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To this end, much efforts have been directed towards enhancement of fault diagnostics and prognostics
in electric motors, largely based on conventional signal processing and pattern classification. This paper
formulates and experimentally validates a recently reported technique, called Symbolic Dynamic Filter-
ing (SDF), for early detection of stator voltage imbalance in three-phase induction motors. The SDF-based
imbalance detection algorithm is built upon the principles of wavelet transforms and symbolic time series
analysis.
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. Introduction

Advanced automation and process integration in modern engi-
eering facilities have placed stringent demands on reliability and
erformance of electric motors. To this end, several online fault
onitoring techniques of varying complexity have been devel-

ped and deployed. Examples of the relatively simple techniques
nclude Negative Sequence Detectors [1], Kappa Transforms [2], Volt-
ge Mismatch Detectors [3,4]. More advanced techniques of pattern
lassification have also been used, for example, Mechanical Vibra-
ion Monitoring [5], Signal Spectral Analysis [6], and Fuzzy Logic
nd Neural Networks [7,8]. These techniques have their respective
hortcomings and advantages; in general, simple techniques do
ot provide sufficiently early warnings, while advanced techniques
equire excessive computational resources.

This paper presents a computationally efficient and robust
ethod for early detection of anomalies due to stator voltage imbal-

nce in three-phase induction motors, where an anomaly is defined
s a deviation from the nominal expected behavior of machine
ynamics. Based on the observed anomalies, signal processing for

ault detection is classified in two categories: (i) identification of
ignal features that have a high degree of correlation with one

r more types of anomalies; and (ii) application of a decision-
aking algorithm to classify the set of measured signal features

o identify a particular type of anomaly or the absence of an
nomaly. These two categories may not be clearly distinguishable
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n many fault detection and identification techniques such as neural
etworks [8].

From the above perspectives, anomaly detection is posed as a
wo-time-scale problem as seen in Fig. 1. Time series data of mea-
ured variable(s) are collected in the fast time scale at discrete
low-time epochs, over which progression of anomalies may take
lace in the form of parametric or non-parametric variations in
he system response [9]. The objective here is to make inferences
n occurrence of the evolving slow-time-scale faults (e.g., grad-
al breakdown in winding insulation), based on changes in the
bserved statistics of the fast-time-scale process (e.g., stator volt-
ge) dynamics. The problem of pattern recognition from time series
ata for machine health monitoring has been recently addressed by
any researchers [10,11].
Early detection of anomalies and pattern recognition have moti-

ated formulation and validation of Symbolic Dynamic Filtering
SDF) [9,12–14]. The anomaly detection method, presented in this
aper, is built upon the concept of SDF and is based on the following
ssumptions:

The system behavior is stationary at the fast time scale of the
process dynamics;
An observable non-stationary behavior of the dynamical system
can be associated with anomaly(ies) evolving at a slow time scale.
In the above context, stationarity pertains to statistical nature
f time series data and does not imply periodic angular motion of
he machine. Consequently, the first of the above two assumptions
emains valid even under heavy imbalance of stator voltage and
esulting vibration of the machine.

http://www.sciencedirect.com/science/journal/03787796
http://www.elsevier.com/locate/epsr
mailto:rg_samsi@yahoo.com
mailto:axr2@psu.edu
mailto:mayer@ee.psu.edu
dx.doi.org/10.1016/j.epsr.2008.06.004
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prediction and sensor-based observation.
ig. 1. Two time scales: (i) Slow time scale of anomaly evolution and (ii) Fast time
cale for data acquisition and signal conditioning.

Since imbalance of stator voltage monotonically increases on
he slow time scale, they can be detected from the data sequences
bserved on the fast time scale and the above assumptions do not
imit the scope of the problem to be tackled. The framework of the
nomaly detection problem consists of the following two steps.

Preprocessing of observed time series data using wavelet analysis
[15] and Parks vector representation [16];
Pattern Classification based on the preprocessed data sets.

The paper is organized in six sections including the present
ne. The basic characteristics of fault signatures due to voltage
mbalance are described in Section 2. Then, two parts of the above
ramework to detect voltage imbalance are discussed in Sections 3
nd 4. The results on an experimental apparatus are presented in
ecion 5 as a proof of concept for the proposed anomaly detection
lgorithm. Finally, the paper is concluded in Section 6 along with
ecommendations for future research.

