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m?: a robot path planning algorithm based on renormalised measure

of probabilistic regular languages
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This article introduces a novel path planning algorithm, called m?, that reduces the problem of robot path
planning to optimisation of a probabilistic finite state automaton. The m?-algorithm makes use of renormalised
measure m of regular languages to plan the optimal path for a specified goal. Although the underlying navigation
model is probabilistic, the m?-algorithm yields path plans that can be executed in a deterministic setting with
automated optimal trade-off between path length and robustness under dynamic uncertainties. The m?-algorithm
has been experimentally validated on Segway Robotic Mobility Platforms in a laboratory environment.
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1. Introduction and motivation

The field of trajectory and motion planning is

enormous, with applications in diverse areas such as

industrial robots, mobile robot navigation, spacecraft

re-entry and video games. Many of the basic concepts

are presented in Latombe’s book (1991) and in a recent

book by LaValle (2006). In the context of planning for

mobile robots and manipulators much of the literature

on path and motion planning is concerned with finding

collision-free trajectories (Kondo 1991). A great deal

of the complexity in these problems arises from the

topology of the robot’s configuration space, called the

C-Space. Various analytical techniques, such as wave-

front expansion and cellular decomposition, have been

reported in recent literature (Lozano-Perez 1987),

which partition the C-Space into a finite number of

regions with the objective of reducing the motion

planning problem as identification of a sequence

of neighbouring cells between the initial and final

(i.e. goal) regions. Graph-theoretic techniques have

been successfully applied to path planning of wheeled

ground robots and also used for solving radar evasion

problems associated with unmanned aerial vehicles

(UAVs) (Anisi, Hamberg and Hu 2003). In general,

these path planning tools suffer from exponential

growth in complexity with both graph size and

dimension. To circumvent the complexity associated

with graph-based planning, sampling based planning

methods, such as probabilistic road maps

(Barraquand, Langlois and Latombe 1990), have

been widely used. These tools are probabilistically

complete, i.e. a feasible solution could eventually be
found if it exists. However, there is no guarantee of
finding a solution within a specified time.

This article introduces and experimentally validates
a novel path planning algorithm that formulates the
navigation problem in the framework of probabilistic
finite state automata (PFSA) from a control-theoretic
perspective. The key contribution of the article is to be
interpreted in the following light:

A framework for robot path planning is reported,
which is fundamentally different from the current
state-of-the-art in the sense that it potentially leads to
a new breed of high-performance planners rather than
just formulating an algorithm designed to outperform
the current planners for specific examples.

The proposed path planning algorithm, called m?,
performs the path planning for a specified goal by
optimisation of the renormalised language measure l
of the PFSA model (Chattopadhyay and Ray 2006,
2007). Although the underlying navigation model is
probabilistic, the m?-algorithm yields path plans that
can be executed in a deterministic setting with
automated optimal trade-off between the path length
and robustness of computation under dynamic uncer-
tainties. The advantages of the m?-algorithm are
delineated below.

(1) Computationally inexpensive pre-processing:
Conventional cellular approaches decompose
the set of free configurations into simple non-
overlapping regions (Lozano-Perez 1987;
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Kondo 1991) with the adjacency relations

and reachability constraints, represented in

a connectivity graph that is subsequently

searched for a path. Conventional construction

of the connectivity graph that faithfully

reflects the continuous C-Space constraints

(e.g. obstacles) is expensive and often intract-

able for large-dimensional problems. In con-

trast, the decomposition in the m?-algorithm is

relatively simple and computationally inexpen-

sive. The cells are mapped to PFSA states

that are defined to have identical connectivity

via symbolic inter-state transitions. Desirable

or ‘good’ states are assigned positive weights

relative to undesirable or ‘bad’ states that may

have negative weights. Therefore, a change

in the C-Space constraints is realised by simply

updating the one-dimensional state weight

vector without recomputing the original

decomposition.
(2) Conceptually different from a search algorithm:

The m?-algorithm reduces the ‘search’ problem

into finding a solution to a sequence of linear

algebraic systems (i.e. matrix operations).

Upon completion of cellular decomposition,

m? optimises the resultant PFSA via an iterative

sequence of combinatorial operations that

maximises the language measure vector ele-

mentwise (Chattopadhyay and Ray 2006,

2007). Although m? involves probabilistic rea-

soning, the final waypoint sequence is obtained

in a deterministic setting. The intensive step

in m? is generation of a unique solution of

specialised matrix problems to compute the

language measure l. The time complexity of

each iteration step is linear relative to the

problem size (e.g. dimension of the PFSA state

vector). This implies significant numerical

advantage over search-based methods for

high-dimensional problems.
(3) Global monotonicity: The solution iterations

are finite and globally monotonic. The final

waypoint sequence is generated essentially

by following the measure gradient which is

maximised at the goal. The measure gradient,

shown later in Figure 8 as colour variations,

is reminiscent of potential field methods

(Barraquand et al. 1990). However, m? auto-

matically generates the measure gradient

and no potential function is necessary. It is

noteworthy that the potential-function-based

path planning may become trapped in local

minima, which is a mathematical impossibility

for m?.

The article is organised into nine sections including

the present one. Section 2 succinctly presents the

underlying principles of language-measure-theoretic

modelling and optimal control of PFSA. Section 3

formulates the basic problem of path planning and x 4

derives a decision-theoretic solution to this problem.

Section 5 presents examples of planar robot path

planning with different dynamic constraints. Section 6

analyses the computational complexity of the m?-

algorithm. Some critical issues pertaining to dynamic

replanning and high-dimensional planning scenarios

are discussed in x 7. Experimental results on Segway

Robotic Mobility Platforms (RMPs) are presented

in x 8. The article is summarised and concluded in x 9

with recommendations for future work.

2. Brief review of language measure theory and

optimisation

This section first summarises the signed real measure

of regular languages; the details are reported in Ray

(2005) and Chattopadhyay and Ray (2006). Then, it

introduces the concept of optimal control of PFSA

(Chattopadhyay and Ray 2007).
LetGi¼ (Q,�, �, qi,Qm) be a trim (i.e. accessible and

co-accessible) finite-state automaton (FSA) model that

represents the discrete-event dynamics of a physical

plant, where Q¼ {qk: k2IQ} is the set of states and

IQ� {1, 2, . . . , n} is the index set of states; the auto-

maton starts with the initial state qi; the alphabet of

events is �¼ {�k: k2I�}, having �\Q¼; and

I�� {1, 2, . . . , ‘} is the index set of events;

�:Q��!Q is the (possibly partial) function of state

transitions; and Qm � fqm1
, qm2

, . . . , qml
g � Q is the set

of marked (i.e. accepted) states with qmk
¼ qj for some

j2IQ. Let �* be the Kleene closure of �, i.e. the set of

all finite-length strings made of the events belonging to

� as well as the empty string � that is viewed as the

identity of the monoid �* under the operation of string

concatenation, i.e. �s¼ s¼ s�. The state transitionmap �
is recursively extended to its reflexive and transitive

closure �:Q��*!Q by defining

8qj 2 Q, �ðqj, �Þ ¼ qj ð1aÞ

8qj 2 Q, � 2 �, s 2 �?, �ðqi, �sÞ ¼ �ð�ðqi, �Þ, sÞ ð1bÞ

Definition 2.1: The language L(qi) generated by

a DFSA G initialised at the state qi2Q is defined as:

LðqiÞ ¼ fs 2 ��j��ðqi, sÞ 2 Qg ð2Þ

The language Lm(qi) marked by the DFSA G initialised

at the state qi2Q is defined as:

LmðqiÞ ¼ fs 2 ��j��ðqi, sÞ 2 Qmg ð3Þ

850 I. Chattopadhyay et al.
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Definition 2.2: For every qj2Q, let L(qi, qj) denote
the set of all strings that, starting from the state qi,
terminate at the state qj, i.e.

Li, j ¼ fs 2 ��j��ðqi, sÞ ¼ qj 2 Qg ð4Þ

2.1 Formal language measure for terminating plants

The formal language measure is first defined for
terminating plants (Garg 1992) with sub-stochastic
event generation probabilities, i.e. the event generation
probabilities at each state summing to strictly less than
unity.

Definition 2.3: The event generation probabilities are
specified by the function ~� : Q��? ! ½0, 1� such that
8qj2Q, 8�k2�, 8s2�?,

(1) ~�ðqj, �kÞ ¼
4

~�jk 2 ½0, 1Þ;P
k ~�jk ¼ 1� �, with � 2 ð0, 1Þ;

(2) ~�ðqj, �Þ ¼ 0 if �(qj, �) is undefined;
~�ðqj, �Þ ¼ 1;

(3) ~�ðqj, �ksÞ ¼ ~�ðqj, �kÞ ~�ð�ðqj, �kÞ, sÞ.

