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Supervised Self-Organization of Homogeneous
Swarms Using Ergodic Projections of Markov Chains

Ishanu Chattopadhyay and Asok Ray

Abstract—This paper formulates a self-organization algorithm
to address the problem of global behavior supervision in engi-
neered swarms of arbitrarily large population sizes. The swarms
considered in this paper are assumed to be homogeneous collec-
tions of independent identical finite-state agents, each of which is
modeled by an irreducible finite Markov chain. The proposed al-
gorithm computes the necessary perturbations in the local agents’
behavior, which guarantees convergence to the desired observed
state of the swarm. The ergodicity property of the swarm, which
is induced as a result of the irreducibility of the agent models,
implies that while the local behavior of the agents converges to
the desired behavior only in the time average, the overall swarm
behavior converges to the specification and stays there at all times.
A simulation example illustrates the underlying concept.

Index Terms—Discrete event systems, ergodic projections,
finite-state irreducible Markov chains, swarms.

I. INTRODUCTION AND MOTIVATION

W ITH the recent advances in sensor technology and the
affordable miniaturization of mobile computing plat-

forms, swarms of simple agents are now capable of performing
a variety of complex coordinated tasks. Potential applications
of such human-engineered swarms range from self-organizing
sensor fields for military surveillance and civilian search and
rescue operations to coordinated handling and transportation of
large objects. Motion coordination among teams of autonomous
agents has extensively been studied [1], [2], with special em-
phasis on the formation control of large groups [3].

The essential distinction between large groups of au-
tonomous agents and a swarm needs to be clarified. An example
from nature is pertinent here. Wolves hunt in packs; however,
a pack is not a swarm. Members of a pack play special roles
in the highly coordinated process in the sense that removal of
a few members renders the pack ineffective until the missing
members are reinstated. In contrast, a colony of honeybees
functions as a swarm, where removal of a few hundred workers
has little impact on the colony as a whole. This distinction is not
merely due to the size of the group; it arises from a difference
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in the operational philosophy. In a swarm, an individual has
no importance, and attaining the group objective is all that
matters.

For human-engineered systems, the preceding philosophy
translates to having little or no performance requirements on
individual agents, and control of global behavior is of sole
importance. Thus, the problem in swarm control is more than
to just come up with decentralized control policies; it is one of
engineering a framework that embodies a fundamental survival
philosophy observed in nature. Largely, the reported work
in this field addresses coordination of groups that are not
large enough to qualify as swarms [1], [2], and often makes
application-specific modeling assumptions [4], [5]. Recently,
Belta and Kumar [6] have proposed an abstract framework for
computing decentralized controllers to operate on locally avail-
able sensor information that realizes coordinated task execution
for finite autonomous teams. However, there are performance
criteria to be satisfied at the agent level, and the analysis
does not necessarily scale to arbitrarily large population sizes.
Recently, bio-inspired approaches to swarm control have been
reported [7], in which the authors use a self-organized com-
munication method inspired from males of chorusing insects,
which are known for the rapid synchronization of their acoustic
signals in a chorus. Attempts have been made to combine
behavior-based and systems-theoretic approaches to give better
and qualitatively more functional controllers for swarms [8].
This method controls the mean (average position) and variance
(spread) of a swarm of robots to direct movement in under-
water mine-hunting applications and makes use of “artificial
potential fields” as the key tool for developing underlying
system behaviors. A more applied approach to the problem is
reported in [9], which uses “digital pheromones” to bias the
movements of individual units within a swarm toward areas
that are attractive and away from areas that are dangerous
or unattractive and presents efficient methods for performing
pheromone field calculations in the graphics processing unit
(GPU). Other analytical concepts have been investigated as
well, such as the Hill Function Construction [10] to guide
swarms to acoustic sources. However, the reported approaches
to swarm control suffer from lack of generality. While working
well for the particular applications cited, the problem of formu-
lating a general framework for controlling swarms is apparently
still open. Furthermore, almost all of the reported works address
the problem of coordinating swarm movement in the physical
space; the formulation of a control approach that is capable of
handling more general tasks has received little attention. In this
paper, we lay the initial framework to address these deficiencies
for homogeneous swarms.
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We model homogeneous swarms as collections of indepen-
dent identical finite-state Markov chains that capture the opera-
tional behavior of individual agents. In particular, we associate
states with distinct behaviors that the agents can execute. Thus,
any behavior that satisfies the rather weak requirements stated
in the sequel can be represented by an agent state. The key con-
cepts pertaining to Markov chain modeling used in this paper
are that of irreducible chains and their corresponding ergodic
projection [11]–[13], and the latter is related to the stationary
distribution attained on the model states. For the sake of brevity,
well-known results are presented without proof, which can be
found in standard texts on the subject [13]–[16]. The transition
probabilities, i.e., the probabilities of behavior switching, are
assumed to be controllable in a certain probabilistic sense [17],
[18] to the agents themselves, which forms the basis of the
proposed supervision algorithm. The details are presented in
the sequel.

