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Data-Driven Fault Detection in
Aircraft Engines With Noisy
Sensor Measurements
An inherent difficulty in sensor-data-driven fault detection is that the detection perfor-
mance could be drastically reduced under sensor degradation (e.g., drift and noise).
Complementary to traditional model-based techniques for fault detection, this paper
proposes symbolic dynamic filtering by optimally partitioning the time series data of
sensor observation. The objective here is to mask the effects of sensor noise level varia-
tion and magnify the system fault signatures. In this regard, the concepts of feature
extraction and pattern classification are used for fault detection in aircraft gas turbine
engines. The proposed methodology of data-driven fault detection is tested and validated
on the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) test-bed de-
veloped by NASA for noisy (i.e., increased variance) sensor signals.
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Introduction
Health monitoring of human-engineered complex systems �e.g.,

ircraft gas turbine engines�, is generally divided into three steps,
amely, detection, diagnosis, and prognosis. While the detection
tep identifies the presence of a fault, its level, type, and possible
ocation are determined in the diagnosis step. Given possible sta-
istics of future operating conditions and an expected component
eterioration profile, the role of prognosis is to estimate the re-
aining useful life of the system from the information generated

n the diagnosis step. Along this line, health monitoring algo-
ithms are primarily divided into two different categories, namely,
odel-based and data-driven.
Both model-based and data-driven techniques have been re-

orted in literature for health monitoring of gas turbine engines.
n example of model-based health monitoring is usage of state-

pace models of gas turbine engines coupled with Kalman filter-
ng �1–3�. Among data-driven approaches, neural network �NN�-
ased approaches �4� are the most popular. A regression-based
pproach was used for detecting anomalies in aircraft performance
uring cruise flight �5�. While detail models could be computa-
ionally too intensive, lumped-parameter models of significantly
ess computational complexity have been adopted for in-situ fault
etection �6�. Although such model-based techniques have their
dvantages in terms of on-board real-time application, their reli-
bility for health monitoring often decreases as the system com-
lexity increases. On the other hand, data-driven techniques may
emain reliable and computationally efficient in spite of system
omplexity if they are required to monitor the input-output infor-
ation from a limited number of �appropriately calibrated� sen-

ors while considering the entire system as a black-box. However,
nless the ensemble of acquired information is systematically
andled, data-driven techniques may become computationally in-
ensive and the performance of health monitoring may deteriorate
ue to sensor degradation. Furthermore, data-driven techniques
sually require high volume training data �engine failure data in
he present context�. In real life, acquiring this type of data be-
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comes problematic for reliable systems as aircraft engines. Thus,
developing reliable damage models is an important aspect of this
problem, which was addressed in Ref. �7�. Data-driven techniques
for health monitoring of gas turbine engines either use snapshot
data at a time instant from various sensors �7� or a window of time
series data from selected sensor observations. The data volume is
less when snapshot type data are handled and as a consequence,
the computational expense is low as well. However, just by using
snapshot data, statistical changes in the acquired information may
not be adequately captured, eventually resulting in missed detec-
tion of faults; this problem can be alleviated by using a window of
time series data. The problem with handling time series data is its
volume and the associated computational complexity; therefore,
the available information must be appropriately compressed via
transformation of high-dimensional data into a low-dimensional
feature space with minimal loss of class separability. In their pre-
vious work �8�, the authors proposed a nonlinear feature extrac-
tion method, namely, symbolic dynamic filtering �SDF� for detec-
tion of anomalies �i.e., deviations from the nominal condition� in
complex systems. This method is shown to be particularly useful
for extraction of features from time series data and has been ex-
perimentally validated for real-time execution in different appli-
cations �e.g., electronic circuits �9� and fatigue damage monitor-
ing in polycrystalline alloys �10��. Algorithms, constructed in the
SDF setting, are shown to yield superior performance in terms of
early detection of anomalies and robustness to measurement noise
in comparison with other existing techniques such as principal
component analysis �PCA�, NNs, and Bayesian techniques �11�.
Recently, in a two-part paper �12,13�, a SDF-based algorithm for
detection and isolation of engine subsystem faults �specifically,
faults that cause efficiency degradation in engine components� has
been reported and an extension of that work to estimate simulta-
neously occurring multiple component-level faults has been pre-
sented in Ref. �14�.

A major challenge in any sensor-data-driven detection tool is to
identify the actual failure in the system in the presence of sensor
degradation �e.g., drift and noise� without succumbing to a large
number of false alarms or missed detections. The situation be-
comes even more critical if the control system uses observations
from the degraded sensors as feed-back signals and generates the
control inputs accordingly. Traditionally, redundant sensors along

with methods based on analytic redundancy are used for sensor
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ault identification �15�. This paper presents a different approach
o this problem, where different class labels are assigned to data
ets that are generated from different engine health conditions.
he same class labels are assigned to data from engines with
imilar health conditions and the associated sensor data are sub-
ected to different noise variance at respective sensor degradation
evels. To this end, the data-driven fault detection problem is
osed as a multiclass pattern classification problem, where the
asks of class assignment and the SDF-based feature extraction are
ptimized in a supervised manner to enhance the classification
erformance. A major step in SDF-based feature extraction is par-
itioning of time series data to generate symbol blocks that are
ubsequently converted to feature vectors by the use of the proba-
ilistic finite state automata �PFSA� concept �8�. The major con-
ributions of this article beyond the authors’ recent work �12–14�
n the field of engine health monitoring are as follows:

• formulation of the data-driven fault detection problem at the
engine component level in the presence of varying sensor
noise condition, as a multiclass classification problem

• optimization of partitioning in the SDF-based feature extrac-
tion setting

This paper is organized into seven sections including the
resent one. Section 2 describes the NASA C-MAPSS simulation
est-bed �16,17� of a commercial aircraft gas turbine engine model
n which the problem of engine health monitoring has been for-
ulated and validated. Section 3 poses data-driven fault detection

nder varying sensor noise condition, as a multiclass pattern clas-
ification problem. Section 4 presents a brief background and for-
ulation of SDF-based feature extraction for the current problem

nd Sec. 5 describes the partitioning optimization methodology.
ection 6 presents the results of two case studies to validate the
roposed approach on the C-MAPSS test-bed. Section 7 summa-
izes the paper and makes major conclusions along with recom-
endations for future research.