The n� ‘ event cost matrix e& is defined as:e&jij ¼ ~�ðqi, �jÞ:

Definition 2.4: The state transition probability
�:Q�Q! [0, 1), of the DFSA Gi is defined as follows:

8qi, qj 2 Q, �ij ¼
X

�2� s:t: �ðqi,�Þ¼qj

~�ðqi, �Þ ð5Þ

The n� n state transition probability matrix & is
defined as &jij¼�(qi, qj).

The set Qm of marked states is partitioned into Qþm
and Q�m, i.e.Qm ¼ Qþm [Q

�
m and Qþm \Q

�
m ¼ ;, where

Qþm contains all good marked states that we desire to
reach, and Q�m contains all bad marked states that we
want to avoid, although it may not always be possible
to completely avoid the bad states while attempting to
reach the good states. To characterise this, each
marked state is assigned a real value based on the
designer’s perception of its impact on the system
performance.

Definition 2.5: The characteristic function �:Q!
[�1, 1] that assigns a signed real weight to state-based
sublanguages L(qi, q) is defined as:

8q 2 Q, �ðqÞ 2

½�1, 0Þ, q 2 Q�m

f0g, q =2Qm

ð0, 1�, q 2 Qþm

8><
>: ð6Þ

The state weighting vector, denoted by �¼
[�1�2 � � ��n]

T, where �j��(qj) 8j2IQ, is called the
s-vector. The j-th element �j of s-vector is the weight
assigned to the corresponding terminal state qj.

In general, the marked language Lm(qi) consists
of both good and bad event strings that, starting from
the initial state qi, lead to Qþm and Q�m, respectively.
Any event string belonging to the language
L0(qi)¼L(qi)�Lm(qi) leads to one of the non-marked
states belonging to Q–Qm and L0 does not contain
any one of the good or bad strings. Based on the
equivalence classes defined in the Myhill–Nerode
theorem (Hopcroft, Motwani, and Ullman 2001), the
regular languages L(qi) and Lm(qi) can be expressed as:

LðqiÞ ¼
[
qk2Q

Li,k ð7Þ

LmðqiÞ ¼
[

qk2Qm

Li,k ¼ Lþm [ L
�
m, ð8Þ

where the sublanguage Li,k�L(qi) having the initial
state qi is uniquely labelled by the terminal state qk,
k2IQ and Li,j\Li,k¼; 8j 6¼ k; and Lþm � [qk2QþmLi,k

and L�m � [qk2Q�mLi,k are good and bad sublanguages of
Lm(qi), respectively. Then, L0 ¼ [qk =2Qm

Li,k and
LðqiÞ ¼ L0 [ Lþm [ L

�
m.

A signed real measure �i : 2LðqiÞ ! R � ð�1, þ1Þ
is constructed on the �-algebra 2LðqiÞ for any i2IQ;
interested readers are referred to Ray (2005) for the
details of measure-theoretic definitions and results.
With the choice of this �-algebra, every singleton set
made of an event string s2L(qi) is a measurable set. By
Hahn decomposition theorem (Rudin 1988); each of
these measurable sets qualifies itself to have
a numerical value based on the above state-based
decomposition of L(qi) into L0(null), Lþ(positive) and
L�(negative) sublanguages.

Definition 2.6: Let ! 2 Lðqi, qjÞ � 2LðqiÞ. The signed
real measure �i of every singleton string set {!} is
defined as:

�iðf!gÞ ¼ ~�ðqi,!Þ�ðqjÞ: ð9Þ

The signed real measure of a sublanguage Li,j�L(qi)
is defined as:

�i, j ¼ �
iðLðqi, qjÞÞ ¼

X
!2Lðqi,qjÞ

~�ðqi,!Þ

0
@

1
A�j: ð10Þ

Therefore, the signed real measure of the language
of a DFSA Gi initialised at qi2Q, is defined as:

�i ¼ �
iðLðqiÞÞ ¼

X
j2IQ

�iðLi, jÞ: ð11Þ

It is shown in Ray (2005) that the language measure
in Equation (11) can be expressed as:

�i ¼
X
j2IQ

�ij�j þ �i: ð12Þ

International Journal of Control 851
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The language measure vector, denoted as l¼ [�1

�2 � � ��n]
T, is called the l-vector. In vector form,

Equation (12) becomes

l ¼ &lþ v ð13Þ

whose solution is given by

l ¼ ðI�&Þ�1v: ð14Þ

The inverse in Equation (14) exists for terminating
plant models (Garg 1992a, b) because & is
a contraction operator (Ray 2005) due to the strict
inequality

P
j�ij5 1. The residual �i¼ 1�

P
j�ij is

referred to as the termination probability for state
qi2Q. We extend the analysis to non-terminating
plants with stochastic transition probability matrices
(i.e. with �i¼ 0, 8qi2Q) by renormalising the language
measure (Chattopadhyay and Ray 2006) with respect
to the uniform termination probability of a limiting
terminating model as described next.

Let e& and & be the stochastic event generation
and transition probability matrices, respectively, for
a non-terminating plant Gi¼ (Q,�, �, qi,Qm). We con-
sider the terminating plant Gi(�) with the same DFSA
structure (Q,�, �, qi,Qm) such that the event generation
probability matrix is given by ð1� �Þe& with � 2 (0, 1)
implying that the state transition probability matrix
is (1� �)&.

Definition 2.7 (Renormalised measure): The renor-
malised measure �i� : 2Lðqið�ÞÞ ! ½�1, 1� for the �-para-
meterised terminating plant Gi (�) is defined as:

8! 2 Lðqið�ÞÞ, �
i
�ðf!gÞ ¼ ��

iðf!gÞ: ð15Þ

The corresponding matrix form is given by

m�¼ � l¼ � ½I�ð1� �Þ&��1v with � 2 ð0,1Þ: ð16Þ

We note that the vector representation allows for the
following notational simplification

�i�ðLðqið�ÞÞÞ ¼ m�
��
i
: ð17Þ

The renormalised measure for the non-terminating
plant Gi is defined to be lim�!0þ �

i
�.

The following results are retained for the sake of
completeness. Complete proofs can be found in
(Chattopadhyay and Ray 2006).

Proposition 2.1: The limiting measure vector
l0¼
4
lim�!0þ m� exists and kl0k1� 1.

Proposition 2.2: Let & be the stochastic transition
matrix of a finite Markov chain (or equivalently
a probabilistic regular language). Then, as the
parameter �! 0þ, the limiting measure vector is
obtained as: l0¼ps where the matrix operator
p¼
4
limk!1ð1=kÞ

Pk�1
j¼0 &

j.

Corollary 2.1 (to Proposition 2.2): The expression
pl� is independent of �. Specifically, the following
identity holds for all � 2 (0, 1).

pm� ¼ pv: ð18Þ

2.2 Event-driven supervision of PFSA

Plant models considered in this article are deterministic
finite state automata (plant) with well-defined event
occurrence probabilities. In other words, the occur-
rence of events is probabilistic, but the state at which
the plant ends up, given a particular event has occurred,
is deterministic. No emphasis is laid on the initial state
of the plant and it is assumed that the plant may start
from any state. Furthermore, having defined the
characteristic state weight vector s, it is not necessary
to specify the set of marked states, because if �i¼ 0,
then qi is not marked and if �i 6¼ 0, then qi is marked.

Definition 2.8 (Control philosophy): If qi �!
�

qk,
and the event � is disabled at state qi, then the
supervisory action is to prevent the plant from making
a transition to the state qk, by forcing it to stay at the
original state qi. Thus disabling any transition � at
a given state q results in deletion of the original
transition and appearance of the self-loop �(q, �)¼ q
with the occurrence probability of � from the state q
remaining unchanged in the supervised and unsuper-
vised plants.

Definition 2.9 (Controllable transitions): For a given
plant, transitions that can be disabled in the sense of
Definition 2.8 are defined to be controllable transi-
tions. The set of controllable transitions in a plant is
denoted C. Note controllability is state-based.

