
August 5, 2011 10:58 WSPC/INSTRUCTION FILE journal

Parallel Processing Letters
c© World Scientific Publishing Company

DESIGNING A FUSION-DRIVEN SENSOR NETWORK TO

SELECTIVELY TRACK MOBILE TARGETS ∗

SHASHI PHOHA†

Applied Research Laboratory, The Pennsylvania State University, 210 Applied Science Building,

University Park, PA 16802, USA.

GOUTHAM MALLAPRAGADA

Department of Mechanical Engineering, The Pennsylvania State University, USA

YICHENG WEN

Department of Mechanical Engineering, The Pennsylvania State University, USA

DOINA BEIN

Applied Research Laboratory, The Pennsylvania State University, USA

ASOK RAY

Department of Mechanical Engineering, The Pennsylvania State University, USA

Received March 2011
Revised July 2011

Communicated by S. Sahni

ABSTRACT

Sensor networks that can support time-critical operations pose challenging problems for

tracking events of interest. We propose an architecture for a sensor network that au-
tonomously adapts in real-time to data fusion requirements so as not to miss events
of interest and provides accurate real-time mobile target tracking. In the proposed ar-
chitecture, the sensed data is processed in an abstract space called Information Space
and the communication between nodes is modeled as an abstract space called Network
Design Space. The two abstract spaces are connected through an interaction interface
called InfoNet, that seamlessly translates the messages between the two. The proposed
architecture is validated experimentally on a laboratory testbed for multiple scenarios.

Keywords: Data Fusion, Network Architecture, Sensor Fusion, Sensor Network, Target
Tracking

∗This material is based upon work supported by, or in part by, the U. S. Army Research Laboratory
and the U. S. Army Research Office under the eSensIF MURI Award No. W911NF-07-1-0376. Any
opinions, findings, and conclusions or recommendations expressed in this publication are those of
the authors and do not necessarily reflect the views of the sponsor.
†Corresponding author.

1

August 5, 2011 10:58 WSPC/INSTRUCTION FILE journal

2 Parallel Processing Letters

1. Introduction

A sensor network operates on an infrastructure of sensing, computation, and com-

munication, through which it perceives the evolution of physical dynamic processes

in its environment. With the advent of inexpensive, less reliable sensors, the need

for more reliable performance from groups of these sensors is driven by applications

that range from military surveillance to home security. In data gathering, data col-

lected by individual sensors is aggregated at cluster heads, elected periodically, and

sent to a base station [1, 2, 3]. In selective tracking, only specific mobile targets

crossing a sensor field are tracked [4, 5], ignoring the rest. A tracking algorithm

would be able to predict the target location and velocity even when some nodes

fail, and in some cases, move sensors along the predicted trajectory to obtain better

quality data [6]. Instead of involving all the nodes in the network in clustering, in

this paper we allow only a subset of nodes that are geographically near to the mobile

target to self-organize into few clusters in the vicinity of the target. Additionally,

a sensor node would be able to distinguish between various types of data patterns

and selectively track a specific target among many mobile objects.

The sensed data is highly correlated in the vicinity of a stimulus. Subsets of

sensors may dynamically form collaborative clusters to estimate the target position

or velocity for tracking purposes. In [7] the authors present a Bayesian approach to

information-driven dynamic sensor collaboration to track mobile targets, that relies

on reliable estimates of densities for belief states. Tracking mobile targets in sensor

networks using a clustering approach is also discussed in [8]. In [9], a dynamic clus-

tering algorithm based on Voronoi diagrams is presented for tracking targets in an

acoustic sensor network. The authors of [10] assume that each sensor receives the

same amount of information in the local region during a given time period. Their

approach is too restrictive. Even within the region, sensors receive varied informa-

tion corrupted with noise, based on their physical location and the distance from

the observed target. The cluster head is selected to be the node at the center of the

cluster, which is too rigid. The authors of [11] use a centralized approach to select

a subset of sensor nodes that cover a region and form a connected communication

graph, to answer a query within that region. Dynamic clustering [12] generates flex-

ible network topologies for sensors to cluster and collaborate on detecting targets

moving through a sensor field. Motivated by urban area applications that require

adaptive sensor networks to dynamically cluster sensing, processing, and communi-

cation resources, a fusion-driven concept of the sensor network design is proposed

in [13]. We present the details of the implemented design concept outlined in [13]

and we add another interface. Through a proof-of-concept system implementation

and proof of performance we show that our implementation provides a tunable level

of tracking quality based on the reliability of the sensor network.