Description of the C-MAPSS Test-Bed
This section briefly describes the Commercial Modular Aero-

ropulsion System Simulation �C-MAPSS� simulation test-bed
17� that has been developed at NASA on a commercial-scale
wo-spool turbofan engine and its control system. Figure 1 shows
schematic diagram of the commercial aircraft gas turbine engine
sed in the C-MAPSS simulation test-bed.

The engine under consideration produces a thrust of approxi-
ately 400,000 N and is designed for operation at altitude �A�

rom sea level �i.e., 0 m� up to 12,200 m, Mach number �M� from
to 0.90, and sea-level temperatures from approximately −50°C

o 50°C. The throttle resolving angle �TRA� can be set to any
alue in the range between 0 deg at the minimum power level and
00 deg at the maximum power level. The gas turbine engine
ystem consists of five major rotating components, namely, fan
F�, low pressure compressor �LPC�, high pressure compressor

Fig. 1 Gas turbine engine schematic †17‡
HPC�, high pressure turbine �HPT�, and low pressure turbine
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�LPT�, as seen in Fig. 1. Given the inputs of TRA, A and M, the
interactively controlled component models at the simulation test-
bed compute nonlinear dynamics of real-time turbofan engine op-
eration. A gain-scheduled control system is incorporated in the
engine system, which consists of speed controllers and limit regu-
lators for engine components. To achieve fast execution of simu-
lation runs, the sensors and actuators are approximated to have
instantaneous response, no computational time delays, and no drift
and or bias. The entire test-bed code is written on MATLAB and
SIMULINK platform.

Out of the different types of sensors �e.g., pressure, tempera-
ture, and shaft speed� used in the C-MAPSS simulation model,
Table 1 lists those sensors that are commonly adopted in the in-
strumentation and control system of commercial aircraft engines
as seen in Fig. 2, where the engine control system makes use of
the data from sensors P2, Ps30, T48, Nf, and Nc as feedback sig-
nals. In the current configuration of the C-MAPSS simulation test-
bed, there are 13 component-level health parameter inputs,
namely, efficiency parameters ���, flow parameters ���, and pres-
sure ratio modifiers, that simulate the effects of faults and/or deg-
radation in the engine components. Ten of these 13 health param-
eters are selected to modify efficiency ��� and flow ��� that are
defined �18� as follows:

• �� ratio of actual enthalpy and ideal enthalpy changes
• �� ratio of rotor tip and axial fluid flow velocities

For the engine’s five rotating components F, LPC, HPC, LPT,
and HPT, the ten respective efficiency and flow health parameters
are: ��F ,�F�, ��LPC,�LPC�, ��HPC,�HPC�, ���HPT,�HPT��, and
��LPT,�LPT�. An engine component C is considered to be in nomi-
nal condition if both �C and �C are equal to 1 and fault can be
injected in the component C by reducing the values of �C and/or
�C. For example, �HPC=0.98 signifies a 2% relative loss in effi-
ciency of HPC.

In the C-MAPSS test-bed, sensor degradations are realized as
injected faults. Depending on the location and modality of the
sensor, there could be several different degradation levels. For
example, the degradation levels in a pressure sensor have different
characteristics from those of a temperature sensor. Furthermore,
depending on the location and operating environment, even sen-

Table 1 Sensor suite for the engine system

Sensors Description

P2 Fan inlet pressure
T2 Fan inlet temperature
P24 LPC exit/HPC inlet pressure
T24 LPC exit/HPC inlet temperature
Ps30 HPC exit static pressure
T30 HPC exit/burner inlet temperature
T48 HPT exit temperature
Nf Fan spool speed
Nc Core spool speed

FAN LPC
HPC
+

DUCT

HPT
+

DUCT
LPT

P2

T2

P21

T21

P24

T24 BURNER

P30

T30

P40

T40

PS30

P48

T48

P50

T50

DUCT
+

BYPASS
NOZZLE

Nc
Nf
Fig. 2 Schematic diagram of the C-MAPSS engine model
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ors of the same modality could have different degradation char-
cteristics. In general, sensor degradation is categorized as the
ollowing �19�:

• bias fault �i.e., a constant bias in the sensor observation�
• drifting fault that is slowly varying
• change in sensor noise variance

Amongst these sensor degradation types, only sensor degrada-
ion due to changes in the sensor noise variance is chosen for this
tudy. Two case studies have been presented in this paper to vali-
ate the proposed methodology. In case study 1, the HPC is cho-
en to be the location of the component-level fault and Ps30, i.e.,
he static pressure sensor at the HPC outlet, is chosen for fault
etection in HPC. In case study 2, the HPT is chosen to be the
ocation of the component-level fault and T48, i.e., the temperature
ensor at the HPT outlet, is chosen for fault detection in HPT. It is
oted that the integrated engine controller takes feedback signals
rom both Ps30 and T48 sensors. Therefore, it is likely that degra-
ation in those sensors would pervade through the engine system,
otentially affecting the outputs of the remaining components of
he engine system due to the inherent electromechanical feedback.

hile the entire details of case study 2 is presented in Sec. 6.2,
he problem description of case study 1 is described in Sec. 3 to
ose the component-level fault detection under varying sensor
oise condition as a multiclass classification problem.