It follows from the above definitions that plant
models can be completely specified by a sextuple as:

G ¼ ðQ,�, �,e&, v, CÞ: ð19Þ

2.3 The optimal supervision problem: formulation and
solution

A supervisor disables a subset of the set C of
controllable transitions and hence there is a bijection
between the set of all possible supervision policies and
the power set 2C. That is, there exists 2jCj possible
supervisors and each supervisor is uniquely identifiable
with a subset of C and the language measure m allows
a quantitative comparison of different policies.

Definition 2.10: For an unsupervised plant
G ¼ ðQ,�, �,e&, v, CÞ, let Gy and Gz be the supervised
plants with sets of disabled transitions, d

y
� C and

d
z
�C whose measures are ly and lz, respectively.

852 I. Chattopadhyay et al.
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Then, the supervisor that disables d
y is defined

to be superior to the supervisor that disables d
z

if ly^(Elementwise) lz and strictly superior if

ly4(Elementwise) l
z.

Definition 2.11 (Optimal supervision problem): Given

a (non-terminating) plant G ¼ ðQ,�, �,e&, v, CÞ, the

problem is to compute a supervisor that disables

a subset d?
�C, such that l?^(Elementwise) l

y
8d
y
�C,

where l? and ly are the measure vectors of the

supervised plants G? and Gy under d
? and d

y,

respectively.

Remark 2.1: The solution to the optimal supervision

problem is obtained in Chattopadhyay and Ray (2007)

by designing an optimal policy for a terminating plant

(Garg 1992a, b) with a substochastic transition

probability matrix ð1� �Þe& with � 2 (0, 1). To ensure

that the computed optimal policy coincides with the

one for �¼ 0, the suggested algorithm chooses a small

value for � in each iteration step of the design

algorithm. However, choosing � too small may cause

numerical problems in convergence. Algorithm 1

computes the critical lower bound �? (i.e. how small

a � is actually required). In conjunction with

Algorithm 1, the optimal supervision problem is

solved by use of Algorithm 2 for a generic PFSA as

reported in Chattopadhyay and Ray (2007).
The following results in Propositions 2.3–2.6 are

critical to development of the autonomous navigation

algorithm in the sequel and hence are presented here

without proof for the sake of brevity. The complete

proofs are available in Chattopadhyay and Ray (2007).

Proposition 2.3: Let l[k] be the language measure

vector computed in the k-th iteration of Algorithm 2.

The measure vectors computed by the algorithm

form an elementwise non-decreasing sequence, i.e.

l[kþ1] ^(Elementwise) l
[k]
8k.

Proposition 2.4 (Effectiveness): Algorithm 2 is an

effective procedure (Hopcroft et al. 2001), i.e. it is

guaranteed to terminate.

Proposition 2.5 (Optimality): The supervision policy

computed by Algorithm 2 is optimal in the sense of

Definition 2.11.

Proposition 2.6 (Uniqueness): Given an unsupervised

plant G, the optimal supervisor G?, computed by

Algorithm 2, is unique in the sense that it is maximally

permissive among all possible supervision policies with

optimal performance. That is, if d
? and d

y are the

disabled transition sets, and l? and ly are the language

measure vectors for G? and an arbitrarily supervised

plant Gy, respectively, then l?¼(Elementwise)

my¼)d
?
	d

y
�C.

Definition 2.12: Following Remark 2.1, we note

that Algorithm 1 computes a lower bound for the

critical termination probability for each iteration of

Algorithm 2 such that the disabling/enabling decisions

for the terminating plant coincide with the given non-

terminating model. We define

�min ¼ min
k
�½k�? , ð20Þ

where �½k�? is the termination probability computed by

Algorithm 1 in the k-th iteration of Algorithm 2.

Definition 2.13: If G and G? are the unsupervised

and supervised PFSA, respectively, then we denote the

renormalised measure of the terminating plant G?(�min)

as �i# : 2LðqiÞ ! ½�1, 1� (Definition 2.7). Hence, in

vector notation we have:

m# ¼ �min½I� ð1� �minÞ&
#�
�1v, ð21Þ

where &# is the transition probability matrix of the

supervised plant G?.

International Journal of Control 853
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Remark 2.2: Referring to Algorithm 2, it is noted
that l#¼ m[K], where K is the total number of iterations
for Algorithm 2.

3. Formulation of the path planning problem

The path planning problem is formulated on a two-

dimensional workspace for the mobile agents (e.g.
wheeled ground robots). This restriction on workspace
dimensionality serves to simplify the exposition and can
be easily relaxed for other applications. To set up the
problem, the workspace is first discretised into a finite
grid and hence the approach developed in this article falls

under the generic category of discrete planning.
The underlying theory does not require the grid to be
regular; however, for the sake of clarity, we shall present
the problem formulation under the assumption of
a regular grid. The obstacles are represented as blocked-
off grid locations in the discretised workspace. A
particular location is specified as the fixed goal and the

problem of finding optimal and feasible paths from
arbitrary initial grid locations in the workspace is
considered. Figure 1(a) illustrates the basic problem
setup. It is further assumed that, at any given time instant,
the robot occupies one particular location (i.e.
a particular square in Figure 1(a)). As shown in
Figure 1(b), the robot has eight possible moves from

any interior location. The possible moves are modelled as

controllable transitions between grid locations since the
robot can ‘choose’ to execute a particular move from the
available set. The number of possible moves (in this case
eight) depends on the chosen fidelity of discretisation

of the robot motion and also on the intrinsic vehicle
dynamics. The results on the problem complexity,
presented in this article, are generated based on the
assumption that the number of available moves is
significantly smaller than the number of grid squares

(i.e. the discretised position states). In this way, specifica-
tion of inter-grid transitions allows generation of an FSA
description of the navigation problem. That is, each
square in the discretisedworkspace ismodelled as an FSA
state with the controllable transitions defining the

corresponding state transition map. A formal description
of the model is presented below.

3.1 Modelling of autonomous navigation

A key idea in autonomous path planning is that of the
configuration space C introduced by Lozano-Pérez and
Wesley (1979). Instead of planning directly in the

workspace, using methods such as swept volumes to
determine whether or not a path was collision-free, the
notion of the configuration space allows one to work
with a point abstraction of the robot with the motion
planning problem reducing to that of finding a path

from an initial point to a goal point which represents
the initial and final desired configurations. Drawing
upon standard terminology, Cobsj C denotes the set of
invalid or in-collision configurations and the set of all
admissible configurations is denoted as Cfree¼CnCobs.

Application of language-measure theoretic optimisa-
tion to path planning requires setting up the problem
in a specific framework which we describe next. For
simplicity of exposition, the basic formulation is first
developed for the case of a circular planar robot that

can rotate about its geometric centre. Generalisations
thereof will be discussed subsequently.

Let GNAV ¼ ðQ,�, �,e&, v, CÞ be a PFSA in the
notation of Equation 19. In the absence of dynamic
uncertainties and state estimation errors, the alphabet
� contains only one uncontrollable event �u, i.e.

�¼�C[ {�u}, where �C is the set of controllable
events corresponding to the possible moves of the
robot. The uncontrollable event �u is defined from
each of the blocked states and leads to an additional
state, called the obstacle state q€, which is a deadlock

state and does not correspond to any physical grid
location; all other transitions (i.e. moves) are removed
from the blocked states. Thus, the state set Q consists
of states that correspond to grid locations and the
additional deadlock state q€. The grid squares are

854 I. Chattopadhyay et al.
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numbered in a pre-determined scheme such that each
qi2Qn{q€} denotes a specific square in the discretised
workspace, where the particular numbering scheme
chosen is irrelevant. Thus, if a robot moves into
a blocked state, it uncontrollably transitions to the
deadlock state q€ which is physically interpreted to be
a collision. It is also assumed that the robot fails to
recover from collisions which is reflected by making q€
a deadlock state.

Definition 3.1: The set of blocked grid locations
along with the obstacle state q€ is denoted as
QOBSTACLEjQ.

Remark 3.1: QOBSTACLE thus represents an enumera-
tion of the discretised Cobs. For a circular planar robot,
discretised configurations are the same as discretised
positional coordinates. We note that it may be difficult
to compute QOBSTACLE for complex planning scenarios
from the physical problem specification. This issue
is discussed in details later in x 7 where it is argued that
accurate enumerations of Cobs is unnecessary and
probabilistic estimations suffice.

Figure 1 illustrates the navigation automaton
for a nine-state discretised workspace with two
blocked squares. Note that the only outgoing transition
from the blocked states q1 and q8 is �u. The navigation
PFSA is augmented by specifying event generation
probabilities defined by the map ~� : Q��! ½0, 1� and
the characteristic state-weight vector specified as
s:Q! [�1, 1] that assigns scalar weights to the PFSA
states (Chattopadhyay and Ray 2007).