. Analysis of fault signatures

A basic analysis of the stator currents indicates that the fault
nformation is contained in the range of twice the line frequency,

hich is different from the case of rotor bar faults where the fault
ies in the frequency region of 2sf and 4sf , where s is the slip and f
s the line frequency.

The information on stator-imbalance faults is not readily dis-
ernable from the line currents, iA, iB and iC, especially true for small
mounts of imbalance. The Parks vector transformation [16] has
een adopted to isolate and identify these fault signatures. Con-
truction of the Parks vector from the line currents is explained
elow.

d =
√

2
3
iA − 1√

6
iB − 1√

6
iC (1)

q = 1√
2
iB − 1√

2
iC (2)

here id and iq are the direct and quadrature axis currents respec-
ively. These currents should ideally be �/2 radians out of phase.

d =
√

3
2
iM cos(ωt) (3)

q =
√

3
2
iM sin(ωt) (4)

In a parametric plot with t as the parameter, the direct and
uadrature axis currents represent an ellipse.

2
d + i2q = 3

i2M (5)

2

here iM becomes a constant under constant shaft load. The quan-
ity in Eq. (5) is known as the Parks vector modulus [16], which

ay be subjected to significant deviations as a result of the supply
oltage imbalance.

o

Fig. 2. Induction motor currents under imbalanced operation.

The imbalanced supply voltage causes the stator currents to be
nbalanced and the unbalanced currents are represented by posi-
ive sequence and negative sequence currents,1i+A and i−A ; i+B and i−B ;
nd i+C and i−C , as shown in Fig. 2.

Let the positive and negative sequence currents have maximum
alues of I+ and I−, respectively. Then, the three line currents are
epresented as follows:

A = I+ cos (ωt + ϕ+) + I− cos(ωt + ϕ−) (6)

B = I+ cos
(
ωt + ϕ+ − 2�

3

)
+ I− cos

(
ωt + ϕ− − 4�

3

)
(7)

C = I+ cos
(
ωt + ϕ+ − 4�

3

)
+ I− cos

(
ωt + ϕ− − 2�

3

)
(8)

here ϕ+ and ϕ− are the phase angles of the positive and negative
equence currents, respectively. For an unbalanced condition, it fol-
ows from Eqs. (1)–(4) that the direct and quadrature axis currents
re:

d =
√

3
2
I+ cos(ωt + ϕ+) +

√
3
2
I− cos(ωt + ϕ−) (9)

q =
√

3
2
I+ sin(ωt + ϕ+) −

√
3
2
I− sin(ωt + ϕ−) (10)

hen, following Eq. (5), the Parks vector modulus [16] becomes:

2
d + i2q = 3

2 (I2+ + I2−) + 3I+I− cos(2ωt + ϕ+ + ϕ−) (11)

The fault signature resides at twice the line frequency 2ω, which
s obvious from the profiles of power spectra in Fig. 3 in the vicinity
f 120 Hz.

The next two sections present the framework employed to
etect voltage imbalance at an early stage. A block diagram of this
rocedure is shown in Fig. 4.

. Wavelet processing of stator signals

Although models of electrical motors and drive systems are
vailable for prediction of their normal (i.e., healthy) behavior,
uch models may not be adequate for identification of incipient
aults due to the presence of spurious disturbances and measure-

ent uncertainties. Therefore, a convenient way of identifying the
ynamical behavior of electrical motors is to rely on both model
The need to extract relevant physical information about the
bserved dynamics has lead to development of nonlinear time

1 For a three-wire system with a floating neutral there are no 0-sequence currents.
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Fig. 3. Power spectral density at different levels of imbalance.

eries analysis (NTSA) techniques. Identification of nonlinear sys-
ems can be achieved via Formal Language representation. In this
aper, a discrete symbolic description is derived from the scale
eries obtained by wavelet analysis.

Preprocessing of the raw time series data involves data col-
ection, followed by extraction of meaningful information. In this
aper, data preprocessing is performed by wavelet analysis that
ields both time and frequency information [17]. The continuous
avelet transform (CWT) has been used for data analysis which,

or a function f (t), is given by:

WT˛,ˇ =
∫ ∞

−∞
f (t) ∗

(
t − �
˛

)
dt (12)

here (t) is the wavelet basis function with ˛ > 0 being the scale
nd� being the time shift. Hence, the wavelet transform coefficients
re a function of both time and scale.