Data-Driven Fault Detection Posed as a Multiclass
attern Classification Problem
Component-level fault diagnosis in an aircraft gas turbine en-

ine involves identification of the fault type, and location and
uantification of the fault level. In the C-MAPSS test-bed setting,
he physical fault scenarios �e.g., fouling, increased tip clearance,
nd seal wear� are assumed to manifest themselves in reducing the
fficiency of the associated engine component�s�. Although the
resent configuration in the C-MAPSS test-bed can be easily ex-
ended to simultaneous faults in multiple components �see the
uthors’ previous publication �14� for details�, the present paper
eals with a single component, e.g., HPC, and the task is to detect
fault and identify its level under varying sensor noise condition.

3.1 Problem Description of Case Study 1: HPC Fault
etection. The two health parameters that define the health status
f HPC are the efficiency and flow health parameters
�HPC,�HPC�. However, it is observed that Ps30 sensor observation
oes not capture any signature of change in the flow health pa-
ameter �HPC and since, only sensor Ps30 is used for the fault
etection, three fault levels are considered only based on the effi-
iency health parameter �HPC. Table 2 shows the approximate
anges of efficiency health parameters under different fault levels.
ere, the low fault level indicates very minimal loss in efficiency

nd hence also includes the absolute nominal health condition
�HPC=1�.

Similarly, depending on the noise standard deviation in the Ps30
ensor, three sensor noise levels are considered for the study.
able 3 shows the approximate ranges of sensor noise standard
eviation as percent of operating point trim values considered
nder different levels �20,21�. Note that the noise is multiplicative

Table 2 Fault levels in HPC

ault level Efficiency range ��HPC�

ow fault 1.0000–0.9834
edium fault 0.9834–0.9668
igh fault 0.9668–0.9500
n the sense that its standard deviation is proportional to the op-

ournal of Engineering for Gas Turbines and Power
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erating point trim value of data.
Thus, in the above context, there are �3�3�=9 classes of data

sets that need to be obtained to define a class by a HPC fault level
and a noise level of the Ps30 sensor. Seventy simulation runs of
the engine system were performed for each class to generate data
sets for analysis, among which 50 samples are chosen as the train-
ing set and the rest of the samples are kept as the testing set. HPC
efficiency and Ps30 standard deviation parameters are chosen ran-
domly from independent Gaussian distributions for both param-
eters, such that approximately 95% of the parameter values are
within the prescribed ranges given in Tables 2 and 3. In other
words, the mean of the Gaussian distribution used for a particular
parameter level is taken as the central value of the parameter
range in that level and the standard deviation is taken such that the
boundary values of the parameter range are 2� distance away
from the central value. For example, for the class with low fault in
HPC and level 1 noise in Ps30, the HPC efficiency values were
chosen from an independent Gaussian distribution with mean as
0.9917 and standard deviation as 4.15�10−3, whereas the stan-
dard deviation percentage values were chosen from another inde-
pendent Gaussian distribution with mean as 0.40 and standard
deviation as 0.025. Figure 3 plots the samples generated using the
above logic in the two-dimensional parametric space. Different
classes of samples are shown in different colors in the figure. The
axis for sensor noise standard deviation ��Ps30

� represents the ac-
tual standard deviation values �not as percent of the operating
point trim values of Ps30 reading�.

For each data sample, a time series was collected for Ps30 sen-
sor under persistent excitation of TRA inputs that have truncated
triangular profiles with the mean value of 40 deg, fluctuations
within �8 deg and frequency of 0.056 Hz as shown in Fig. 4. The
ambient conditions are chosen to be at the sea level when the
engine is on the ground �i.e., altitude A=0.0, Mach number M
=0.0� for fault monitoring and maintenance by the engineering
personnel. For each experiment, the engine simulation is con-
ducted at a frequency of 66.67 Hz �i.e., intersample time of 15 ms�

Table 3 Variable noise levels in Ps30

Noise level
Standard deviation range

�%�

Level 1 0.35–0.45
Level 2 0.45–0.55
Level 3 0.55–0.65

0.95 0.96 0.97 0.98 0.99 1

1

1.2

1.4

1.6

1.8

2

ψ
HPC

σ P
s3

0

Fig. 3 Original class labels for data collection
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nd the length of the simulation time window is 150 s, which
enerate 10,000 data points. Figure 5 shows representative ex-
mples of Ps30 time series data from each of the nine classes.

As stated earlier, the objective of the paper is to build a data-
riven diagnostic algorithm that is robust to varying sensor noise
evel, provided that the sensor noise is within an allowable range.
rom this perspective, the definition of a data class is changed and
ade only dependent on the HPC efficiency parameters. Thus, the

ine original classes are reduced to three classes as shown in Fig.
. This is the final class assignment for the data set, where each
lass has �50�3�=150 training samples and �20�3�=60 testing
amples.

Thus, in the above context, the problem of component-level
ault detection in presence of varying sensor noise condition in
ircraft gas turbine engines is formulated as a multiclass classifi-
ation problem �in the present scenario, number of classes is
hree�. Section 4 presents a brief review of SDF as a nonlinear
eature extraction technique before proposing the partitioning op-
imization methodology.

0 10 20 30 40 50 60
30

32

34

36

38

40

42

44

46

48

50

Time (sec)

T
R

A
(d

eg
)

Fig. 4 Profile of throttle resolving angle „TRA…
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Fig. 5 Representative time series data for H
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4 SDF-Based Feature Extraction
The authors have explored the concepts of symbolic dynamics

and time series data partitioning to develop a computationally
efficient tool, called the SDF, for anomaly detection in complex
dynamical systems �8,9�. The methodology of this symbolic fea-
ture extraction tool is reported in recent literature �12�; a brief
outline of the procedure is succinctly presented here for complete-
ness of the paper.