The exact configuration or the “microstate” of the swarm
at any given time is given by a detailed enumeration of the
local states of the individual independent agents. Drawing an
analogy with statistical mechanics [19], the problem here is
to control the macroscopically measurable behavior of the
swarm without having access to the microstates, i.e., the de-
tailed enumeration previously described. The assumption of
independent operation of the agents is similar to the ideal
gas concept in statistical thermodynamics, where the indi-
vidual gas molecules are noninteracting, i.e., the energy of
intermolecular interaction is assumed to be insignificant with
respect to the kinetic energy of the individual molecules. In
the present framework, the operational independence of the
agents implies that they are able to execute transitions in the
local states, i.e., switch behaviors, independent of the neigh-
bors. Thus, we assume that the neighbors have little effect
in addition to what is already modeled in the local Markov
chains. This requirement is not too restrictive. For example,
if in a given scenario the local Markov chains do not model
collisions, then we would have to guarantee that interagent
collisions are limited. This can be achieved rather simply by
executing local reactive collision avoidance routines in each
agent in addition to the main control algorithm. The proposed
algorithm provides a control methodology under which every
agent in the swarm receives the same control broadcast, thus
eliminating the need to talk to specific agents or individually
control them, but the observed global behavior converges to
the desired specification. Furthermore, this control broadcast
is required only once when the desired global behavior needs
to be updated; the swarm self-organizes after the initial broad-
cast to reflect the desired global configuration. Practical issues
such as interagent communication, noise corruption, and actu-
ation delays, although critical, are not addressed in this paper
and would be investigated in future work on actual system
implementations.

This paper is organized in four sections including the present
section. Section II states the necessary definitions and concepts
and presents the formal statement of the control problem.
Section III presents the main results along with an illustrative
application example. This paper is summarized and concluded
in Section IV with recommendations for future work.

II. PRELIMINARIES AND NOTATIONS

This section provides preliminary concepts and notations
that facilitate understanding of the concepts presented in the
sequel.

Notation 1: In the sequel, we denote the cardinality of any
set A as CARD(A).

Definition 1: A finite-state homogeneous Markov chain is
a triple G = (Q,Π, ℘0), where Q is a set of states with
CARD(Q) = n ∈ N, Π is the (n × n) stationary transition
probability matrix such that ∀i, j ∈ {1, . . . , n}, Πij � 0 with∑

i Πij = 1, and ℘0 ∈ [0, 1]CARD(Q),
∑

i ℘0 = 1, is the initial
occupancy distribution over the model states.

Remark 1: The transition matrix Π of a finite Markov chain
is always a stochastic matrix [13], [16]. Every stochastic matrix
Π has at least one unity eigenvalue, and all the eigenvalues of
Π are located within or on the unit disk.

Definition 2: A finite-state homogeneous Markov chain G =
(Q,Π, ℘0), with CARD(Q) = n ≥ 2, is called irreducible if,
for any pair (i, j), 1 ≤ i, j ≤ n, there exists a positive integer
k(i, j) ≤ n such that the ijth element of the kth power of Π
is strictly positive, i.e., Πk

ij > 0. In this case, the stochastic
transition matrix Π is also an irreducible matrix [13], [16].

Remark 2: The following standard results are crucial for the
development in the sequel. Proofs can be found in any standard
text on Markov chain modeling or stochastic matrices [11],
[13]–[16].

For any n × n irreducible stochastic matrix Π with n > 1,
the diagonal terms are strictly less than unity, i.e., Πii < 1 ∀i.
Upon unity sum normalization, the left eigenvector vector ℘ =
[℘1 ℘2 · · · ℘n] corresponding to the unique unity eigen-
value of Π is called the stationary probability vector, where∑

i ℘i = 1, and ℘j > 0 ∀j. The stationary probability vector
℘ satisfies the following condition:

lim
k→∞

1
k

k∑
j=0

Πj =

⎡
⎣ · · · ℘ · · ·

...
...

...
· · · ℘ · · ·

⎤
⎦ . (1)

The (unity rank) matrix on the right-hand side of (1) is called
the ergodic projection and is denoted as C(Π). The rows of
C(Π) define the stationary probability distribution for the ir-
reducible chain G in the sense that ℘Π = ℘, and, in general,
C(Π)Π = ΠC(Π) = C(Π).

Definition 3 (Probabilistic Disabling and Enabling): Let
G = (Q,Π, ℘0) be an irreducible Markov chain, and let the ijth
probability be nonzero, i.e., Πij > 0. Referring to Fig. 1, the
probabilistic disabling and enabling [17], [18] from state i to
state j are, respectively, defined in terms of perturbations in the
state transition matrix Π as

DISABLING : Πij �→ (1 − γ)Πij , γ ∈ [0, 1] (2a)

Πii �→ Πii + γΠij (2b)

ENABLING : Πii �→ Πii − γΠij (2c)

where γ ∈ [0, 1] ∧ Πii � γΠij

Πij �→ (1 + γ)Πij . (2d)
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Fig. 1. Probabilistic disabling of finite-state Markov chains. (a) Enabled
transition. (b) Disabled transition. (c) Probabilistically disabled transition.

Remark 3: The concept of probabilistic “disablement” was
first reported in [17] and has widely been used in the supervi-
sory control of discrete event systems [18], [20]. However, the
use of such formalism to control-engineered swarms has not
been reported yet.

In the sequel, the analysis is restricted to finite-state Markov
chains for which every transition with nonzero occurrence
probability could be controlled in the sense of Definition 3 for
an arbitrary choice of the parameter γ in [0, 1].

For a physical agent modeled by an irreducible Markov
chain, the preceding assumption implies that the agent is capa-
ble of deciding to execute a particular transition with a specific
probability, e.g., seven out of ten times it happens to reach
the state at which the particular transition is defined. The self-
loop arising from disabling simply ensures that state changes
via such disabled transitions are prevented; so if the agent
attempts to execute a “disabled” transition, then it comes back
to the originating state. In the sequel, we associate states with
operational behaviors. The preceding notion of controllability
does not pose any serious restriction on the behavior types
that can be defined in this framework; however, the agent
must be free to choose which behavior it will execute next;
this behavioral transition must not be uncontrollable. This is
equivalent to assuming that there are no uncontrollable edges
in the agent graph defined in the sequel.

