustness of the auton-

omous intelligent navigation algorithm have been experi-
mentally validated on Segway RMP robotic platforms.

The future research plan includes application of
language-theoretic formalism for global path planning
as an extension of reactive local path planning.
Initial studies suggest a possible hierarchical structure,
where the robot environment is partitioned into grids.
In this approach, a global path planner at the upper

level would plan paths from grid A to grid B in the
map, where the lower lever may execute a navigation
algorithm, such as the one presented in this paper,
for local path planning. The two levels may operate
independently except when the global planner com-
mands the lower level to execute the plan. Future
research may also incorporate feedback from the

lower level during the computation of optimal paths.

Acknowledgements

This work has been supported in part by the U.S. Army
Research Laboratory and the U.S. Army Research Office
under Grant Nos. W911NF-07-1-0376 and W911NF-06-
1-0469.

References

Brock, O., and Khatib, O. (1999), ‘High-speed Navigation

using the Global Dynamic Window Approach’, ICRA,

Detroit, MI, Vol I, 341–346.

Chattopadhyay, I., Chakraborty, S., and Ray, A. (2005),

‘Intelligent Navigation in Space’, AIAA Aerospace Infotech

Proceedings, pp. AIAA–2005.
Chattopadhyay, I., and Ray, A. (2006), ‘Renormalised

Measure of Regular Languages’, International Journal of

Control, 79, 1107–1117.

Chattopadhyay, I., and Ray, A. (2007), ‘Language-

measure-theoretic Optimal Control of Probabilistic

Finite-state Systems’, International Journal of Control, 80,

1271–1290.

0 100 200 300 400 500 600
−10

−5

0

5

Time (sec)

x
an

d
y

(m
),

θ
(r

ad
)

(a) Obstacle avoidance without livelock avoidance

0 100 200 300 400 500 600
−15

−10

−5

0

5

10

x
an

d
y

(m
),

θ
(r

ad
)

(b) Obstacle avoidance with livelock avoidance
Time (sec)

x position

y position
θ

x position

y position
θ

Figure 10. Robot motion profile: x position, y position, and
angle �. Top plate (no livelock observer): Livelock from
210 sec onwards. Bottom plate (with livelock observer):
Normal operation.

International Journal of Control 13

D
o
w
n
l
o
a
d
e
d

B
y
:

[
R
a
y
,

A
s
o
k
]

A
t
:

1
4
:
5
9

3

O
c
t
o
b
e
r

2
0
0
8

Fox, D., Burgard, W., and Thrun, S. (1997), ‘The Dynamic
Window Approach to Collision Avoidance’, IEEE

Robotics & Automation Magazine, 4, 23–33.
Fujimura, K. (1991), Motion Planning in Dynamic
Environments, New York, NY, USA: Springer-Verlag.

Garg, V. (1992) ‘An Algebraic Approach to Modeling

Probabilistic Discrete Event Systems’, Proceedings of
1992 IEEE Conference on Decision and Control, Tucson,
AZ, pp. 2348–2353.

Garg, V. (1992) ‘Probabilistic Languages for Modeling of
DEDs’, Proceedings of 1992 IEEE Conference on
Information and Sciences, Princeton, NJ, pp. 198–203.

Gerkey, B., Vaughan, R., and Howard, A. (2003), ‘The
Player/Stage Project: Tools forMulti-robot andDistributed
Sensor Systems’, Proceedings of the International
Conference on Advanced Robotics (ICAR 2003), Coimbra,

Portugal, June 30–July 3, pp. 317–323.
Hayes, M. (1996), Statistical Digital Signal processing and
Modelling, New York, NY, USA: John Wiley & Sons.

Hopcroft, J.E., Motwani, R., and Ullman, J.D. (2001),
Introduction to Automata Theory, Languages, and
Computation (2nd ed.), Boston, MA, USA: Addison-Wesley.

Hwang, Y.K., and Ahuja, N. (1992), ‘Gross Motion
Planning—a Survey’, ACM Computing Surveys, 24,
219–291.

Kokotovic, P., Khalil, H., and O’Reilly, J. (1999), Singular
Perturbation Methods in Control Analysis and Design,

Philadelphia, PA: Society of Industrial and Applied
Mathematics.

Koren, Y., and Borenstein, J. (1991) ‘Potential Field
Methods and their Inherent Limitations for Mobile

Robot Navigation’, Proceedings of IEEE International
Conference on Robotics and Automation,
pp. 1398–1404.

Ljung, L. (1999), System Identification (2nd ed.), Upper
Saddle River, NJ, USA: Prentice Hall PTR.

Lozano-Perez, T. (1983), ‘Signal Planning–a Configuration

Space Approach’, IEEE Transactions on Computers, C-32,
108–120.

Mallapragada, G., Chattopadhyay, I., and Ray, A. (2006)
‘Autonomous Navigation of Mobile Robots Using

Optimal Control of Finite State Automata’, IEEE
Conference on Decision and Control (CDC), San
Diego, pp. 2400–2405.

Ray, A. (2005), ‘Signed Real Measure of Regular Languages
for Discrete-event Supervisory Control’, International
Journal of Control, 78, 949–967.

Ray, A., Phoha, V., and Phoha, S. (2005), Quantitative
Measure for Discrete Event Supervisory Control,
New York: Springer.

14 G. Mallapragada et al.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
R
a
y
,

A
s
o
k
]

A
t
:

1
4
:
5
9

3

O
c
t
o
b
e
r

2
0
0
8