Symbolic feature extraction from time series data is posed as a
two-time-scale problem. The fast scale is related to the response
time of the process dynamics. Over the span of data acquisition,
dynamic behavior of the system is assumed to remain invariant,
i.e., the process is quasi-stationary at the fast scale. On the other
hand, the slow scale is related to the time span over which non-
stationary evolution of the system dynamics may occur. It is ex-
pected that the features extracted from the fast-scale data will
depict statistical changes between two different slow-scale epochs
if the underlying system has undergone a change. The method of
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Fig. 6 Revised class assignment for fault detection
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xtracting features from stationary time series data is comprised
f the following steps:

• Sensor time series data, generated from a physical system or
its dynamical model, are collected at a slow-scale epoch and
let it be denoted as q. A compact �i.e., closed and bounded�
region ��Rn, where n�N, within which the stationary
time series is circumscribed, is identified. Let the space of
time series data sets be represented as Q�Rn�N, where N
�N is sufficiently large for convergence of statistical prop-
erties within a specified threshold. While n represents the
dimensionality of the time series, N is the number of data
points in the time series. Then, �q��Q denotes a time series
at the slow-scale epoch of data collection.

• Encoding of � is accomplished by introducing a partition
B� �B0 , . . . ,B��	�−1�� consisting of �	� mutually exclusive
�i.e., Bj �Bk= � ∀ j�k� and exhaustive �i.e., � j=0

�	�−1Bj =��
cells, where each cell is labeled by symbols � j �	 and 	
= ��0 , . . . ,��	�−1� is called the alphabet. This process of
coarse graining can be executed by uniform, maximum en-
tropy, or any other scheme of partitioning. Then, the time
series data points that visit the cell Bj are denoted as � j ∀ j
=0,1 , . . . , �	�−1. This step enables transformation of the
time series data �q� to a symbol sequence �s�, consisting of
the symbols � j in the alphabet 	.

• A PFSA, consisting of r states, is then constructed and the
symbol sequence �s� is run through the PFSA. Thus, an �r
�r� state transition matrix 
��� jk� is obtained at the slow-
scale epoch, where � jk�0 is the transition probability from
state j to state k of the PFSA. If the dynamical system is a
Markov process, then 
 is an irreducible stochastic matrix,
i.e., 	k� jk=1, and the state probability vector p= �p1¯pr�
is the left eigenvector corresponding to the unique unity
eigenvalue of 
. The �1�r� vector p could be treated the
extracted feature vector that is a low-dimensional represen-
tation of the dynamical system at the slow-scale epoch.

For anomaly detection using SDF, the nominal time series is
artitioned by one of the classical schemes �e.g., uniform parti-
ioning �UP� or maximum entropy partitioning �MEP�� �8,9,22�.
hen using the steps described before, a low-dimensional feature
ector pnom is constructed for the nominal slow-scale epoch. Simi-
arly, from a time series at a possibly anomalous epoch, feature
ector poff-nom is constructed using the same partitioning. Finally,
classifier is used to distinguish the nominal feature vector pnom

rom its off nominal counterpart. There are plenty of choices
vailable for design of both parametric and nonparametric classi-
ers in literature �23,24�. Among the parametric type of classifi-
rs, one of the most common techniques is to consider up to two
rders of statistics in the feature space. In other words, the mean
eature is calculated for every class along with the variance of the
eature space distribution in the training set. Then, a test feature
ector is classified by using the Mahalanobis distance �25� or the
hattacharya distance �26� of the test vector from the mean fea-

ure vector of each class. However, these methods lack in compu-
ational efficiency if the feature space distribution cannot be de-
cribed by second order statistics �i.e., non-Gaussian in nature�. In
he present context, Gaussian feature space distribution cannot be
nsured due to the nonlinear nature of the partitioning feature
xtraction technique. Therefore, a nonparametric classifier, such
s the k-NN classifier may a better candidate for this study
23,24�; however, in general, any other suitable classifier, such as
he support vector machines �SVMs� or the Gaussian mixture

odels �GMMs� may also be used.

Optimization of Partitioning
Properties and variations of transformation from the symbol
pace to the feature space have been extensively studied in math-
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ematics, computer science, and especially, data mining literature.
Apparently, similar efforts have not been expended to investigate
partitioning of time series data to optimally generate symbol
blocks for pattern classification and anomaly detection. Steuer et
al. �27� reported comparison of maximum entropy partitioning
and uniform partitioning; it was concluded that maximum entropy
partitioning is a better tool for change detection in time series than
uniform partitioning. Symbolic false nearest neighbor partitioning
�SFNNP� optimizes a generating partition by avoiding topological
degeneracy. However, a major shortcoming of SFNNP is that it
may become extremely computationally intensive if the dimen-
sion of the phase space of the underlying dynamical system is
large. Furthermore, if the time series data become noise-corrupted,
the states of SFNNP rapidly grow in number and thus the parti-
tioning may erroneously require a large number of symbols to
capture pertinent information on the system dynamics �22�. This
shortcoming could be largely alleviated by wavelet space parti-
tioning �WSP� that is particularly effective for noisy data for
large-dimensional dynamical systems �8�; MEP was used by Ra-
jagopalan and Ray �9� to generate symbol blocks from time series
data by WSP. Although WSP is significantly computationally
faster than SFNNP and is suitable for real-time applications, WSP
too has several shortcomings such as requirements of good under-
standing of signal characteristics for selection of the wavelet ba-
sis, identification of appropriate scales, and lossy and nonunique
conversion of the two-dimensional scale-shift domain into a single
dimension. Subbu and Ray �22� introduced Hilbert-transform-
based analytic signal space partitioning �ASSP� as an alternative
to WSP, and Sarkar et al. �28� generalized ASSP for symbolic
analysis of noisy signals. Nevertheless, these partitioning tech-
niques primarily provide a symbolic representation of the under-
lying dynamical system under a given quasi-stationary condition,
rather than capturing the data-evolution characteristics due to a
fault in the system. The partitioning optimization methodology
elaborated in this section endeavors to overcome this shortcoming
to make SDF, a robust data-driven feature extraction tool for pat-
tern classification and fault detection.