Section 2 details the proposed architecture. Section 3 presents the experimental

results of tracking a Segway RMP robot moving in a pressure sensor field. The

paper is concluded in Section 4.

August 5, 2011 10:58 WSPC/INSTRUCTION FILE journal

Designing a Fusion-Driven Sensor Network to Selectively Track Mobile Targets 3

2. Network Architecture

To enhance the quality and the resilience of data fusion, a distributed sensor net-

work needs to self-adapt, namely the network topology must be able to change in

real time, based on the spatial-temporal information derived from the ensemble of

the sensor data. To achieve this self-adaption, we divide the sensor network into

two interactive subspaces, Information Space and Network Design Space, with well

defined interactions between them (InfoNet Interface). Fig. 1 shows the proposed

architecture of a sensor network designed for mobile target tracking. This architec-

ture allows us to build a sensor network that is highly scalable and robust, while

providing the ability to track targets selectively and accurately.

Fig. 1. Detailed architecture of the design space

Information Space of the sensor network is used to derive the spatial-temporal

statistics of the ensemble of the sensor data. Data fusion is posed as a multi-time-

scale problem under the assumption of quasi-stationarity over the fast-time scale

(i.e., stationary over a sufficiently long time period) and possible non-stationarity

caused by small deviations in the system behavior due to accumulating changes

in the slow-time scale. Each sensor addresses the issues of data compression and

communication constraints by autonomously aggregating the data through symbol-

ization and semantic construction of probabilistic finite state automata (PFSA) [14].

The constructed PFSA are compared against a library of pre-determined patterns of

interest with an appropriate metric, thus allowing the sensor network to selectively

track interesting targets among many candidate targets [13]. Nodes observing and

deciding on the same PFSA from the library are clustered dynamically, if some addi-

tional network and physical requirements are met. This approach has the advantage

of being robust to individual sensor failures.

In the Network Design Space, the sensory data is modeled as a discrete-

event dynamic system of interacting probabilistic automata, where sensor nodes may

August 5, 2011 10:58 WSPC/INSTRUCTION FILE journal

4 Parallel Processing Letters

change their internal states through interactions with other nodes or the environ-

ment. To achieve this structural stability we have adapted the Dynamic Space-Time

clustering (DSTC) protocol [12] to minimize communication between sensor nodes

and to control the overhead while achieving a scalable operation of the sensor net-

work for accurate mobile target tracking. The Network Design Space is configured

to adapt to the Information Space needs in a manner that preserves the statistical

characteristics (predictability) of the ensemble of the original sensor data at each

level of fusion. The adaptive parameters of the Network Design Space include the

sensor positions, the resource assignments, and the network connectivity.

The InfoNet Interface consists of Forward and Feedback interfaces. The For-

ward Interface seamlessly translates Information Space requirements into commands

and allows the Network Design Space to act as an actuator to best meet the re-

quirements. The Feedback Interface reports the result of the command back to

Information Space.

2.1. Information Space

We define a sensor field S to be the set of all sensors under consideration of the

same sensing modality. Typically, Card(S) is large (> 103). We define a pattern G

to be a probabilistic finite state automaton (PFSA) over an a priori fixed alphabet.

A PFSA can be constructed using either D-Markov [14] or CSSR [15] algorithms. We

define a function H that maps each sensor s ∈ S to the PFSA constructed at some

slow-time epoch t ≥ 0 from the sensor’s data stream, which is a continuous-domain

stream of quasi-stationary time series data.

Definition 2.1. At some slow-time epoch t ≥ 0, H : S → P maps each sensor

s ∈ S to a PFSA P ∈ P, where P is the space of all possible PFSA over the

chosen symbol alphabet.

We assume that the sensed data stream is independent from sensor to sensor.

In our research we have considered the slow-time epochs to be the moments

of time when the PFSA construction has ended successfully in the Information

Space module, thus they depend on the sensing capabilities (e.g. sampling rates)

and communication capabilities of the sensors in the cluster, which in turn impose

restrictions on the range of the target speed. Of interest for future work is to make

these epochs also dependent on the expected target speed and make the outcome

of the PFSA construction algorithms dependent on the expected target speed.