Definition 4 (Controlled Descendant): Let the Markov chain
G = (Q,Π, ℘0) be derived from a given finite-state Markov
chain G̃ = (Q, Π̃, ℘0). Then, G is defined to be a controlled
descendant of G̃ if the following condition is satisfied:

∀i 
= j, Π̃ij = 0 =⇒ Πij = 0. (3)

A descendant G is obtained by applying probabilistic disablings
or enablings to one or more transitions of the Markov chain G̃.

Definition 5 (Agent in Swarm Modeling): An agent is a con-
nected digraph A = (Q,Δ), where each state i ∈ Q represents
a distinct predefined behavior, and Δ ∈ {0, 1}CARD(Q)×CARD(Q)

is a matrix such that Δij = 1 implies that there exists a control-
lable transition from state i to state j.

The matrix Δ in Definition 5 specifies state transitions (i.e.,
behavior switching) of the agent A’s state (i.e., behavior) in
the sense that A decides to continue in the current state or
make a transition to another state. The probabilities of state
transitions constitute a (finite-state) irreducible Markov chain,
with the irreducibility property following from the connected-

ness of the agent graph. Without any control, it is assumed that
the state transition probabilities are uniformly distributed over
the defined transitions at each state, and it follows from the
connectedness of the agent graph that the uncontrolled agent
corresponds to an irreducible Markov chain. Therefore, the
specifications of switching probabilities must obey the con-
straint that no transition, which represents a behavior switch,
with nonzero probability is defined at a state if the correspond-
ing edge does not exist in the graph of the agent. The notion is
formalized next.

Definition 6: Let the uncontrolled behavior of an agent
A = (Q,Δ) be represented by an irreducible Markov chain
G0 = (Q,Π0, ℘0), where each row of Π0 reflects the uniform
probability distribution over the defined set of transitions from
the state that the particular row corresponds to (see preceding
discussion). Let the agent be controlled by modifying the state-
based transition probabilities, i.e., specifying an irreducible
Markov chain G = (Q,Π, ℘0). Then, following Definition 4,
a control policy is defined to be admissible if G is a controlled
descendant of G0.

Definition 7: In the sense of Definition 5, a homogeneous
swarm S is defined to be a collection of independent identi-
cal agents A = (Q,Δ), each of which is represented by the
same (finite-state) irreducible Markov chain G = (Q,Π, ℘0).
Formally

S = {Gα : α ∈ X} (4)

such that Gα = G, and X is an index set.
Note that no restriction is imposed on the cardinality of the

index set X; hence, the swarm can be finite, countably infinite,
or uncountable.

Notation 2: Denoting the cardinality of the state set Q as
CARD(Q), the following notation is used for the collection of
orthonormal basis vectors for the space R

CARD(Q):

B =
{

νi ∈ R
CARD(Q) : νi

j = δij

}
. (5)

Note that if the cardinality of the state set is n, then νi is a
vector in R

n, whereas νi
j denotes the jth entry in the vector νi.

Definition 8 (Local State): The local or intensive state
qα(t) ∈ B for the swarm S = {Gα : α ∈ X} at time t ∈ [0,∞)
is defined as

qα(t)|i =
{

1, if qi is the current state for agent Gα

0, otherwise.
(6)

Definition 9 (Observed State): The observed or extensive
state qS(t) of a swarm S at time t is defined as

qS(t) = lim
Y→X

1
μ(Y)

∫
α∈Y�X

qα(t) dμ(α) (7)

where qα(t) is the local swarm state at time t, and μ is the
appropriate measure for the index set X. Note that μ is the
counting measure if X is finite or countable; if X is a continuum,
then μ is the appropriate Lebesgue measure.
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If the behavior of the swarm is ergodic, then the time average
of the local state for a given α ∈ X converges to the ensemble
average at equilibrium, i.e.,

lim
t→∞

1
t

t∫
0

qα(τ) dτ =℘ (8a)

lim
Y→X

1
μ(Y)

∫
α∈Y�X

qα(t) dμ =℘ ∀t. (8b)

A. Analogy With Statistical Mechanics

In the terminology of statistical mechanics, a microstate [19]
of the swarm constitutes a detailed enumeration of the local
states of each individual agent.

Specifically, if the total number of (identical) agents in the
swarm is N , then the total number of possible microstates (Ω)
is given by

Ω = CARD(Q)N . (9)

For example, even for two-state agents, the number of available
microstates for a swarm of 100 such agents is 2100, which is
ominously large. The observed measurable state of the swarm
is the average effect of the local states of the member agents.
Thus, for a given observed state, there exists a large number of
possible configurations or microstates that realize the observed
measurable state. In this paper, the swarm microstates are
not considered to be important; the observed measurable state
is what needs to be controlled. Such an approach embodies
the fundamental philosophy that the individual agents do not
have to locally meet the performance requirements; the global
objective is what is solely important.

In the statistical mechanical framework, a homogeneous
swarm is visualized as an ensemble of identical microsystems
that are the individual agents. As previously stated, a microstate
of the system is an enumeration of the local states of each
agent in the swarm, which is not externally observable and,
more importantly, cannot individually be controlled. The state
of the swarm in the sense of Definition 9 is the average effect of
all the microstates [19] and is, thus, an observable macrostate.
The analogy is largely similar to the case of an ideal gas,
where the microstates correspond to the detailed enumeration
of position and momentum of each gas molecule, whereas the
microcanonical ensemble average [19], [21] simply enumerates
a fraction of particle population in each energy level without
considering which particular molecules are at what level at any
point in time. Thus, this ensemble average can be identified with
the observed swarm state. It is generally impossible to control
the energy levels of individual gas molecules; but the gas tem-
perature, which is a function of the state of the microcanonical
ensemble, can be controlled at ease. The driving philosophy
presented in this paper is to formulate an implementable policy
that controls the observed swarm state without accessing the
agent microstates. In the proposed algorithm, an external su-
pervisor computes the state transition (i.e., behavior switching)

probabilities of the agents subject to the defined constraints.
However, control communications are assumed to occur as
general broadcasts, and no individual agents are individually
controlled. The decision and control problem is formally stated
in the sequel.