Many optimization criteria have been reported for feature ex-
traction in multi class classification problems, which are broadly
classified as follows:

�1� filter method that makes use of the information content
feedback �e.g., Fisher criteria, statistical dependence, and
information-theoretic measures� as optimization criteria for
feature extraction.

�2� wrapper method that includes the classifier inside the opti-
mization loop to maximize the predictive accuracy �e.g.,
classification rate using statistical resampling or cross-
validation �23��.

In this paper, the wrapper method is adopted �i.e., the classifi-
cation error is minimized on the training set for optimization�
primarily because of the nonbinary nature of the problem at hand
and the possible non-Gaussian distribution of training samples in
the feature space.

In a multiclass problem, ideally one should jointly minimize all
the off-diagonal elements of the confusion matrix, while maximiz-
ing the diagonal elements. However, in that case, the dimension of
the objective space blows up with increase in the number of
classes, which is obviously impractical. Therefore, two costs may
be defined on the confusion matrix by using another penalty
weighting matrix, elements of which denote the relative penalty
values for different confusions in the classification process. For-
mally, let there be Cl1 , . . . ,Cln classes of labeled time series data
given as the training set. A partitioning B is employed to extract
features from each sample and a k-NN classifier K is used to
classify them. After the classification process, the confusion ma-
trix C is obtained, where the value of its element cij denotes the
frequency of data from class Cli being classified as data from Clj.

Let W be the weighting matrix, where the value of its element wij

AUGUST 2011, Vol. 133 / 081602-5

3 Terms of Use: http://asme.org/terms



d
s
d
d

w
c
a
t
l
t
t

t
t
a
a
r
c

w
c
t
s
m
d
e

L
t
a
t
f
c
e
t
r
u
a
t
p
t
s
f
b
t
c

P

F
e

0

Downloaded Fr
enotes the penalty incurred by the classification process for clas-
ifying a data set from Cli as a data set from class Clj. With these
efinitions, the cost due to expected classification error, CostE is
efined as

CostE =
1

Ns

	

i
	

j

wijcij� �1�

here Ns is the total number training samples including all
lasses. The outer sum in the above equation sums the total pen-
lty values for misclassifying each class Cli. Thus, CostE is related
o the expected classification error. Although in the current formu-
ation, the total penalty values are equally weighted for all classes
hat can be changed based on prior knowledge about the data and
he user requirements.

It is implicitly assumed in many supervised learning algorithms
hat the training data set is a statistically similar representation of
he whole data set. However, this assumption may not be very
ccurate in practice. A natural solution to this problem is to choose
feature extractor that minimizes the worst-case classification er-

or �29� as well. In the present setting, that cost due to worst-case
lassification error, CostW can be defined as

CostW = max
i

 1

Ni
	

j

wijcij� �2�

here Ni is the number of training samples in class Cli. With such
onstruction, the dimension of the objective space is not a func-
ion of the number of classes, which makes it convenient for clas-
ification with large number classes. Finally, in accordance with
ulti-objective optimization literature, an overall cost CostO is

efined as a linear combination of CostE and CostW with param-
ter 
� �0,1�.

CostO = 
CostE + �1 − 
�CostW �3�
Figure 7 depicts the general outline of the classification process.

abeled time series data from the training set are partitioned and
he generated low-dimensional feature vectors �via symbolization
nd PFSA construction� are fed to the classifier. After classifica-
ion, the training error cost, defined in Eq. �3�, is computed and
ed back to the feature extraction block. During classification, the
lassifier may be tuned to obtain better classification rates. For
xample, for k-NN classifiers �23�, choice of neighborhood size or
he distance metric can be tuned. The partitioning is updated to
educe the cost based on the feedback. The iteration is continued
ntil the set of optimal partitioning in a multi-objective scenario
nd the correspondingly tuned classifier are obtained. Choice of
he optimal partitioning is made based on the choice of operating
oint 
 by the user. After the choice is made, the optimal parti-
ioning and the tuned classifier are used to classify the test data
et. Although this is the general framework that is being proposed
or the optimization methodology, tuning of the classifier has not
een performed in this paper as the main focus here is to choose
he optimal partitioning to minimize the classification error related
ost.

Ideally, the optimization procedure involves construction of the

Feature Set

Costs related to
Classification Error

Tuning of
Classifier

Partitioning Search
Algorithm + SDF

Labeled Complete
Time-series Data

Classification
Parameters

Complete
Time-series Data

Optimal
Partitioning

Partitioning
Process + SDF

Classifier

Test
Feature Set

Test
Data Class

ig. 7 General framework for optimization of feature
xtraction
areto front by minimizing CostO for different values of 
 and the
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user should choose a particular value of 
 as the operating point.
However, for simplicity 
 is taken to be 1 in this paper, i.e.,

CostO = CostE �4�

Thus, the optimal partitioning B� is the solution to the following
optimization problem:

B� = arg min
B

CostO�B� �5�

5.1 Optimization Procedure. This paper adopts a sequential
search based optimization technique of partitioning, previously
proposed in Ref. �30�. As the continuity of the partitioning func-
tion with respect to the range space of classification error-related
costs may not exist or at least are not adequately analyzed,
gradient-based optimization methods are not explored in this pa-
per. Suppose, the number of cells of the partitioning B is �	� and
the region ��R1 �see Sec. 4� that circumscribes the one-
dimensional time series data space is identified. To construct the
search space, a suitably fine grid size depending on the data char-
acteristics needs to be assumed. Each of the grid boundaries de-
notes a possible position of a partitioning cell boundary. Let the
data space region � be divided into G grid cells, i.e., there are
G−1 grid boundaries excluding the boundaries of �. Thus, there
are �	�−1 partitioning boundaries to choose among G−1 possi-
bilities, i.e., the number of elements �i.e., �	�-dimensional parti-
tioning vectors� in the space P of all possible partitioning is:
G−1C�	�−1. It is clear from this analysis that the partitioning space
P may get significantly large with increase in values of G and �	�
�e.g., for G� �	�, computational complexity increases approxi-
mately by a factor of G / �	� with increase in value of �	� by 1�. In
that case, usage of a direct search approach becomes infeasible for
evaluation of all possible partitioning. Therefore, this paper devel-
ops a suboptimal solution for the multi-objective optimization
problem described above.