Selection of the wavelet basis function  (t) and the scales ˛
re crucial for robustness and performance of the fault detection

ethodology. If an inappropriate wavelet basis is chosen, the num-

er of coefficients required to represent the original signal could
ecome large. Several wavelet basis functions were tested including
aar, Gauss, and Mexican Hat [15]. All of them performed satisfac-

Fig. 4. Block diagram of the anomaly detection procedure.
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orily. The Haar wavelet was chosen because of its simplicity and
ue to the fact that it can detect changes in the dc (i.e., constant)
omponents in the signal easily. Although there is no known stan-
ard procedure for the choice of scales, the following guideline has
roven to be useful.

For every wavelet, there exists a certain frequency called the
enter frequency (Fc). The pseudo-frequency fp of the wavelet at a
articular scale ˛ is given by the following formula [15].

p = Fc

˛
(13)

The Power Spectral Density (PSD) of a given signal or the phys-
cal knowledge of the system from which the signal is obtained to
rovide the information about the frequencies at which the fault
ignature is predominant. This information along with Eq. (13) has
een used to select the scales.

Once the wavelet basis and scales are chosen, the wavelet coef-
cients are obtained for each of the scales. These coefficients are
tacked from end to end starting with the smallest value of scale
nd ending with the largest value. In this paper, the wavelet coef-
cients versus scale at position shift �k are stacked after the ones
t time shift �k−1, to obtain the so-called scale series data in the
avelet space [9,12].

.1. Discretization of the wavelet space

The wavelet space is first discretized based on an appropriate
oincare section P [18]. Since the wavelet transform is linear, this is
quivalent to partitioning the time series data. The resulting space
f the map is divided into finitely many cells to obtain a coordi-
ate grid for the underlying dynamics. Thus, partitioning maintains
he essential behavior of the dynamical system while reducing the
omplexity of the problem from the continuous domain to the
iscrete domain and reducing the problem to a finite state rep-
esentation. This is the essential feature of space partitioning that
ends itself to easier pattern classification.

For simplicity, a compact set ˝ within which the trajectories
f the dynamical system are circumscribed, is identified with the
avelet space itself. The encoding of ˝ is accomplished by intro-
ucing a partition B = (B0, B1, B2, Bn−1) consisting of n mutually
xclusive and exhaustive subsets, i.e., Bj ∩ Bk = ∅, ∀j /= k, ∪n

j=1Bj =˝.
he dynamical system describes an orbitO = (x0, x1, x2, . . . ,xn, . . .),
hich passes through or touches various elements of the partition
. Let us denote the index of domainBi ∈ B visited at the time instant
as the symbol �i ∈˙. The set of symbols ˙ = (�1, �2, . . . , �n−1)

abeling the partition elements is called the alphabet. This forms a
apping from the wavelet space to the space of symbols. Such a
apping is called Symbolic Dynamics, as it attributes a legal (i.e.,

hysically admissible) symbol sequence to the system dynamics.
s the size of each cell is finite and the cardinality of the alphabet
is finite, any such symbol sequence represents, through iteration,

trajectory that has the compact support˝.
In general, a dynamical system would generate only a subset

f all possible sequences of symbols as there are many illegal (i.e.,
hysically inadmissible) sequences. The grammar (i.e., set of rules)
hat determines legality of symbol strings in the alphabet ˙ may
hange with the occurrence of the fault that, as discussed earlier,
ccurs in the slow time scale. In essence, partitioning can be viewed
s coarse graining of the wavelet space and hence subjected to (pos-
ible) loss of information. However, the essential robust features

e.g., periodic behavior or chaotic behavior of an orbit) are expected
o be preserved in the symbol sequences through an appropriate
artitioning of the wavelet space [19].