B. Statement of the Control Problem

Following Definition 7, let S = {Gα : α ∈ X} be a ho-
mogeneous swarm, where Gα = (Q,Π, ℘0) is the irreducible
Markov chain corresponding to the uncontrolled agent G0 =
(Q,Π0, ℘0) and a target observed state ℘� for the swarm, where∑CARD(Q)

i=1 ℘�
i = 1, and ℘�

j > 0 ∀j. The problem is to synthe-
size a controlled descendant G� of G0 such that the perturbed
transition matrix Π� satisfies the following conditions.

1) G� is a finite-state ergodic Markov chain, i.e., the as-
sociated state transition matrix Π� is irreducible and
acyclic [13].

2) Ergodic projection matrix

C(Π�) =

⎡
⎣ · · · ℘� · · ·

...
...

...
· · · ℘� · · ·

⎤
⎦ .

The preceding conditions have the following implications.

1) Since G� is a disabled descendant of G0, G� has a
nonzero transition probability of switching states via a
particular event if the corresponding transition is defined
in the underlying agent graph.

2) It follows from (8a) and (8b) that the desired swarm
state is achieved at equilibrium under the assumption of
ergodicity.

3) The irreducibility of G� (i.e., irreducibility of Π�) implies
that the limiting time average of the local state of each
agent is independent of the initial conditions. The fact
that we demand G� to be ergodic guarantees that the time
average of the local states coincides with the observed
swarm state in the limit for a sufficiently large swarm.
This follows from the fact that for an ergodic chain with
a transition probability matrix Π� and for a sequence
{x[m]} of unity-sum-normalized vectors in R

n satisfying
∀m ∈ N, x[m] = x[m−1]Π�, we have

lim
m→∞

x[m] = ℘�. (10)

The necessity of a large agent population for conver-
gence of the observed swarm state will be clarified in the
sequel.

III. MAIN RESULTS

This section presents an analytical formulation of the su-
pervised self-organization algorithm and addresses the associ-
ated issues of computational complexity. In the sequel, unless
otherwise mentioned, the cardinality of the state set is assumed
to be n.



CHATTOPADHYAY AND RAY: SUPERVISED SELF-ORGANIZATION OF HOMOGENEOUS SWARMS 5

A. Derivation of the Self-Organization Algorithm

This section formulates a recursive algorithm to solve the
control problem stated in Section II-B. To this end, two sup-
porting lemma and two theorems are presented.

Definition 10: Let ℘� ∈ R
n be a unity-sum-normalized non-

negative vector, and let Π ∈ R
n×n be an irreducible stochastic

matrix with the stationary probability vector ℘. A perturbation
Π ∈ R

n×n of the irreducible stochastic matrix Π is defined as
follows:

Π = Π + KE [Π − I] ⇒ Π − I = [I + KE ][Π − I] (11)

where

Eij
Δ= δij(℘i − ℘�

i ) (12a)

Kij
Δ=

{
δij

℘�
i
, if Eii < 0

0, otherwise
. (12b)

Remark 4: The following properties hold based on (11),
(12a), and (12b) in Definition 10 and the facts stated in
Remark 1.

1) KiiEii ∈ (−1, 0], and, hence, KiiEii ≤ Πii/1 − Πii be-
cause Πii ∈ [0, 1).

2) Πij ≥ 0 ⇒ Π ≥ 0, i.e., Π is a nonnegative matrix.
Lemma 1: The perturbation Π in Definition 10 is an irre-

ducible stochastic matrix.
Proof: Since both K and E are diagonal matrices, and Π

is a stochastic matrix, it follows that

∑
j

Πij =
∑

j

Πij + KiiEii

⎛
⎝∑

j

Πij − 1

⎞
⎠ = 1 ∀i. (13)

The stochasticity of Π is established by combining (13) with
Property 3 in Remark 4. The irreducibility of Π is proved
next. Let ℘̂ be an elementwise nonnegative vector representing
a direction in the eigenspace of Π corresponding to its unity
eigenvalue, i.e., ℘̂[Π − I] = 0. Such a ℘̂ is guaranteed to exist
for all stochastic matrices [22]. Equation (11) yields

℘̃[I + KE ][Π − I] = 0.

Since ℘ is unique, ℘̂[I + KE ] = ℘ with a scalar multiplicity
of 1. Then, it follows from Definition 10 and Property 2
of Remark 4 that the stationary probability vector of Π is
obtained as

℘
Δ=

℘̃

‖℘̃‖1
=

1∑
i ℘̃i

℘̃ (14)

where ℘̃ = ℘[I + KE ]−1.
Since Π has a unique stationary probability vector ℘ that is

positive elementwise, it is irreducible [13], [16]. �
Lemma 2: The stationary probability vector ℘ of the stochas-

tic matrix Π satisfies the following strict inequality:

‖℘ − ℘�‖∞ < ‖℘ − ℘�‖∞ (15)

where ‖x‖∞ is the max norm of the finite-dimensional vector x.