The objective space consists of the scalar valued cost CostO,
while decisions are made in the space P of all possible partition-
ings. In the case of one-dimensional time series data, a partition-
ing consisting of �	� cells may be succinctly represented by the
�	�−1 points that separate the cells. In the sequel, a 	-cell parti-
tioning B is expressed as ��	�� ��1 ,�2 , . . . ,��	�−1�, where �i ∀ i
� �1,2 , . . . , �	�−1� denotes a partitioning boundary. The overall
cost is dependent on a specific partitioning � and is denoted by
CostO���. This suboptimal partitioning scheme involves sequen-
tial estimation of the elements of the partitioning �.

The partitioning process is initiated by searching the optimal
cell boundary to divide the data set into two cells, i.e., �2= ��1�,
where �1 is evaluated as

�1
� = arg min

�1

CostO��2� �6�

Now, the two-cell optimal partitioning is given by �2
�= ��1

��. The
next step is to partition the data into three cells as �3 by dividing
either of the two existing cells of �2

� with the placement of a new
partition boundary at �2, where �2 is evaluated as

�2
� = arg min

�2

CostO��3� �7�

where �3= ��1
� ,�2�. The optimal three-cell partitioning is obtained

as �3
�= ��1

� ,�2
��. In this �local� optimization procedure, the cell that

provides the largest decrement in CostO on further segmentation
ends up being partitioned. Iteratively, this procedure can be ex-
tended to obtain the m cell partitioning as follows:

��	�−1
� = arg min

��	�−1

CostO���	�� �8�

�
where ��	�=��	�−1� ���	�−1� and the optimal �	� cell partitioning

Transactions of the ASME

3 Terms of Use: http://asme.org/terms



i

c
C
a

C
c
n
=
t
t
t
d
l
r

I
i
e
p

6

�
6
c
c
r
v

o
d
m
a
s
r
�
c
fi
a

g
p
e
�
o
d
a
d
i
e
t
o
f
e
r
c
n

U

J

Downloaded Fr
s given by ��	�
� =��	�−1

� � ���	�−1
� �

This optimization procedure is monotonically decreasing in the
ost function with every additional sequential operation, i.e.,
ostO���	�−1

� ��CostO���	�
� �. This is evident from the following

rgument.
Let ��	�−1

� be the ��	�−1�-cell partitioning that minimizes
ostO. Based on the algorithm, ��	�=��	�−1

� � ����	�−1��. If ��	�−1 is
hosen such that it already belongs to ��	�−1

� , then there would be
o change in the partitioning structure and CostO���	��
CostO���	�−1

� �. Since CostO���	�
� ��CostO���	�� ∀��	�, it follows

hat min�CostO���	�−1���min�CostO���	���. The monotonicity in
he cost function allows formulation of a rule for termination of
he sequential optimization algorithm. The process of creating ad-
itional partitioning cells is stopped if the cost decrease falls be-
ow a specified positive scalar threshold �stop and the stopping
ule is: ��	�−1

� is the optimal partitioning if

CostO���	�−1
� � − CostO���	�

� � � �stop �9�

n contrast with the direct search of the entire space of partition-
ng, the computational complexity of this approach increases lin-
arly with �	�. This also allows the user to have finer grid size for
artitioning searching.

Results and Discussion
This section presents pertinent results for the two case studies

HPC fault detection in Sec. 6.1 and HPT fault detection in Sec.
.2� reported in this paper. While the problem specification for
ase study 1 has been provided earlier in Sec. 3.1, the same for
ase study 2 is provided in the sequel �see Sec. 6.2�. Classification
esults by using the classical partitioning schemes are also pro-
ided for comparison.

6.1 Case Study 1: Fault Detection in HPC. At the beginning
f the optimization procedure, a weighting matrix W needs to be
efined to calculate the costs CostE and CostW from the confusion
atrix for the training data set. In this case study, W is defined

ccording to the adjacency properties of classes in the parameter
pace, i.e., wii=0 ∀ i� �1,2 ,3�, i.e., there is no penalty for cor-
ect classification. The weights are selected as: wij = �i− j� , ∀ i

�1,2 ,3�, i.e., given that a data sample originally from Cli is
lassified as a member of Clj, the penalty incurred by the classi-
cation process increases with increase in the separation of Cli
nd Clj in the parameter space. Then, it follows that

W = �0 1 2

1 0 1

2 1 0



The data space region � is divided into 100 grid cells, i.e., 99
rid boundaries excluding the boundaries of �. The sequential
artitioning optimization procedure described in Sec. 5 is then
mployed to identify the optimal partitioning. The threshold value
stop for stopping the algorithm is chosen to be 0.001 and the
ptimal alphabet size is found to be �	�=4. For SDF analysis, the
epth for constructing PFSA sates is taken to be D=1 and features
re classified by a k-NN classifier �with k=5� using the Euclidean
istance metric. Figure 8 shows locations of the training features
n the three-dimensional plot using first three linearly independent
lements of the feature vectors obtained by using the chosen op-
imal partitioning OptP. Note, only ��	�−1� out of its �	� elements
f a feature vector are linearly independent because a training
eature vector p is also a probability vector, i.e., the sum of its
lements is constrained to be equal to 1. The class separability is
etained by the feature extraction �partitioning� process even after
ompressing a time series �with 10,000 data points� into three
umbers.