Definition 3.2: The characteristic weights are speci-
fied for the navigation automaton as follows:

�ðqiÞ ¼

�1 if qi � q€

1 if qi is the goal

0 otherwise

:

8><
>: ð22Þ

In the absence of dynamic constraints and state
estimation uncertainties, the robot can ‘choose’ the
particular controllable transition to execute at any grid
location. Hence, the probability of generation of
controllable events is assumed to be uniform over the
set of moves defined at any particular state.

Definition 3.3: Under the modelling assumption that
there are no uncontrollable events defined at any of the
unblocked states and no controllable events defined
at any of the blocked states, event generation
probabilities are defined based on the following
specification: 8qi2Q, �j2�,

~�ðqi, �jÞ

¼

1

No: of controllable events at qi
, if �j 2 �C

1, otherwise

:

8<
:

ð23Þ

It is shown in the sequel that computation of
minimal length paths requires the navigation auto-
maton to have a constant number of moves or
controllable transitions from each of the unblocked
states, as stated below in Definition 3.4.

Definition 3.4: The navigation model is defined to
have identical connectivity as far as controllable
transitions are concerned implying that every control-
lable transition or move (i.e. every element of �C) is
defined from each of the unblocked states.

The upper plate in Figure 1(c) shows that the
boundaries are handled by ‘surrounding’ the work-
space with blocked position states that are labelled as
‘boundary obstacles’ and the lower plate shows
a scenario with grid locations 1 and 8 blocked.
Figure 1(d) shows uncontrollable transitions �u from
states corresponding to blocked grid locations to the
state Ob.

Figure 1. Illustration of the path planning problem formulation. (a) shows the vehicle (marked ‘R’) with the obstacle positions
shown as black squares and the star identifies the goal. (b) shows the finite state representation of possible one-step moves from
the current position q5. (c) shows the the boundaries handled by surrounding the workspace with blocked position states of
‘boundary obstacles’ in the upper plate and a sample map with grid locations 1 and 8 blocked in the lower plate. (d) shows
uncontrollable transitions ‘�u’ from states corresponding to blocked grid locations to the state ‘Ob’.
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3.2 Generalised vehicle dynamics and operational
constraints

In general, the state set of the navigation automaton
GNAV reflects an enumeration of the discretised config-
uration space of the robot. The alphabet denotes the
different actions that the robot can execute at any
configuration and hence the alphabet size corresponds
to the number of reachable discrete configurations from
each point in discretised C. For multi-body robots, the
resulting state space is rather large. However, construc-
tion of GNAV can be done algorithmically under the
assumption that in the absence of obstacles the
configuration space is a repetition of the local dynamical
structure (except maybe at the workspace boundaries).

In the case of a 2D circular robot, the local structure
is given by the ability to move to any of its eight
neighbouring cells. The alphabet size is 8þ 1¼ 9 since
the number of neighbouring cells correspond to the
reachable configurations and we also have the uncon-
trollable collision event from the in-collision states.
For a 2D rectangular robot with explicit specification of
discretised heading, the alphabet size is (8�H)þ 1,
where H is the number of discrete headings considered.
For headings discretised at 15
 intervals, the alphabet
size is 192þ 1¼ 193. The constraints on the vehicle
dynamics is reflected in the connectivity of GNAV and
specifies the language of all possible action sequences
that a particular robot can execute in absence of
obstacles in the workspace. For a rectangular robot
with a non-zero turn radius, the set of accessible con-
figurations from any point of discretised C is restricted
due to the constraint on the heading change that can be
attained in a single action step. For 15
 discretised
headings and a maximum possible turn of� 60
 in each
step, the locally accessible (discrete) configurations is
illustrated in Figure 2. Note that in Figure 2, the robot
is assumed to be unable to move back.

The handling of the resulting state space and
determination of the characteristic weights � is an
issue for complex planning scenarios involving multi-
body and non-holonomic robots. However, m? replaces
expensive searches with a sequence of linear system
solutions and thus is potentially applicable to the
aforementioned cases. Unlike early deterministic plan-
ning approaches which required explicit and accurate
enumeration of Cobs, m? works well with probabilistic
specifications of the characteristic weights. These issues
are discussed in more details in x 7.

4. Problem solution as decision-theoretic

optimisation

The above-described PFSA-based navigation model
facilitates computation of optimally feasible path plans

via the language-measure-theoretic optimisation algo-

rithm (Chattopadhyay and Ray 2007) that is succinctly

described in x 2. Keeping in line with nomenclature in

the path planning literature, the language-measure-

theoretic algorithm is called m? in the sequel.
For the unsupervised model, the robot is free to

execute any one of the defined controllable events from

any given grid location as seen in Figure 2.

The optimisation algorithm selectively disables con-

trollable transitions to ensure that the formal measure

vector of the navigation automaton is elementwise

maximised. Physically, this implies that the supervised

robot is constrained to choose among only the enabled

moves at each state such that the probability of

collision is minimised and simultaneously the prob-

ability of reaching the goal is maximised. Although m?

is based on optimisation of probabilistic finite state

machines, it is shown that an optimal and feasible

path plan can be obtained that is executable in

a deterministic sense. An example is shown in

Figure 3 to illustrate the concept of decision-theoretic

supervised navigation, where Figure 3(a) shows the

available moves from a current state of an automaton

under unsupervised navigation and Figure 3(b) shows

15°

Local dynamical
structure

Discretised configurations
with explicit heading

Figure 2. Modelling of rectangular robots with explicit
heading.

C RL

F

RF

B

LF

RBLB

e1

e5

e3

e7
e2

e4

e6

e8

(a)

C RL

F

RF

B

LF

RBLB

e1

e7

e8

(b)

e2, e3, e4,
e5, e6

Figure 3. Illustration of navigation automaton. (a) shows
available moves from the current state (C) in unsupervised
navigation automaton. (b) shows enabled and disabled
moves in the optimally supervised PFSA.
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enabled and disabled moves under optimal

supervision.
Let GNAV be the unsupervised navigation auto-

maton and G
?
NAV

be the optimally supervised PFSA
obtained by application of m?, where �i# is the

renormalised measure of the terminating plant
G
?
NAV
ð�minÞ with substochastic event generation prob-

ability matrix e&�min
¼ ð1� �minÞe&. Denoting the event

generating function (Definition 2.3) for G
?
NAV

and
G
?
NAV
ð�minÞ as ~� : Q��! Q and ~��min : Q��! Q,

respectively, we have

~��minðqi, �Þ ¼ 1 ð24aÞ

8qi 2 Q, �j 2 �, ~��minðqi, �jÞ ¼ ð1� �minÞ ~�ðqi, �jÞ:

ð24bÞ

Notation 4.1: For notational simplicity, we use

�i#ðLðqiÞÞ¼
4
�#ðqiÞ ¼ m#ji, ð25Þ

where l#¼ �min [I� (1� �min)&
#]�1s.

Definition 4.1 (m?-path): A m?-path 	(qi, qj) from
state qi2Q to state qj2Q is defined to be an
ordered set of PFSA states 	 ¼ fqr1 , . . . , qrMg with

qrs 2 Q, 8s 2 f1, . . . ,Mg,M � CARDðQÞ such that

qr1 ¼ qi ð26aÞ

qrM ¼ qj ð26bÞ

8i, j 2 f1, . . . ,Mg, qri 6¼ qrj ð26cÞ

8s 2 f1, . . . ,Mg, 8t5 s, �#ðqrtÞ5 �#ðqrsÞ: ð26dÞ

Lemma 4.1: There exists an enabled sequence of
transitions from state qi2QnQOBSTACLE to qj2Qn{q€}

in G
?
NAV

if and only if there exists a m?-path 	(qi, qj)
in G

?
NAV

.

Proof: Let qi�!
�1

qk1�!
�2

qk2�!
�3
� � � qk‘ ! � � � ! qj

be an enabled sequence of transitions in G
?
NAV

where
‘2 {1, . . . ,M} for some M%CARD(Q). It follows from
the defined structure of the navigation automaton that

there is no transition qs�!
�

qr, where qs2QOBSTACLE,
qr 6¼ q€. Then, 8‘2 {1, . . . ,M}, qk‘ =2QOBSTACLE. Then,
each individual transition in the above transition

sequence is controllable. Algorithm 2 implies that
m#(qi)� m#(qk1)� m# (qk2)� � � � � m#(qj). Consequently,
{qi, qk1, qk2, . . . , qj} is a m?-path. The converse follows

by a similar argument. œ

Proposition 4.1: For the optimally supervised naviga-
tion automaton G

?
NAV

, the following condition holds:

8qi 2 Q nQOBSTACLE, LðqiÞj�?
C:

Proof: The proposition is proved by contradiction.
Let the terminating state qj2QOBSTACLE be reached from

the initial state qi2QnQOBSTACLE by an event trace

s2L(qi) such that s =2�?
C. Since �u is the only

uncontrollable event, it suffices to assign s ¼ ~s�Ku ,
where ~s 2 �?