Proof: It follows from (14) and Property 2 of Remark 4
that

‖℘̃‖1 =
∑

i

℘i

1 + KiiEii
(16)

=
∑

i:Eii<0

℘i

1 + KiiEii
+

∑
i:Eii�0

℘i. (17)

An application of the bounds on Kii [see (12a) and (12b)] in
(17) results in

‖℘̃‖1 >
∑

i:Eii<0

℘i +
∑

i:Eii�0

℘i =
∑

i

℘i = 1. (18)

Usage of the identity [I + KE ]−1 = I −KE [I + KE ]−1 yields

℘̃ − ℘� = ℘ − ℘� − ℘KE [I + KE ]−1

=⇒ ℘̃ − ℘� = (℘ − ℘�)[I − A] (19)

where it follows from (12a) and (12b) that

Aij =
δijKii℘i

1 + Kii (℘i − ℘�
i )

⇒ Aii =
Kii℘i

1 + KiiEii
∈ {0, 1}. (20)

It is noted from (16) that

1 − ‖℘̃‖1 = 1 −
∑

i

℘i

1 + KiiEii

=
∑

i

(
℘i −

℘i

1 + KiiEii

)
=

∑
i

(
℘iKiiEii

1 + KiiEii

)

=

⎡
⎢⎣

...
Eii
...

⎤
⎥⎦

T ⎡
⎢⎣

. . . 0
Aii

0
. . .

⎤
⎥⎦

⎡
⎣ 1

...
1

⎤
⎦

= (℘ − ℘�)A

⎡
⎣ 1

...
1

⎤
⎦ .

Then, it follows from (14) and (19) that

℘ − ℘� =
℘̃

‖℘̃‖1
− ℘�

=
℘ − ℘�

‖℘̃‖1
+

(
1 − ‖℘̃‖1

‖℘̃‖1

)
℘�

=
(

℘ − ℘�

‖℘̃‖1

)
[I − A] +

1
‖℘̃‖1

(℘ − ℘�)Aη℘�

=
(

℘ − ℘�

‖℘̃‖1

)
[I − A + Aη℘�]

=
(

℘ − ℘�

‖℘̃‖1

)
W (21)

where η
Δ= [1 · · · 1]T , and W

Δ= [I − A + Aη℘�].
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Next, it is shown that W in (21) is a stochastic matrix. It
is obvious from (20) that the off-diagonal elements of W are
nonnegative, and the diagonal elements are given as

Wii = 1 − Aii + Aii℘
�
i =

{
1, if Aii = 0
℘�

i , if Aii = 1.

Furthermore, since η℘� is a stochastic matrix of rank 1 with all
rows identically equal to ℘�, it follows that∑

j

Wij = 1 − Aii + Aii

∑
j

℘�
j = 1. (22)

Therefore, W is a stochastic matrix, and, hence, the induced
norm ‖W‖∞ = 1. Using the inequality ‖℘̂‖1 > 1 from (18),
(21) yields

‖℘ − ℘�‖∞ �
(
‖℘ − ℘�‖∞

‖℘̃‖1

)
‖W‖∞ < ‖℘ − ℘�‖∞. (23)

The proof is now complete. �
Theorem 1: Let ℘� ∈ R

n be a unity-sum-normalized non-
negative vector (for n > 1), and let Π ∈ R

n×n be an irreducible
stochastic matrix. Then, the recursive procedure

Π[r+1] = Π[r] + K[r]E [r][Π[r] − I], Π[0] = Π (24)

where E [r] and K[r] satisfy the conditions specified in (12a) and
(12b), has the following.

1) Iteratively estimates an irreducible stochastic matrix Π�

with ℘�Π� = ℘�, i.e., we have

lim
r→∞

℘[r]Π[r] = lim
r→∞

℘[r] lim
r→∞

Π[r] = ℘�Π� = ℘�.

2) ‖℘[r] − ℘�‖∞ strictly monotonically converges to zero.
3) ∀i 
= j,Π0

ij = 0 =⇒ Π�
ij = 0.

Proof: It follows from Lemma 2 that {‖℘[r] − ℘�‖∞}r∈N

is a strictly monotonically decreasing sequence. The nonnega-
tivity of norm implies that this sequence necessarily converges,
which in turn implies that {℘[r]}r∈N is a Cauchy sequence in R.
Recalling (21), it is noted that

℘[r+1] − ℘[r] = (℘[r] − ℘�)
(

W

‖℘̃[r]‖1
− I

)

⇒ ‖℘[r+1] − ℘[r]‖
∥∥∥
∞

∥∥∥∥∥
[

W

‖℘̃[r]‖1
− I

]−1
∥∥∥∥∥
∞

� ‖℘[r] − ℘�‖∞

⇒ ‖℘[r+1] − ℘[r]‖∞
(

‖℘̃[r]‖1

‖℘̃[r]‖1 − 1

)
� ‖℘[r] − ℘�‖∞ (25)

where (25) follows from the stochasticity of W , and
the inequality ‖℘̂[r]‖1 > 1, which implies that (‖℘̂[r]‖1 −
1/‖℘̂[r]‖1)[I − (W/‖℘̂[r]‖1)]−1 is a stochastic matrix with
unity infinity norm. Then, we have

‖℘[r+1] − ℘[r]‖∞ � ‖℘[r] − ℘�‖∞
(

1 − 1
‖℘̃[r]‖1

)
.