For comparison purpose, classical partitioning schemes, such as

P and MEP, are also used with the same alphabet size 	=4.

ournal of Engineering for Gas Turbines and Power
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Figures 9 and 10 show the location of each training time series in
the three-dimensional �using first three linearly independent ele-
ments of the feature vectors� feature space plot using uniform
partitioning and maximum entropy partitioning, respectively.

Finally, the confusion matrices for the optimal, uniform, and
maximum entropy partitioning on the test data set are given by
Ctest

OptP, Ctest
UP, and Ctest

MEP, respectively.

0.41
0.42

0.43
0.44

0.45

0.008

0.009

0.01

0.011

0.012

0.013

0.014
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Fig. 8 Feature space of the training set using optimal
partitioning
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Fig. 9 Feature space of training set: uniform partitioning „UP…
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Fig. 10 Feature space of training set: maximum entropy parti-

tioning „MEP…
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Ctest
OptP = �58 2 0

1 57 2

0 2 58



Ctest
UP = �58 2 0

4 54 2

0 1 59



Ctest
MEP = �57 3 0

7 51 2

0 3 57



Table 4 compares the values of CostE and CostW for OptP, UP,
nd MEP on the test set. It is interesting to notice that although the
ptimization is performed based on only minimization of CostE,
oth CostE and CostW have reduced compared to the classical
artitioning schemes. This fact can be attributed to the nature of
he current data set. Thus, HPC fault levels can be efficiently
etermined under varying noise levels using the SDF methodol-
gy and optimization of partitioning may potentially improve its
erformance over other classical partitioning techniques. How-
ver, before going into more discussion on results, the case study
or fault detection in HPT is presented.

6.2 Case Study 2: Fault Detection in HPT. This subsection
resents a case study of fault detection in the HPT component
nly by monitoring temperature sensor T48 that is located at HPT
xit. A representative example of T48 time series data is shown in
ig. 11. It has been observed in the previous case study for HPC

hat sensor Ps30 observation only captures signature of change in
fficiency health parameter ��HPC� and does not capture signature
f change in flow health parameters ��HPC�. In contrast, T48 obser-
ation captures signature of change in both efficiency health pa-
ameters ��HPT� and in flow health parameter ��HPT�. However,

HPT signature is much weaker compared to that of �HPT. There-
ore, this case study will investigate classification of both the fault

able 4 Comparison of classification performances of differ-
nt partitioning schemes on test data set „60Ã3 samples…

artitioning CostE CostW

ptP 0.0389 0.0500
P 0.0500 0.1000
EP 0.0833 0.1500

20 30 40 50 60 70 80 90

1600

1650

1700

1750

1800

time (sec)

T
48

(
° R

)

Fig. 11 Representative sensor T48 observation
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modes.
Table 5 shows the approximate ranges of efficiency and flow

health parameters of different classes considered for the study.
Similarly, different �additive� noise levels �i.e., approximate
ranges of sensor noise standard deviation as percent of operating
point trim values �20,21�� in T48 observation are shown in Table 6.
Thus, in this context, there are �9�3�=27 classes of data sets that
need to be obtained to define a class by a HPT fault level and a
noise level of the T48 sensor. Seventy simulation runs of the en-
gine system were performed for each class to generate data sets
for analysis, among which 50 samples are chosen as the training
set and the rest of the samples are kept as the testing set. The
samples are generated in the same way as in the case study 1. As
different sensor noise level classes are merged into one, there are
only nine classes for classification purpose with 150 training
samples and 60 testing samples in each class.

The first step for classification is to define the penalty weighting
matrix W that involves prior knowledge about the data. As shown
in Table 5, for each efficiency class, there are three flow classes.
However, it is observed that both efficiency and flow degradation
signatures are of similar nature in time domain with efficiency
degradation signatures being quantitatively stronger than the flow
degradation signatures. Therefore, classification among flow
classes under one efficiency level is potentially a very hard prob-
lem under the current high noise environment. Thus, the primary
goal of the classification process is to classify different flow
classes under different efficiency classes. The penalty weighting
matrix is defined accordingly. The three diagonal blocks represent
penalty values among different flow classes in one efficiency
class, which are defined similarly as in the previous case study.
The off-diagonal blocks represent the penalty values for different
flow classes under different efficiency classes. The symmetric
weighting matrix for classification process is given below.

Table 5 Fault classes in HPT

Efficiency class
label

Class
label

Efficiency range
��HPT�

Flow range
��HPT�

Efficiency class 1 Class 1 1.0000–0.9834 1.0000–0.9834
Class 2 1.0000–0.9834 0.9834–0.9668
Class 3 1.0000–0.9834 0.9668–0.9500

Efficiency class 2 Class 4 0.9834–0.9668 1.0000–0.9834
Class 5 0.9834–0.9668 0.9834–0.9668
Class 6 0.9834–0.9668 0.9668–0.9500

Efficiency class 3 Class 7 0.9668–0.9500 1.0000–0.9834
Class 8 0.9668–0.9500 0.9834–0.9668
Class 9 0.9668–0.9500 0.9668–0.9500

Table 6 Variable noise levels in T48

Noise level
Standard deviation range

�%�

Level 1 0.45–0.55
Level 2 0.55–0.65
Level 3 0.65–0.75
Transactions of the ASME
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W =�
0 1 2 2 4 6 3 6 9

1 0 1 4 2 4 6 3 6

2 1 0 6 4 2 9 6 3

2 4 6 0 1 2 2 4 6

4 2 4 1 0 1 4 2 4

6 4 2 2 1 0 6 4 2

3 6 9 2 4 6 0 1 2

6 3 6 4 2 4 1 0 1

9 6 3 6 4 2 2 1 0



The sequential optimization process has been carried out for

his problem and it has been found that the optimal alphabet size
s 7, with the algorithm stopping threshold value, �stop=0.005.
he confusion matrices for optimal, uniform, and maximum en-

ropy partitioning on the test data set are given by Ctest
OptP, Ctest

UP, and

test
MEP, respectively. Table 7 shows the comparison of classification
erformances using different partitioning processes. However, the
ost values in this table should not be compared with those in
able 4 as the range of cost values is a function of the weighting
atrix used for the optimization process.