C and K^ 1. Then, it follows from

Lemma 4.1 and Notation 4.1 that

�#ðqiÞ5 �#ðqjÞ: ð27Þ

Since LðqjÞ ¼ �
?
u and �min2 (0, 1) and �j¼�1, it follows

that

�#ðqjÞ ¼ �min

X1
k¼1

ð1� �minÞ
k �j¼ ð�min�1Þ50: ð28Þ

Furthermore, the measure m#(qi) can be
decomposed as:

�#ðqiÞ ¼ �#

�
f! 2 LðqiÞ : �#ðqi,!Þ =2QOBSTACLEg

�
þ �#

�
f! 2 LðqiÞ : �#ðqi,!Þ 2 QOBSTACLEg

�
: ð29Þ

Since each state, except q€, has a non-negative
characteristic weight (Definition 3.2), the first term in

the right-hand side of Equation (29) is non-negative,

i.e.

�#

�
f! 2 LðqiÞ : �

#ðqi,! =2QOBSTACLEg
�
5 0: ð30Þ

The second term in the right-hand side of Equation

(29) yields:

�#ðf! 2 LðqiÞ : �
#ðqi,!Þ 2 QOBSTACLEgÞ ¼ 
�#ðqjÞ, ð31Þ

where 
 ¼ �min

P
!:�#ðqi,!Þ2QOBSTACLEnfq�g

~��min ðqi,!Þ.

Since, for every � 2�C, ~��min ðqi, �Þ ¼ ð1=CARDÞð�CÞ

(see Equation (23) in Definition 3.3), and �min2 (0, 1),

it follows that


 ¼ �min
1

CARD
ð�CÞ ð1� �minÞ � CARDð�CÞ 2 ð0, 1Þ:

ð32Þ

It is concluded from Equations (28) to (32) that

m#(qi)4 m#(qj) which contradicts Equation (27). œ

Corollary 4.1 (Obstacle avoidance): There exists no

m?-path from any unblocked state to any blocked state in

the optimally supervised navigation automaton G
?
NAV

.

Proof: Let qi2QnQOBSTACLE and assume that there

exists a m?-path from qi to some qj2QOBSTACLEn{q€}.

It follows from Lemma 4.1 that there exists an

enabled sequence of transitions from qi to qj. Since

the uncontrollable transition �u is defined from

qj2QOBSTACLE (Definition 3.1), it follows that
LðqiÞj

�
�?

C which contradicts Proposition 4.1. œ

Proposition 4.2 (Existence of m?-paths): There exists

a m?-path 	(qi, qGOAL) from any state qi2Q to the goal

qGOAL2Q if and only if m#(qi)4 0.
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Proof: Partitioning L(qi) based on terminating states,

�#ðqiÞ ¼ �#ðf! : �#ðqi,!Þ ¼ qGOALgÞ

+ �#ðf! : �#ðqi,!Þ 2 Q n ðQOBSTACLE

[
fqGOALgÞgÞ

+ �#ðf! : �#ðqi,!Þ 2 QOBSTACLEgÞ: ð33Þ

Now, Corollary 4.1 implies {!: �#(qi,!)2
QOBSTACLE}¼;¼) m#({!: �

#(qi,!)2QOBSTACLE})¼ 0.
Also, since 8qj2Qn(QOBSTACLE[{qGOAL}), �(qj)¼ 0,
we have m#({!: �

#(qi,!)2Qn(QOBSTACLE[{qGOAL})})¼ 0.
Hence we conclude

�#ðqiÞ ¼ �#ðf! : �#ðqi,!Þ ¼ qGOALgÞ: ð34Þ

It follows from �(qGOAL)¼ 1 that �#(qi,!)¼
qGOAL¼) m#({!})4 0 implying there exists an enabled
sequence of controllable transitions from qi to qGOAL in
G
?
NAV

if and only if m#(qi)4 0. The result then follows
from Lemma 4.1. œ

Corollary 4.2 (Absence of local maxima): If there
exists a m?-path from qi2Q to qj2Q and a m?-path
from qi to qGOAL then there exists a m?-path from qj to
qGOAL, i.e.

8qi, qj 2 Q

�
9	1ðqi, qGOALÞ

^
9	2ðqi, qjÞ ) 9	ðqj, qGOALÞ

�
:

Proof: Let qi, qj2Q. We note

9	1ðqi, qGOALÞ ) �#ðqiÞ4 0 ðProposition 4:2Þ ð35aÞ

9	2ðqi, qjÞ ) �#ðqiÞ � �#ðqjÞ ðDefinition 4:1Þ: ð35bÞ

It follows that m#(qj)4 0 which implies that there
exists a m?-path from qj to qGOAL (Proposition 4.2). œ

Remark 4.1 (Smoothing computed m?-paths): We
note that given an arbitrary current state qi,
Algorithm 3 computes the next state qNEXT as the one
which has maximal measure among all possible next
states qj satisfying m#(qj)^ m#(qi). This precludes the
possibility illustrated in Figure 4 implying that the
computed plan is relatively smoother. However, such
smoothing may result in a computed plan that is not

necessarily the shortest path (SP) from the initial state
to the goal. This is expected since m? is not meant to
determine the SP, but compute a l-optimal path to the
goal. In the sequel, we expound this optimal tradeoff
that m? makes between path length and robust
planning.

Notation 4.2: We denote the m?-path computed by
Algorithm 3 as a m?-plan in the sequel.

4.1 Optimal tradeoff: path length and robustness to
uncertainties

The majority of the reported path planning algorithms
consider minimisation of the computed feasible path
length as the sole optimisation objective. Mobile
robotic platforms, however, suffer from varying
degrees of dynamic and parametric uncertainties,
implying that path length minimisation is of lesser
practical importance to computing plans that are
required to be robust under sensor noise, imperfect
actuation and possibly accumulation of odometry
errors that cannot be eliminated even with sophisti-
cated signal processing techniques. The m?-algorithm
addresses this issue by an optimal trade-off between
path lengths and availability of feasible alternate
routes in the event of unforeseen dynamic uncertain-
ties. Referring to Figure 5, if ! is the SP to goal from
state qk, then the SP from state qi is given by �2!.
However, a larger number of feasible paths is available

Figure 4. Situation involving four neighbouring position
states qj, qk, qm, q‘ with qj� qk� qm� q‘ implying
{qj, qk, qm, q‘} is a m�-path from qj to q‘. The smoothed
m�-path is {qj, q‘}.

Figure 5. Tradeoff between path-length and robustness
under dynamic uncertainty, where �2! is the SP to qGOAL

from qi. The m� plan may be �1!1 due to the availability of
a larger number of feasible paths through qj.
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from state qj which may result in the optimal m? plan

to be �1!1. Mathematically, each feasible path from

state qj has a positive measure which may sum to be

greater than the measure of the single path ! from

state qk. The condition m#(qj)4 m#(qk) would then

imply that the next state from qi would be computed to

be qj and not qk by Algorithm 3. Physically it can be

interpreted that the mobile agent is better off going to

qj since the goal remains reachable even if one or more

paths become unavailable. Next we estimate the

minimum number of alternate routes required for the m?

plan to be different from the SP. We need the following

results:

Lemma 4.2: For the optimally supervised navigation

automaton G
?
NAV

, we have 8qi2QnQOBSTACLE,

8! 2 LðqiÞ, �
i
#ðf!gÞ ¼ �min

�
1� �min

CARDð�CÞ

�j!j
�ð�#ðqi,!ÞÞ:

Proof: Following Proposition 4.1, it suffices to

confine the range of event strings to ! 2 �?
C. It follows

from Equation (23) in Definition 3.3 that

8qi2QnQOBSTACLE,

8! 2 LðqiÞ, ~��minðqi,!Þ ¼

�
1� �min

CARDð�CÞ

�j!j
: ð36Þ

Noting that Equation (36) is trivially satisfied for

j!j ¼ 0, the method of induction is used, starting with

j!j^ 1. Since the control philosophy (Definition 2.8)

does not alter the event generation probabilities, it

follows that Equation (36) is satisfied for j!j ¼ 1.