For proof of statement 2 in the theorem by contradiction, let us
assume that

lim
r→∞

‖℘[r] − ℘�‖∞ = ε > 0. (26)

The strict monotonicity of the sequence {‖℘[r] − ℘�‖∞}r∈N

implies that

‖℘[r] − ℘�‖∞ > ε ∀r ∈ N. (27)

It is claimed that

‖℘̃[r]‖1 > 1 + ε (28)

which follows from (12a), (12b), and (17) that ‖℘̂[r]‖1 =∑
i max(℘[r]

i , ℘�
i ). Then, (28) yields

‖℘[r+1] − ℘[r]‖∞ � ε

(
1 − 1

1 + ε

)
∀r ∈ N

⇒ ‖℘[r+1] − ℘[r]‖∞ � ε2

1 + ε
∀r ∈ N (29)

which contradicts the fact that {℘[r]}r∈N forms a Cauchy
sequence. Hence, it is concluded that ε = 0, which implies that
‖℘[r] − ℘�‖∞ monotonically converges to zero. The proof of
statements 1 and 2 is now complete.

Statement 3 follows from noting that the recursive procedure
guarantees

Π[r]
ij = 0 =⇒ Π[r+1]

ij = 0 ∀r ∈ N and ∀i 
= j.

�
Theorem 1 [see (24)] computes the stochastic matrix Π[r�]

after r� iterations such that the resulting stationary distribution
for Π[r�] coincides with the target distribution ℘� in the limit.
Starting from an arbitrary initial distribution x[0], a necessary
condition for the global swarm behavior to converge to the
target distribution is as follows:

∀m ∈ N ∪ {0}, x[m+1] = x[m]Π[r�] ⇒ lim
m→∞

x[m] = ℘�.

(30)

The preceding condition is guaranteed only if the matrix Π[r�]

is irreducible, acyclic, and stochastic. However, the stochastic
irreducible matrix Π[r�] is not guaranteed to be acyclic. This
property is achieved via modification of Π[r�] via the following
lemma.

Lemma 3: Given an (n × n) irreducible stochastic matrix Π,

the modified matrix P
Δ= (1 − θ)Π + θIn is stochastic, irre-

ducible, and acyclic, where the scalar parameter θ ∈ (0, 1), and
In is the (n × n) identity matrix.

Proof: The stochasticity property of P is retained because
both Π and In are nonnegative matrices and θ > 0. Therefore,
P is a nonnegative matrix with each row sum being unity, which
implies that P is stochastic. The irreducibility property of P
is retained because every eigenvector of P is an eigenvector
of Π. Since Π is irreducible, no nonnegative left eigenvector
of Π has a zero coordinate. Therefore, no nonnegative left
eigenvector of P has a zero coordinate, which implies that



CHATTOPADHYAY AND RAY: SUPERVISED SELF-ORGANIZATION OF HOMOGENEOUS SWARMS 7

P is irreducible [13]. Finally, since Trace(P ) ≥ nθ > 0, the
irreducible stochastic matrix P must be acyclic [13] regardless
of whether Π is cyclic or acyclic. �

Algorithm 1, which is called Supervised Self-organization of
Swarms (S3), is formulated based on Theorem 1 after modify-
ing the irreducible matrices Π[r�] to the respective irreducible
and acyclic (i.e., ergodic) matrices based on Lemma 3 to solve
the control problem stated in Section II-B. The S3 algorithm
is discussed in Section III-B; the simulation results and the
associated computational aspects are presented in Section III-C.
The particular choice of θ in applications of Lemma 3 is related
to the convergence rate of the solution, which is a topic of future
research.

Algorithm 1: Supervised Self-organization of Swarms (S3)
input: Π0, ℘�, Tolerance
output: Π�

1 begin
2 Set r = 0, Error = 1; /* Initialize */
3 while (Error > Tolerance) do
4 Compute E [r];
5 Compute K[r];
6 Π[r+1] = Π[r] + K[r]E [r][Π[r] − I];
7 Compute ℘[r+1]; /* stationary

distribution [12]*/
8 Error = ‖℘[r+1] − ℘�‖∞;
9 Set r = r + 1;
10 endw
11 Choose θ ∈ (0, 1);
12 Π� = (1 − θ)Π[r−1] + θI; /* Modification of

the transition probability matrix via
Lemma 3 */

13 end

B. Key Observations on Applicability of Algorithm S3

The following key observations are made regarding the ap-
plicability of S3 in practical scenarios.

There are no restrictions on the choice of the target probabil-
ity vector ℘�, except for the requirement that it needs to be a
bona fide probability vector, i.e., ∀i ℘�

i � 0, and
∑

i ℘�
i = 1. It

is important to consider the situation where the chosen ℘� has
one or more zero entries. It is noted that, for any irreducible
stochastic matrix, the stationary vector is elementwise strictly
positive [13], [16], and Algorithm 1 yields an irreducible sto-
chastic matrix at every iteration (see Lemma 1). In such a
situation, the target may not exactly be achieved for any finite
number of iterations of Algorithm 1; however, one can approach
the target with arbitrary precision as guaranteed by Theorem 1.

The perturbed transition matrix Π�, which is computed by
Algorithm 1, is not the only possible solution to the control
problem stated in Section II-B. Algorithm 1 is merely an
efficient procedure for computing an admissible solution to
the problem. An additional solution criteria may be useful. An
example is the perturbed stochastic matrix for which the mag-
nitude of the second largest eigenvalue is the least among all
the admissible solutions. The rationale is that the magnitude of
the second largest eigenvalue of the transition matrix is directly

related to the settling time of the corresponding Markov chain.
The swarm population controlled with such a transition matrix
is likely to converge to its stationary distribution faster than
any other admissible solution [12], [23], [24]. Thus, while the
present procedure computes an admissible solution, a procedure
that yields a solution under the previously stated constraint can
be regarded as the optimal solution with respect to the settling
time (also known in the literature as “mixing time”). Future
work will address the integration of such additional constraints
with the algorithm presented in this paper.