After the scale series data are constructed, the objective is to
onvert this data set into a sequence of symbols. In this uniform par-
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Fig. 5. Symbol generation from scale series data.

itioning method, the maximum and minimum of the scale series
as found. The ordinates between the maximum and minimum
ere split into equal-sized regions. These regions are mutually
isjoint and they form a partition. Each region is associated with
ne symbol from the alphabet. If the data point lies in a par-
icular region, it is coded with the symbol associated with that
egion. Thus, a sequence of symbols is generated from the scale
eries. Fig. 5 depicts the partitions and the symbols associated with
hem.

In this paper, the wavelet space (scale series) is partitioned into
egments of equal size; this method is called Uniform Partitioning.
ther methods such as Maximum Entropy Partitioning [12] are also
pplicable and their investigation is topic of future research.

. Pattern classification

Having obtained the symbol sequence there arises a need to
epresent this pattern of symbols. This has been accomplished by
sing a probabilistic finite state machine, called D-Markov machine,

n Symbolic Dynamic Filtering (SDF) [9].

.1. D-Markov machine

The purpose of a probabilistic finite state machine is to cap-
ure the dynamical behavior of the underlying process. The core
ssumption in the construction of a D-Markov machine is that the
ymbolic process can be approximated, to a desired level of accu-
acy, as a D th order Markov chain and D∈N, where N is the set
f positive integers. The states are chosen as words of length D
rom the symbol sequence. With the cardinality |˙| of the alphabet
nd the depth D, the maximum number of states in the D-Markov
achine is given by |˙|D. The state machine moves from one state

o another upon occurrence of an event. All symbol sequences for
hich the last D symbols are the same, belong to the same equiva-

ence class that forms a state. ForD = 1, it becomes a regular Markov
rocess, with each new symbol leading it to the next state. In this
aper, this happens to be the case and the D-Markov machine is
hown in Fig. 6.

Having constructed the D-Markov machine, the state transi-
(��)
ional probabilities �
ij

between the states, upon occurrence of
he symbol �� ∈˙, are determined, where i is the state of origin
nd j is the state transitioned to. As the system trajectory evolves,
ifferent states are visited with different frequencies. The number
f times a state is visited as well as the number of times a particular

p
s
o
p

Fig. 6. Finite state machine for representation of induction motor dynamics.

ymbol is received, is counted. The state probabilities and the state-
o-state transition probabilities are calculated for each state in this
ay. The probabilities are obtained by frequency counts based on

he stopping rule reported in [20,21]. Thus, �(��)
ij

≈ n(��)
i
/Ni, where

(��)
i

is the number of times the symbol �� occurred at the state i
nd Ni is the total number of occurrences of symbols at the state i,
.e Ni =

∑
kni

(�k).
The matrix comprised of the transitional probabilities between

he various states is called the state transition matrix �, shown
n Tables 1–3. The columns of the matrices indicate the original
tate and the rows indicate the state transitioned to. The entries in
he tables indicate the probabilities with which these transitions
ccur. The row sum of these � matrices should always be unity

is a stochastic matrix. The unity-valued entries, if any, in the
atrix correspond to the states that are not visited at all, since if

he machine does go into any of those states, it will not be able to
xit the state.

.2. Anomaly measure and anomaly detection

The probabilistic finite state machines, described in Section
.1, are capable of representing patterns in the behavior of a
ynamical system under faulty/anomalous conditions. In order to
uantify changes in the patterns, an anomaly measure, denoted
s M, is introduced. The state transition probabilities are depen-
ent on the underlying system dynamics as reflected in the symbol
equence. This is a factor in detecting an fault/anomaly because
erturbations in the system dynamics causes significant changes

n the state transition probabilities, though such changes may
lso be dependent on how the wavelet space is partitioned. The
nduced norm of the difference between the state transition matri-
es �0 and �, respectively, for the nominal and anomalous state
achines G0 and G, may be used as a measure of anomaly,i.e.
(G0, G) = ||�0 − �||. Alternatively, a measure of anomaly may be

erived directly from state probability vector p, whose elements
enote the probability of occurrence of states of the D-Markov
achine. This is obtained by computing the left eigenvector of

he stationary � matrix, corresponding to the unity eigenvalue
9].
Since the D-Markov machine has a fixed state structure, the state
robability vector associated with all state machines will have the
ame dimension. Hence they may be used for vector representation
f the anomaly, leading to the anomaly measure M(G0, G)� ||p0 −
||.
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Table 1
� matrix for R = 0�

q0 q1 q2 q3 q4 q5 q6 q7

q0 1.0000 0 0 0 0 0 0 0
q1 0 1.0000 0 0 0 0 0 0
q2 0 0 0 1.0000 0 0 0 0
q3 0 0 0.0001 0.9475 0.0524 0 0 0
q4 0 0 0 0.0569 0.9268 0.0163 0 0
q5 0 0 0 0 0.2302 0.7698 0 0
q6 0 0 0 0 0 0 1.0000 0
q7 0 0 0 0 0 0 0 1.0000