Assuming that the result holds for all ! 2 �?
C and for

all qi2QnQOBSTACLE such that j!j ¼K, we have

~��minðqi, �!Þ ¼ ~��minðqi, �Þ ~�
�minð�#ðqi, �Þ,!Þ ð37Þ

¼

�
1� �min

CARDð�CÞ

�Kþ1

: ð38Þ

Finally, from Definition 2.13, �i#ðf!gÞ ¼
�min ~��min ðqi,!Þ�ðqjÞ where qj¼ �

#(qi,!). This completes

the proof. œ

Proposition 4.3: For qi2QnQOBSTACLE, let qi�!
�1

qj !

� � � ! qGOAL be the SP to the goal. If there exists

qk2QnQOBSTACLE with qi�!
�2

qk for some �22�C such

that m#(qk)4 m#(qj), then the number of distinct paths to

goal from state qk is at least CARD(�C)þ 1.

Proof: Let the length of the SP qi�!
�1

qj ! � � �

! qGOAL be m. To compute a lower bound on the

number of alternate routes, let us assume that there is

only one path from state qj to the goal. Further, we

assume that every alternate path from state qi through

qk has length mþ 1. If there are r such paths, then for
the condition m#(qk)4 m#(qj) to be true, we needX
!12LðqjÞ

�#ðf!1gÞ4
X

!22LðqkÞ

�#ðf!2gÞ

) r� �min

�
1c� �min

CARDð�CÞ

�m

4 �min

�
1� �min

CARDð�CÞ

�m�1

ðLemma 4:2Þ

) r4CARDð�CÞ ) rCARDð�CÞ þ 1: ð39Þ

This completes the proof. œ

The lower bound computed in Proposition 4.3 is
not tight and if the alternate paths are longer or if there
are multiple ‘shortest’ paths then the number of
alternate routes required is significantly higher. In the
detailed example presented in x 5, we illustrate
a situation where m? opts for a longer but more
robust plan.

4.2 Summary of the m? algorithm for autonomous
path planning

The m? algorithm is summarised in Algorithm 4. There
are two distinct approaches for executing the m? plan
on a mobile platform (Figure 6) which can be
enumerated as follows:

(1) Pass the computed m? plan (PLAN in Algorithm
4) to the mobile robot. The on board controller
then executes the m? plan by sequentially
moving to the states as defined in the ordered
set PLAN . This involves less computation in real
time on part of the on board controller.

(2) Terminate Algorithm 4 after Step 4 and pass
the computed measure vector m# to the mobile
robot. The on board controller then attempts
to follow the measure gradient in the work-
space defined by m#. This approach is more
robust since the mobile agent can choose to
move to the next-best-state in the event of the
best-state becoming unreachable due to unfore-
seen environmental dynamics.

5. An example of 2D path planning

Let a workspace be defined by a 9� 9 grid as shown in
Figure 7. The goal is labelled and prominently marked
with a dot. The obstacles, i.e. states in the set QOBSTACLE

(x 3), are illustrated as blocked-off grid locations in
black while the navigable space is shown in white.
From the formulation presented in x 3, it follows that
each grid location (i, j ) is mapped to a state in the
constructed navigation automaton GNAV which has
a total of 9�9þ1¼ 82 states. State numbers are
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encoded by first moving along rows and then along

columns, i.e.

state num ¼ column numþ ðrow num� 1Þ � 9:

The 82nd state q82 is the special obstacle state q€ defined

in x 3. We note that since (2, 7) is the goal (Figure 7), we

have �(7þ (2� 1)� 9)¼�(16)¼ 1. The measure vector

m# is obtained by executing Algorithm 4 and the result is

tabulated in Table 1. We note that the (i, j )th entry in

Table 1 tij corresponds to m#(qjþ(i�1)�9). The gradient

induced in the workspace by m# is illustrated by the

colour variation in Figure 8.
The following observations are made on the

theoretical results derived in x 4.

(1) As derived in Proposition 4.2, the states or grid
locations with strictly positive measure are

precisely the ones from which the goal is
reachable. We note from Table 1 that

t4,6 ¼ t5,6 ¼ t6,6 ¼ 0 ð40Þ

and it is seen from Figure 7 that the grid
locations (4, 6), (5, 6) and (6, 6) are completely

surrounded with no existing feasible path to
the goal.

(2) Each of the blocked-off grid locations has the
minimal measure of �0.99 with every navigable
state having a higher measure. It therefore

follows that there exists no m?-path (Definition
4.1) from any navigable state to any blocked
grid location (i.e. to any state in QOBSTACLE).
Thus, as stated in Corollary 4.1, there is perfect

obstacle avoidance as long as the robot follows
a m?-path starting from any of the unblocked
navigable states.

(3) There are no local maxima with the goal having
the maximum measure value of 1.0. Thus true
to Corollary 4.2, the robot is guaranteed to

reach the goal by following any m?-path.
(4) The m? plans are computed from the grid loca-

tions (8, 6) and (8, 7) (marked by the letters ‘A’
and ‘B’, respectively, in Figure 7). The respective
plans are shown in Figure 8. The state sequences

can be enumerated as follows:

PLAN A : 69! 68! 58! 48! 39! 30

! 22! 14! 15! 16 ð41Þ

PLAN B: 70! 62! 53! 44! 35! 26! 16 ð42Þ

Figure 6. Alternative approaches to executing computed
plan: The alternative A passes the measure vector expecting
the on board controller to follow the measure gradient, while
the alternative B computes the exact plan and passes it to the
robot.

2 4 6 8

2

4

6

8

GOAL

A B

Figure 7. Illustration of 2D path planning. The work
space shows a goal (GOAL) and two sample start locations
(A and B).
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The SP from location ‘A’ involves moving right to
location ‘B’ and following the m? plan for ‘B’ thereafter.
However, the m? algorithm opts for a more robust plan
which avoids going through the narrow single-path

corridor on the right. On the other hand, if the starting
state is ‘B’, then the SP to the goal is just short enough
to offset the effect of alternate (and longer) routes thus
making the former optimal in this case.

5.1 Examples of 2D planning with different dynamic
constraints

Two different models are considered pertaining to

a circular robot e.g. Segway RMP (Model 1) and
a rectangular robot e.g. Pioneer 2AT (Model 2) with
non-zero turn radius that is incapable of moving
backward (due to absence of rear sensors). The local
dynamical structures of the two models is illustrated in
Figure 9. We assume heading discretisation at 15


intervals resulting in 24 distinct headings. The max-

imum turn in a single action step is restricted to �60


for the robot corresponding to Model 2. The simulated
workspace is a 18� 35 2D grid and is illustrated in
Figure 10 along with obstacles (shaded). The naviga-
tion automata for each model is generated from the
above described specification of the local dynamical
structure as explained in x 3. Table 2 enumerates the

parameters of the respective navigation automata.
Note that GNAV corresponding to Model 1 has
(18� 35)þ 1¼ 631 states; while the corresponding
automaton for Model 2 has (18� 35� 24)þ 1¼
14282 states. The alphabet size is also significantly
greater for Model 2 due to the availability of larger
number of possible actions at each state. While each
state of Model 1 corresponds simply to a discretised
positional coordinates, the Model 2 states also encode
the discretised heading. The characteristic weights �
are assigned as explained in x 3.1. For Model 2, a state
is in collision with the obstacles if and only if the
positional coordinates corresponding to the particular
state matches an obstacle location in the workspace
irrespective of the heading.

The dynamical constraints (e.g. turn restriction) on
Model 2 imply that the number of feasible trajectories
are significantly less as compared to Model 1. This is
reflected in the increased average path length (e.g.
12.88 for Model 1; 19.3 for Model 2) computed over
different initial configurations for the two models.
Furthermore, the goal is no longer accessible from
a number of initial configurations for Model 2 as
enumerated in Table 2.

Table 1. The measure gradient.