For a given swarm S = {Gα : α ∈ X}, the proposed algo-
rithm causes the observed or the extensive state qS(t) to con-
verge to the specified target ℘�. However, the local or intensive
state qα(t), which corresponds to the state of the particular
agent α ∈ X, does not “converge” at any time t ∈ [0,∞). Each
agent can be in one and only one of the local states at any time,
i.e., qα(t) ∈ B,∀t ∈ [0,∞). In fact, qα(t) keeps switching such
that the time average of the local states, for any agent, converges
to the target distribution ℘�. However, in spite of these local
fluctuations, if the computed transition matrix Π� is irreducible
and acyclic, then the observed swarm state does not change
after convergence and remains at or close to ℘� for all times.
For example, in a swarm of two-state agents, if the target is
given by [0.2 0.8], then it is guaranteed that at any point in
time, after convergence, about 20% of the agents can be found
in state 1 and 80% in state 2, but it is not certain which particular
agents will be in the specific states at a specific instant. In
addition, each agent will be either in [1 0] or in [0 1] at any
point in time and will keep visiting both states as dictated by the
computed Π�. Thus, the swarm behavior emerges as a global
effect of the local agent actions. This is a direct consequence of
the homogeneity of the swarm, the connectedness of the agent
graph (see Definition 5), the ergodicity of the transition matrix
computed by S3, and the implicit assumption of a sufficiently
large swarm population. The requirement of a large population
arises from the fact that each individual agent can be at one and
only one state at any time. Thus, if there are only two agents
in the previously described two-state “swarm,” then the only
swarm states that can possibly be observed are [1 0], [0 1] and
[0.5 0.5], and this set of possible observed swarm states in-
creases with the swarm size. Then, the maximum error between
a particular coordinate i of the target vector, which corresponds
to the target stationary probability at state i, and the value
achieved at equilibrium is bounded above by 1/N , where N is
the population size. This follows from the fact that the increase
(decrease) in the state probability by adding (subtracting) one
agent from a given state, averaged over time, is given by 1/N .
Therefore, the infinity or max norm of the error between an
arbitrary target vector and the distribution achieved at equi-
librium should approximately be inversely proportional to the
swarm size. This approximate hyperbolic relationship, namely,
(Max Norm of Error × Number of Agents � constant), is
validated by simulation, as shown in Fig. 2. Fig. 2(a) shows
a four-state connected agent graph to simulate the effects of
increasing swarm size on the convergence rate. The fitted curve
in Fig. 2(b) validates the preceding hyperbolic relationship with
a small root mean square error (RMSE) of 0.031. Fig. 2(c)
illustrates the observed max norm of error as a function of
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Fig. 2. Effect of population size. (a) Agent graph. (b) Hyperbolic relationship
between the infinity norm of error between the observed state and the target
distribution as a function of the swarm size. (c) Behavior convergence for
different swarm sizes as a function of simulation time.

simulation steps (or decision ticks) for the cases of three, 30,
and 300 agents, respectively. Section III-D further illustrates
this concept with a simulated example of a mobile sensor field,
where the swarm rapidly converges to the detected activity
hotspots in the field. However, this apparent coordination is a
pseudoemergent phenomenon, since under the current model
there is little coordination at the local level with the agents
operating independent of their neighbors. The case where the
agent behaviors are allowed to be statistically dependent is a
topic of future work.

The above-described dependence of convergence on swarm
size is related to the concept of the thermodynamic limit
[19], [21] in the sense of statistical mechanics—the larger the

system, the smaller the probability of thermal microfluctuations
resulting in more uniform macroscopic properties. In light of
the preceding discussion, the addition of new agents would
increase the size of the swarm and leads to better convergence
due to a closer approximation of the thermodynamic limit. Re-
moval of agents, either intentionally or due to failures, has the
reverse effect. The pertinent question is that how many agents
can be deleted before reaching an unacceptable performance
degradation. This issue is related to the size of the remaining
number of functional agents in the swarm. The control policy
will have an acceptable implementation as long as the swarm
population is large enough to spatially reflect the locally time-
averaged behavior with acceptable precision, i.e., as long as
the swarm population is large enough for the validity of the
ergodicity assumption stated in (8a) and (8b).

Example 1: Let us consider a four-state connected agent
graph [see Fig. 2(a)] and a target probability vector ℘� as
enumerated in (3.1), i.e.,

℘� =

⎡
⎢⎣

0.2
0.0
0.5
0.3

⎤
⎥⎦

Π[50] =

⎡
⎢⎣

0.9 0.04 0 0.06
0.73 0.01 0.26 0
0 0.04 0.9 0.06
0 0 0.13 0.87

⎤
⎥⎦

℘[50] = [0.20 0.02 0.49 0.29]. (31)

Application of S3 leads to the transition matrix Π[50] after
50 iterations, which is sufficiently close to the target distribu-
tion. Note that Π[50] is irreducible and acyclic as verified by
computing the eigenvalues (λ1 = 1, λ2 = 0.9, λ3 = 0.81, λ4 =
−0.03), which reveals that there is only one eigenvalue on the
unit circle. This implies that the Markov chain corresponding
to Π[50] is ergodic. In particular, any initial distribution is guar-
anteed to converge via repeated right multiplication by Π[50] to
℘[50]. This is verified by assuming a uniform initial distribution
[0.25 0.25 0.25 0.25], and the subsequent convergence is shown
in Fig. 3. The abscissa in Fig. 3 is annotated as “Number of
Decision Steps,” since each right multiplication step can be
assumed to be a local behavior switching decision by the agents.
Note that the convergence shown in Fig. 3 is not sufficient for
the convergence of the observed swarm state. The latter requires
a sufficiently large population size, as explained in detail above.