Table 2
� matrix for R = 5�

q0 q1 q2 q3 q4 q5 q6 q7

q0 1.0000 0 0 0 0 0 0 0
q1 0 1.0000 0 0 0 0 0 0
q2 0 0 0.7972 0.2028 0 0 0 0
q3 0 0 0.0464 0.8871 0.0665 0 0 0
q4 0 0 0 0.0611
q5 0 0 0 0
q6 0 0 0 0
q7 0 0 0 0

5
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•

•

•

t
m
m
t
f

r
n
as indicated by Eq. (5). However, there is a noticeable distortion in

T
�

q
q
q
q
q
q
q
q

Fig. 7. Laboratory test apparatus for fault detection in electric motors.

. Experimental results and discussion

The proposed anomaly detection method has been experimen-
ally validated on a test apparatus in the laboratory environment,
hich is depicted in Fig. 7. The test apparatus consists of the fol-

owing components:
Motors: 3-phase, 1.5 kW Y-connected squirrel cage induction
motors were used. These motors are coupled using a flexible
Lovejoy coupling to the dynamometer.

t
s
t
i

able 3
matrix for R = 50�

q0 q1 q2 q3

0 0.8547 0.1094 0.0289 0.0069
1 0.1453 0.7012 0.0956 0.0397
2 0.0473 0.1354 0.6406 0.1058
3 0.0077 0.0659 0.1181 0.6240
4 0 0.0186 0.0579 0.1114
5 0 0 0.0174 0.0564
6 0 0 0 0.0089
7 0 0 0 0
0.9093 0.0296 0 0
0.1832 0.8168 0 0
0 0 1.0000 0
0 0 0 1.0000

Load: For loading the motors a hysteresis dynamometer was used,
this provides two-quadrant operation. The dynamometer used
was a model HD-805 6N Magtrol Inc, a hysteresis brake.
Sensors: The sensor board consisted of both voltage and current
sensors. The sensors have an extremely high bandwidth, they are
intentionally kept that way so that high frequency as well as low
frequency components harmonics could be measured and ana-
lyzed. The sensors used were LEM model numbers LV-25P and
LA-55P . This is followed by operational amplifiers, realized by
LM-324 IC’s which provide sufficient gain. The amplified signal is
sent to the data acquisition board.
Processor and Data Acquisition: The data acquisition is the dSPACE
Ds-1103 PPC card. This card has a Motorola Power PC 400 MHz
processor. It also features sixteen 14-bit ADC units and four 12-bit
ADC units, as well as eight 12-bit DAC outputs.

The stator voltage imbalance was created by adding a resistor
o one of the phases of the motor. Table 1 shows the nominal �

atrix with no resistance added, while Tables 2 and 3 show the �-
atrices for imbalance with added 5 and 50�, respectively. The

hree pairs of columns in Table 4 show the state probability vectors
or three cases of 0, 5 and 50� imbalance, respectively.

The added resistance was increased for every run with its values
anging from 0 to 50�. In the ideal case with 0˝ imbalance (i.e.,
o added resistance), the phase plot in Fig. 8 should be elliptical
he phase plots due to existence of voltage imbalance in the power
upply of real-life experiments. As seen in Fig. 8, the orientation of
he phase plots change monotonically with increase in resistance
n one of the phases.

q4 q5 q6 q7

0.0001 0 0 0
0.0179 0.0004 0 0
0.0434 0.0275 0 0
0.1139 0.0505 0.0200 0
0.6263 0.1184 0.0579 0.0095
0.1047 0.6513 0.1335 0.0368
0.0435 0.0998 0.7238 0.1240
0.0033 0.0223 0.1111 0.8632
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Table 4
p vector for R = 0, 5 and 50�

0� 5� 50�

q0 0 q0 0 q0 0.1711
q1 0 q1 0 q1 0.1338
q2 0.0001 q2 0.0918 q2 0.0996
q3 0.5033 q3 0.4013 q3 0.0919
q4 0.4637 q4 0.4365 q4 0.0933
q
q
q

l
t
l
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w
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5
e
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6

a
a
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5 0.0329 q5 0.0704 q5 0.1042
6 0 q6 0 q6 0.1424
7 0 q7 0 q7 0.1637

The block diagram in Fig. 4 shows the procedure that was fol-
owed in the laboratory experiments. The motor was loaded to
wo-thirds of full load, i.e., 1.0 kW, and time series data were col-
ected for 100 s at a sampling rate of 1 kHz. For analysis of imbalance
etection, 10 s of data were used after the motor had reached
teady-state operation. Tests at other load levels down to 0.5 kW
ere also conducted; these tests yielded similar results. The next

tep was online computation of the Parks vector transform and cal-
ulation of the Parks vector Modulus following Eq. (11). The mean
f this modulus was subtracted from each sample to remove the
C bias. Wavelet analysis was performed on this transformed data
ith the basis function ‘db1’ [15]; the scales were chosen between 6

nd 10 with a step size of 0.2, using the guidelines given earlier. The
lphabet size was |˙| = 8 and the depth was chosen to be D = 1.

It is seen in Tables 1–3 that the structure of �-matrices for 0,
, and 50� changes dramatically with increase in imbalance. For
xample, several transitions (e.g., from q0 to q1) that are unlikely
o occur under the nominal condition, do occur in the case of 50˝
mbalance. There is an important observation to make in the nom-
nal case, which is the fact that many of states have a transition
robability of 1, while making transitions to themselves. These
tates represent very rare occurrences, but if they do occur, then
he automaton stays in these deadlock states.

The norm of the difference between the nominal condition (i.e.,
ithout imbalance) and the ones with imbalance yields non-zero

nomaly/fault measure. The normalized anomaly measure plot is
hown in Fig. 9. For example, with a suitable threshold function

shown in the figure), it is possible to detect incipient faults early.
or a similar fault, other methods like neural networks could detect
change only when the imbalance exceeded 0.2 per unit, (which is
8˝ in this case) as reported in [22].

Fig. 8. Parks vector phase plot.
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Fig. 9. Normalized anomaly measure as a function of imbalance.

One of the main advantages of the proposed SDF-based detec-
ion method is its excellent noise rejection capability because noise
s filtered out in the wavelet transform and is also averaged out by
epeated traverse in the D-Markov machine. The proposed method
s also computationally simple as it is essentially a counting process
fter taking the wavelet transform.

. Conclusions and future work

This paper presents a novel method for detecting stator volt-
ge imbalance in three-phase induction motors. The underlying
lgorithm is formulated based on Symbolic Dynamic Filtering (SDF)
hat involves wavelet transform of stator current signals and sub-
equent analysis based on D-Markov machine construction [9]. A
ey advantage of the proposed method is that it is computationally
ess intensive than many existing anomaly detection methods and
et is capable of detecting incipient faults at an early stage.

The anomaly detection method has been experimentally val-
dated on a 3-phase, 2-HP squirrel cage induction motor in the
aboratory environment. This SDF-based anomaly detection has
een shown to be successful in other applications such as fatigue
amage monitoring [13,14]. Hence, it is believed that the proposed
ethod would also be successful for fault detection in other types

f electric motors (e.g., permanent-magnet machines, and reluc-
ance machines) and electronic drive systems; ongoing research
fforts are focused in this direction. Before embarking on industrial
pplications this anomaly detection method, further theoretical
nd experimental research is recommended in the following areas:

Formulation of alternative techniques for space partitioning.
Investigation of effects of the SDF parameters (e.g., D and |˙|) on
the performance of anomaly detection.
Experimentation on other types of faults such as broken rotor
bars and faulty bearings in the motor shaft.
Experimentation on high performance drives, where both noise
level and signal bandwidth are higher than those in standard
squirrel-cage motors.
Experimentation on with other types of electric motors and elec-
tronic drive systems.
cknowledgements
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