�0.99 �0.99 �0.99 �0.99 �0.99 �0.99 �0.99 �0.99 �0.99
�0.99 0.969 0.972 0.976 0.984 0.992 1.00 0.992 �0.99
�0.99 0.969 0.972 0.976 �0.99 �0.99 �0.99 0.992 �0.99
�0.99 0.968 0.971 0.971 �0.99 0.00 �0.99 0.984 �0.99
�0.99 0.966 0.967 0.967 �0.99 0.00 �0.99 0.976 �0.99
�0.99 0.963 0.964 0.963 �0.99 0.00 �0.99 0.969 �0.99
�0.99 0.960 0.961 0.960 �0.99 �0.99 �0.99 0.961 �0.99
�0.99 0.957 0.958 0.957 0.955 0.950 0.953 0.953 �0.99
�0.99 �0.99 �0.99 �0.99 �0.99 �0.99 �0.99 �0.99 �0.99

2 4 6 8

2

4

6

8

0.95

0.96

0.97

0.98

0.99

1
GOAL

A B

Figure 8. Gradient induced by �# in the workspace and
planning by the m�-algorithm from locations A and B.

15°

SEGWAY
RMP

(a)  Model 1 (b) Model 2

Figure 9. Two robot models. (a) A circular robot. (b) A
rectangular robot with explicit heading and no provision for
back-up.
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A comparison of the probability distribution of the
path lengths for different initial configurations is
further illustrative of the restricted dynamics for
Model 2. Referring to Figure 11, we note that the
distribution shifts towards longer path lengths.
The first bin in the lower plate of Figure 11 (corre-
sponding to path length �1) indicates the non-
existence of a feasible path. Thus we note that for
Model 2, the probability that no feasible path exists
to the goal is �0.29 for randomly chosen initial
configurations. Sample runs for the two models are
shown in Figure 10. The initial configurations are
indicated as A and B. The goal configuration (desired
position and heading) is denoted by a bold arrow.
The dotted paths are for Model 1 while the arrow

sequences denote the paths taken by Model 2. Note

that the path lengths (denoted as L in Figure 10) are

longer for Model 2. Also note that while the Model 1

paths have sharp turns; those for Model 2 are more

rounded with gradual turns.

6. Algorithmic complexity

Let n be the number of states in the navigation

automaton GNAV. The key step in the m?-algorithm

is computation of the measure vector �½k� ¼
�½k�? ½I� ð1� �

½k�
? Þ&

½k��
�1 in Step 8 of Algorithm 2

where the superscript [k] denote the k-th iteration.

It is noted that ½I� ð1� �½k�? Þ&
½k��
�1
¼P1

j¼1ð1� �
½k�
? Þ

j
ð&½k�Þjv. Noting that �½k�? 2 ð0, 1Þ, and

having EPS4 0 to be the m/c precision, it follows that

9 rðEPSÞ 2 N s:t: ð1� �½k�? Þ
r
ð&½k�Þrv5 EPS: ð43Þ

Therefore, the following truncation is justified:

½I� ð1� �½k�? Þ&
½k��
�1


Xr
j¼1

ð1� �½k�? Þ
j
ð&½k�Þjv: ð44Þ

It is observed that for the navigation model

presented in x 3, &[k] is sparse for all iteration steps

of Algorithm 2 with the number of non-zero elements

in each row bounded by CARD(�C). It follows that for

any arbitrary vector y, &[k]y can be computed in O(n�

CARD(�C)) time steps. Since &[k])jþ1s¼ (&[k])(&[k])js,
it follows that the computation in Equation (44) has

a time complexity of O(n�CARD(�C)� r(EPS)). It was

argued in Chattopadhyay and Ray (2007) that the

number of iterations for Algorithm 2 is strictly less

than n. Therefore it implies that for a fixed machine

246810121416
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25

30

35

B

Model 1
(L = 11)

Model 1
(L = 22)

A

Goal Location
& Heading

Model 2
(L = 27)

Model 2
(L = 13)

Model 1: Circular robot (SEGWAY RMP)
Model 2: Rectangular robot with explicit heading

Figure 10. Sample runs for Models 1 and 2. Path length is
denoted by L.

Table 2. Comparative results of two robot models.

Model 1 Model 2

# States 631 14282
Alphabet size 9 193
Mean path length 12.88 19.3
Inaccessible states 0 4055
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Figure 11. Path length distributions for Model 1 (upper
plate) and Model 2 (lower plate). Non-existence of feasible
paths in Model 2 is represented by assigning a path length
of �1 which corresponds to the leftmost bin in the lower
plate.
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precision and a given number of controllable moves
(i.e. a fixed CARD(�C)), we have

Time complexity of m?5Oðn2Þ: ð45Þ

To put things in perspective, we compare experimental
runs with Dijkstra’s standard SP algorithm (Cormen,
Leiserson, Rivest, and Stein 2001) in Figure 12 which
was generated by choosing for each n, 102 random
obstacle maps and goals solving each problem by the
two algorithms consecutively. We note that
ðlogRun time=log nÞ 
 2 for Dijkstra’s and is only
about 1.4 for m? implying that the latter is significantly
superior for large problem sizes.

The run times for Dijkstra’s search in Figure 12
were generated without using priority queues resulting
in asymptotic time complexity of O(n2). Implemen-
tations using prioritisation via Fibonacci heaps have
complexity O(jEjlog n), where jEj is the number of
graph edges. Therefore, for sparse connectivity, e.g. for
jEj ¼O(n), the asymptotic complexity is O(n log n).
This is better than the m? time complexity bound of
O(n2). The O(n2) bound on m?, as shown above, is not
tight and several speed-up possibilities exist. For
example, simulation results suggest that it may be
possible to pre-specify an upper bound on the number
of iterations purely as a function of the desired
precision independent of n, in which case the serial
asymptotic complexity for m? (for sparse connectivity)
will drop to O(n). m? exclusively relies on sparse linear
system solutions and hence the run-time speedup for
parallel implementations is considerable being only
a function of the state-of-the-art in the parallel
algorithms for the solution of linear systems. To
further highlight the computational advantage of
using a linear-system-solution-based approach, we
note that while parallelised general graph search
complexity currently stands at O(log2n) (Meyer 2002),
it is possible in theory to solve general linear systems in
asymptotically constant time, i.e. in time asymptoti-
cally independent of problem size (Bojanczyk 1984)
with O(n3) processors. Future work will focus on
sharpening the complexity bounds on m? for both serial
and parallel implementations.

Remark 6.1: The m? algorithm offers a fundamentally
different and potentially faster solution to graph search
problems if one is interested in finding ‘robust’ paths
as opposed to ‘shortest’ ones. Dijkstra-like algorithms
can be tuned to find robust paths by modifying the cost
function, e.g. by including the costs due to presence of
obstacles. However, construction of an algorithm that
defines the costs by incorporating tradeoffs, such as
shorter versus more robust paths, is non-trivial and it
potentially increases complexity of the algorithm.
In contrast, a tradeoff in the m? algorithm arises

naturally due to the fact that existence of a number of
feasible paths to the goal increases the measure of the
state as discussed in x 4.1.

7. Dynamic replanning and extension to higher

dimensional problems

In x 6, we compared m? with the standard Dijkstra’s
search. However, the state-of-the-art in grid-based 2D
planning is D? (LaValle 2006), which is a modification
of the basic Dijkstra’s algorithm to enable fast re-
computation of plans online in the face of newly learnt
information. It turns out that, with regards to
implementation, it is often critically important to be
able to dynamically update plans based on new
information. The analysis presented in this article
primarily deals with offline plan computations.
However, m? can be easily adapted for dynamic re-
planning as discussed next. Let m# be the optimal
language measure vector computed offline prior to
mission execution. As the mission progresses, it is
learnt that state qk is in fact in collision with an
obstacle i.e. qk2QOBSTACLE. It follows that paths from
the current state qi that reached the goal via qk no
longer exist. Figure 13 illustrates the situation. Note
that if the measure of the current state �i# 4 �k#, then no
re-planning is required since the m?-path from qi to

7.5 8 8.5 9 9.5 10
1

0

1

2

3

4

5

Max time
Mean time

ν∗

Dijkstra’s search

ln (no. of states)

ln
 (

T
im

e)

Figure 12. Run-time comparisons of m� and Dijkstra’s
standard search based on extensive Monte Carlo simulation.

Figure 13. Illustration of the ��-based dynamic replanning
concept.
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qGOAL does not pass through qk (Definition 4.1 and
Proposition 4.2). On the other hand, if �i#5 �

k
#, then

re-planning is necessary and m# may be updated in the
following way.

Let �¼ �min[I�(1��min)&
#]�1 and �ij be its ij-th

element.
Let G correspond to the index of state qGOAL. Then,

8qi 2 Q, b� i
# ¼ �

i
# ��iG

�
�kGð1� �kkÞ

�
�G ð46Þ

which follows from the fact that �iG(�kG(1��kk))�G
corresponds to the contribution from strings that reach
goal via qk.