C. Computational Complexity of S3

The simulation results indicate the high computational effi-
ciency of the proposed control algorithm. A possible bottle-
neck in Algorithm 1 is the computation of the stable prob-
ability vector ℘[r] in each step of the iterative refinement
process. The computation of the stationary distributions of
irreducible Markov chains is well studied [12], and efficient
algorithms have been reported. Numerical results are illustrated
in Fig. 4, which suggest a quadratic bound on the asymptotic
run-time complexity. Fig. 4 was generated by considering
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Fig. 3. Convergence of a uniform initial distribution to the target vector as a
function of the number of right multiplication by Π[50].

Fig. 4. Algorithm execution time versus number of states.

1000 randomly chosen input stochastic matrices for each N in
the range [100, 1000]. The “Mean Time” is the average runtime
over the input samples considered for each N .

Fig. 5 exhibits a rapid decrease of the error norm with
respect to the number of iterations in a sample case (note
the logarithmic scale of the ordinate). The convergence rate is
determined by the second largest eigenvalue of the computed
stochastic matrix Π�. The rapid convergence observed in the
simulation results from the fact that we initiate S3 Algorithm
1 with Π0 for which the transition probabilities are defined to
be uniform over the transition set at each state. Estimation of
a rigorous upper bound on the second largest eigenvalue of the
computed transition matrix Π� is a topic of future research.

D. Supervised Self-Organization of a Simulated Mobile
Sensor Field

This section presents the simulated control of a mobile sensor
field as an application of the proposed control algorithm. The
swarm is assumed to consist of a large number of identical
mobile sensors in a sufficiently large rectangular 2-D grid of di-
mension N × M . In this scenario, the parameters are chosen as

Fig. 5. Illustrative case: error norm versus number of iterations.

N = M = 1000. The graph for each agent, therefore, consists
of N × M nodes that represent the spatial grid locations. Each
agent may decide to move to any of the adjacent grid locations
in one step, which implies that each agent state has eight defined
edges. The uncontrolled agents correspond to the irreducible
finite-state Markov chain G0 with the transition probabilities
defined to be uniform over the outgoing edges at each state.
The simulation experiment is conducted as follows.

At the beginning, the majority of the sensors are concen-
trated at the top-left corner of the grid [see Fig. 6(a)] with
the exception of a few that are randomly distributed over the
remaining grid locations. Detection of activity by the latter
at three different locations is communicated to an external
supervisor that determines that the sensor field density needs to
peak at the corresponding “hotspots.” The supervision policy
is computed via the S3 algorithm and is communicated to
the sensors via a general broadcast. The eight plates in Fig. 6
exhibit the progressive effects of the swarm control algorithm
to achieve the goal of locating the “hotspots.” The field den-
sity gradually moves out from the top-left corner [see Fig. 6,
plates (a) and (b)] and self-organizes to peak at the desired
locations [see Fig. 6, plates (g) and (h)].

Invoking the ideal gas analogy from statistical mechanics,
this control is achieved without considering the system mi-
crostates, i.e., without referring or accessing the detailed enu-
meration of the local states of each agent in the swarm.

It is important to note that the control broadcast occurs
only once each time the tactical scenario (i.e., location of the
hotspots) changes. No communication with the supervisor is
necessary for the subsequent self-organization process. Each
agent needs to know its current location, which can be obtained
from onboard GPS, and communication with neighbors is un-
necessary in this example.

IV. SUMMARY AND FUTURE WORK

This paper has presented an algorithm called (S3) for
the global behavior supervision of homogeneous engineered
swarms of potentially unbounded population sizes. The swarm
is modeled as an arbitrarily large collection of independent
identical finite-state agents. The algorithm is for computing the
necessary perturbations in the switching probabilities for the
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Fig. 6. Self-organization of the sensor field subsequent to control broadcast.
The initial field is concentrated at the top-left corner as seen in (a), which
subsequently organizes to peak at the activity hotspots. The spatial convergence
is illustrated by plates (b)–(h).

individual agents that guarantee convergence of the observed
swarm state to a desired distribution. A simulation example is
presented to illustrate the concept.

Future research is planned to pursue the following areas.

1) Choice of the scalar parameter θ in applications of
Lemma 3: This issue is related to the convergence rate of
the solution and will be investigated for obtaining optimal
solutions to the control problem stated in this paper.

2) Estimation of a rigorous upper bound on the magnitude of
the second largest eigenvalue of the computed transition
matrix: The convergence rate (e.g., settling time, also
known as “mixing time”) of the overall swarm is faster
if the bound is smaller and slows down as it approaches
unity from below.

3) Generalization to swarms of interacting agents: This issue
is analogous to extending the ideal gas formulation in
basic thermodynamics to that of real gases and is of enor-
mous importance from the implementation standpoint.

4) Execution of the S3 in a distributed manner: The con-
trol algorithm presented in this paper requires a general
broadcast when the desired target distribution changes,
after which the organization proceeds in a distributed

manner without central supervision. Execution of the S3

algorithm itself in a distributed manner would eliminate
the need for general broadcast. This task involves estima-
tion of the stationary distribution of a Markov chain via
only performing local computations.

5) Implementation in real-world systems: It requires reso-
lution of several issues such as observation delays, un-
certainties (e.g., due to interagent communication, noise
corruption and actuation), and broadcast bandwidth limi-
tations prior to deployment.
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