Ctest
OPT =�

35 21 3 0 1 0 0 0 0

11 24 24 0 0 1 0 0 0

3 22 35 0 0 0 0 0 0

0 0 0 41 17 2 0 0 0

0 0 0 19 22 19 0 0 0

1 0 0 7 21 31 0 0 0

0 0 0 0 0 0 39 17 4

0 0 0 0 0 0 16 25 19

0 0 0 0 0 0 4 21 35



Ctest

UP =�
32 22 5 0 0 1 0 0 0

15 22 22 0 0 1 0 0 0

3 17 40 0 0 0 0 0 0

0 0 0 37 16 7 0 0 0

0 0 0 21 15 24 0 0 0

1 0 0 4 18 37 0 0 0

0 0 0 0 0 0 30 17 13

0 0 0 0 0 0 21 21 18

0 0 0 1 0 0 12 27 20



Ctest

MEP =�
37 18 4 0 0 1 0 0 0

16 24 19 0 0 1 0 0 0

5 21 34 0 0 0 0 0 0

0 0 0 30 23 7 0 0 0

0 0 0 17 23 20 0 0 0

1 0 0 7 19 33 0 0 0

0 0 0 0 0 0 30 18 12

0 0 0 0 0 0 23 21 16



able 7 Comparison of classification performances of differ-
nt partitioning schemes on test data set „60Ã9 samples…

artitioning CostE CostW

ptP 0.5315 0.6833
P 0.6444 0.9500
EP 0.6370 0.8000
0 0 0 1 0 0 12 18 29
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It is observed from these results that samples of different flow
classes under different efficiency classes are efficiently classified.
But as expected, the classification performance degrades for dif-
ferent flow classes under one efficiency level. However, the opti-
mization process improves the performance of SDF compared to
the classical partitioning methods. With a close inspection of the
confusion matrix corresponding to the optimal partitioning, it can
be observed that the confusion between low-level faults and high-
level fault classes for HPT flow under same efficiency level are
significantly reduced by the partitioning optimization.

For some problems, the classical partitioning schemes may per-
form as well as the optimal one. Therefore, the optimization pro-
cedure may also be used to evaluate the capability of any parti-
tioning scheme towards achieving a better classification rate. The
evaluation can be performed by using a part of the labeled training
data set as the validation set. Although the construction of the cost
function allows problems with a large number of classes, its upper
limit could be constrained by the alphabet size used for partition-
ing. The complexity of a PSFA model, as obtained from time
series data, is related to the number of states �or the number of
partitions� in the PSFA. Thus, a small partitioning alphabet size
alleviates the issue of over-training that could arise as a result of
optimization performed on the training set.

7 Summary, Conclusions, and Future work
This article presents a SDF-based methodology for data-driven

detection of component-level faults in aircraft gas turbine engines
under varying sensor noise condition. In this context, time series
data partitioning in the SDF methodology is viewed as nonlinear
feature extraction technique that is to be optimized. The task of
detection is viewed as a multiclass classification problem and fea-
ture extraction has been optimized to enhance the classification
rate. The proposed methodology intelligently compresses a high-
volume database to execute fault detection for a large number of
classes. It has been shown that, using partitioning optimization,
the classification rate can be improved beyond the performance of
classical partitioning techniques.

Scalability is a critical issue for data-driven supervised methods
of fault detection. A natural way to circumvent this problem is to
perform fault isolation before estimating a particular fault level
�12,13�. Furthermore, although this paper has shown application
of the developed feature extraction method to component fault
detection problems, the technique is general enough to be used for
detecting sensor and actuator faults under different architectures.

The fault detection method described in this paper identifies the
health status of an engine component at a particular slow-scale
epoch. Now, in a real life scenario, faults need to be distinguished
from the usual gradual degradation of a component. However, to
achieve this goal, the health status must be monitored over several
slow-time epochs. Given a temporal profile of the health status
identified by the current method, faults can be distinguished from
the usual degradation. Typically, the engine health deteriorates at a
slow rate for usual degradation while a fault is the cause of an
abrupt change in health status or degradation at a comparatively
faster rate.

Although the method presented in the paper can perform in real
time, various operating conditions need to be investigated for its
on-board �in-flight� application. The authors are currently pursu-
ing research for developing a semantic system identification tech-
nique, which extends the present method for on-board application
�i.e., robust to variable operating conditions�. Apart from this im-
portant aspect, currently being pursued as well before testing the
methodology on a real life engine testbed are the following re-
search areas:

• investigation of effectiveness of cost related to worst-case
classification error, CostW by using various values of param-
eter 
 other than 1 �see Sec. 5�
• use of other classifiers �e.g., support vector machines� and
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comparison of performances among different classifiers
• inclusion of the step of tuning the classifier inside the opti-

mization loop as described in the general framework shown
in Fig. 7

• extension of the methodology to accommodate other types
of sensor degradation, such as bias and drifting

• investigation of situations with simultaneous faults in mul-
tiple engine components, actuators, and sensors

• development of a comprehensive information fusion frame-
work to generate composite patterns from atomic patterns in
individual sensors �31,32�

• comparative evaluation of SDF with other pattern recogni-
tion techniques under sensor degradation
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