Since [I��#]�1 is computed offline in course of
computing the original plan, the update can be
executed sufficiently fast. Furthermore, if one delays
updating the measures of individual states until
necessary (similar to the lazy approach in probabilistic
planning where one delays collision checking until
needed (Kondo 1991; Bohlin and Kavraki 2000)) then
the update calculations can be carried out locally in
constant time (for sparse connectivity) making the
dynamic updates for m? potentially faster to D? in the
sense of local asymptotic complexity. Rigorous devel-
opment of a dynamically updating m? is a topic of
future research.

Next we discuss potential extensions to high
dimensional and complex planning scenarios. There
are two key issues:

(1) Explicit enumeration of Cobs or equivalently
specifying the state characteristic function �
a priori may become impractical for large
problems.

(2) The state set Q for GNAV becomes large.

To address the first issue, we recall from x 4.1 that m?

typically computes optimal plans as opposed to SP
routes. As illustrated in the first example in x 5, this
amounts to avoiding ‘narrow spaces’ if possible. Thus,
m? plans are inherently robust and are insensitive to
small perturbations of the obstacle map. Robustness
of the computed path has at least two critical
implications:

(1) Shortest path routes are often extremely
difficult to navigate in practice due to noise
corruption of on-board positional sensing.
Optimal tradeoff between robustness and path
length results in a plan that can be navigated
with much more ease in the face of sensor noise
and obstacle perturbations. Since a navigation
algorithm typically slows down the robotic
platform in obstacle vicinity, the performance
gain is reflected in significant reduction of
mission execution time as illustrated in the
reported laboratory experiments (x 8).

(2) Robustness to obstacle perturbations implies
that exact enumeration of the characteristic
function � is unnecessary and a probabilistic
estimation suffices. This property of the
m?-algorithm potentially remedies the problem
with early bitmap-based planning approaches
(Lengyel, Reichert, Donald and Greenberg
1990) that require exact enumeration of the
Cobs and depend on classical AI-based search
techniques to find paths. It could be possible to
‘miss’ obstacles in the sampled set; however, as
shown in Equation (46), m?-based dynamic re-
planning can be implemented to run sufficiently
fast to address this issue.

To address the issue of large state sets, we note that
the arguments presented in x 6 imply that m? can be
implemented to run in O(n) time under most cases and
is highly parallelisable. The objective of this article is
to present a planning philosophy that is fundamentally
different from the ones reported in the literature and
justify potential adaptations for complex planning
scenarios. Critical issues such as the specifics of
sampling strategy for � and actual performance
comparisons with the current state-of-the-art in high-
dimensional and non-holonomic planning require
further investigation and is a topic of future research.

8. Experimental results with Segway RMP

The proposed algorithm has been successfully imple-
mented on different types of mobile robotic platforms
in a laboratory environment. One such richly instru-
mented implementation platform (Segway RMP) is
shown in the inset of Figure 14. The algorithm is coded
on a fully open-source architecture (Cþþ /gcc4.1/
Fedora Core 7) and uses in-house developed hardware
drivers in conjunction with the PLAYER robot server
(Gerkey, Vaughan, and Howard 2003). The robot is
equipped with a bar code that can be recognised via an

v* PlanGlobal Map

Local Obstacle
Avoidance NAVIGATOR

Global Positioning
(Overhead Cam)

ROBOT
Onboard
Sensors

(Noisy) (Commands)

(Noisy)
Slow Time Scale

Real Time

Figure 14. Autonomous navigation scheme with m� imple-
mentation on a richly instrumented Segway RMP (shown in
inset).
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overhead multi-cam vision system to allow continuous
global position and heading fix. However, the natu-
rally varying illumination in the laboratory results in
significant localisation noise. Moreover, even with an
a priori known obstacle map, sensor noise causes
observed perturbations in obstacle positions.
The overall control scheme is illustrated in Figure 14.
Navigation commands such as velocity and turn
rate are written to the robotic hardware by the
NAVIGATOR which decides upon the specific
values in the real time based on the robot localisation,
the m? plan and locally observed obstacles detected via
on-board sensing. For mobile obstacles, the local
information is integrated with the global map and the
m? plan is updated in a slower time scale. In the
reported experiment, we consider only static obstacles
in the workspace. The obstacle positions are shown in
Figures 15(a) and (b). The objective of the reported
experiment is 2-fold:

(1) To validate the practical applicability of m?.

(2) To validate that m? optimal routes are more
reliable and navigable compared to shortest
route planning especially under high-noise
scenarios in cluttered environments.

The workspace dimensions are 9� 7m. Position
discretisation resulted in 53� 29¼ 1537 states for the
navigation automaton. Since the Segway RMP is
a circular robot, we used the modelling scheme denoted
as Model 1 in x 5 resulting in an alphabet size of eight.
The mission consists of repeatedly visiting the pre-
specified goals A, B, C, D and E (Figure 15a) in
sequence starting from A. Noise filters were intention-
ally turned off to simulate a particularly high noise
environment. Sensor and localisation noise coupled
with the inverted-pendulum dynamics of the Segway
RMP poses a challenging problem in autonomous
navigation. The mission was executed using m? plan-
ning and SP routes separately for 32 laps each.
Computation time in each case was comparable.
The trajectories obtained from actual localisation
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Figure 15. Experimental comparison of m� and SP routes. Plots (a) and (b) illustrate the trajectories for SP and l�, respectively.
The intermediate goals are denoted as A, B, C, D and E. Plot (c) compares execution times for each leg of the mission. The top
and middle plates of plot (d) compare the mean and standard deviation (SD) of execution times for each leg, respectively.
The lower plate of plot (d) compares the computed path lengths for each leg.
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history for the SP planning is shown in Figure 15(a),

while those for the m? planning is shown in

Figure 15(b). Note the localisation noise apparent in

the trajectory histories. The SP routes typically take

the robot through a significantly more convoluted path
requiring precise positioning to avoid collisions which

results in degraded overall mission performance as

discussed next. The completion times for each leg of

the mission are plotted in Figure 15(c). The mean
execution times are compared in the top plate of

Figure 15(d). Note that legs A–B and D–E take much

longer on average for the SP routes. The mean times

for the other legs are comparable. Referring to

Figures 15(a) and (b), we note that the legs A–B and
D–E are the ones at which the plans differ significantly.

Moreover, the standard deviation (SD) of the execu-

tion times (middle plate of Figure 15d) illustrate that

the m? plans are significantly more reliable.
The difference is best brought out for the data

corresponding to leg D–E. Note that the path lengths

as shown in the bottom plate of Figure 15(d) are

comparable for this leg; however, the mean execution

time for SP is more than double that of m? with the SD
for SP approximately five times that of m?. Thus, the

experimental results validate the premise that SP routes

may not be particularly desirable in uncertain environ-

ments; significant improvements can be obtained if one
opts for a slightly longer paths using m? that optimally

avoid obstacle clutter.

9. Summary and future research

A novel path planning algorithm m? is introduced that

models the autonomous navigation as an optimisation

problem for probabilistic finite state machines and

applies the theory of language-measure-theoretic opti-

mal control to compute m-optimal plan to the specified
goal, with automated tradeoff between path length and

robustness of the plan under dynamic uncertainty.

9.1 Future work

Future work will address the following issues:

(1) Dynamic replanning: Adapting m? to enable

efficient dynamic replanning and compare

computational and executional effectiveness

with the current state-of-the-art.
(2) Probabilistic estimation of s: Sampling schemes

for estimating the characteristic function � in

complex planning scenarios.
(3) Performance comparison: Performance

comparisons with state-of-the-art planners
for dynamic re-planning schemes and in

high-dimensional scenarios with possibly non-
holonomic constraints.

(4) Multi-robot coordinated planning: Run-time
complexity grows exponentially with the
number of agents if one attempts to solve the
full Cartesian product problem. The m?-algo-
rithm could be potentially used to plan
individually followed by an intelligent assembly
of the plans to take interaction into account.

(5) Hierarchical implementation to handle very large

work spaces: Large work spaces could be solved
more efficiently if path planning is done when
needed rather than solving the whole problem
at once; however, care must be taken to ensure
that the computed solution is not too far from
the optimal one.

(6) Handling uncontrollable dynamic events: In this
article, the only uncontrollable event is the one
modelling a collision when the robot attempts
to move into a blocked state. Physical dynamic
response of the robot may need to be modelled
as uncontrolled transitions in highly uncertain
environments.
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