Among all identified patterns we select a set G of K patterns of interest, G ={
Gi : i = 1, · · · ,K

}
, K ∈ N. We assume that Card(G) = K is small (∼ 10). The

set of patterns of interest G is totally ordered via the pattern characteristic function

χG : G −→ [0, 1]. A sensor data is mapped into some pattern of interest G if and

only if the PFSA H , constructed from the data stream, is close to G in the sense of

a given metric θ constructed on the set of PFSA, θ : P×P → [0,∞). The function

θ measures the deterioration of the signal from its origination to the location of

August 5, 2011 10:58 WSPC/INSTRUCTION FILE journal

Designing a Fusion-Driven Sensor Network to Selectively Track Mobile Targets 5

the sensor that senses the pattern generated by the target (see [16]). The physical

distance between the sensor and the target identified as a pattern of interest G is a

monotonically increasing function of the value θ(G,H), D : [0,∞) → [0,∞). If d is

the distance of the sensor s from the target location, G is the observed pattern of

interest at its origination point, and Ht(s) is the PFSA constructed at the slow-time

epoch t ≥ 0 from the data stream of the sensor s then d = D(θ(G,Ht(s))).

We define P [s,G] to be the probability that the sensor s has observed the pattern

of interest G. This probability measure depends on the physical distance between

the sensor and the target and it monotonically decreases as the distance between

the two increases. For example, one way of defining it is P [s,G] = e−D(θ(Ht(s),G)).

Next we present a probabilistic technique to estimate the position of a moving

target in the sensor field using Bayesian techniques based on clustering nodes that

exhibit the same pattern of interest. Given a pattern of interest Gk, let ǫi be the de-

tection region of a sensor i, beyond which it cannot detect the pattern Gk anymore.

The probability P [i, Gk; ǫi] that the sensor i has detected the pattern Gk within its

detection region ǫi is

P [i, Gk; ǫi] =






P [i, Gk] if D(θ(H(i), Gk)) ≤ ǫi

0 otherwise

(1)

The probability P [i, Gk; ǫi] is assumed to be independent from sensor to sensor.

A sensor has observed a pattern when the target has crossed its region of detec-

tion. At some slow-time epoch t ≥ 0, we group the nodes that have observed the

pattern Gk and are within 1-hop communication range to a specific node among

them (called cluster head) into a cluster Cℓ
t (G

k) that is the ℓth cluster formed to

track Gk. We define the detection region S of the cluster Cℓ
t (G

k) to be the union of

the detection region of the nodes in the cluster S =
⋃

i∈Cℓ

t
(Gk)

ǫi. Beyond S a target

cannot be detected at the slow-time scale t by any of the nodes in the underlying

cluster. In Fig. 2 we show an example of a region S formed by a 5-node cluster

containing only the dark-colored nodes.

Fig. 2. Region S of a 5-node cluster

August 5, 2011 10:58 WSPC/INSTRUCTION FILE journal

6 Parallel Processing Letters

Definition 2.2. The probability that the pattern Gk is detected within the region

S =
⋃

i∈Cℓ

t
(Gk)

ǫi at the slow-time scale t is the probability that the target has crossed

the detection region of every sensor in the cluster

P [Gk;S] = P [Gk;
⋃

i∈Cℓ

t
(Gk)

ǫi] =
∏

i∈Cl
t
(Gk)

P [i, Gk; ǫi] (2)

The estimated target location depends on the sensor measurement of Gk and

the physical location of each sensor within the cluster Cℓ
t (G

k).

Definition 2.3. The estimated physical location of a sensed pattern of interest Gk

at time t, estimated by the cluster Cℓ
t (G

k), is

ρ⋆
k,Cℓ

t
(Gk)(t) =

∑

i∈Cℓ
t
(Gk)

Γ(i) · P [i, Gk; ǫi] (3)

where Γ(i) is the physical location of the sensor i.

Physical tracks of the pattern(s) generated by a moving target are computed

as follows. For each pattern Gk ∈ G, we have a mobility radius rM based on the

expected physical velocity of the target. Hence, the detection and the estimated

location of Gk (Definition 2.3) at the current slow-time epoch t, sets up a region in

the physical space within which we expect to find the pattern in the next slow-time

epoch t+ ∆T . The velocity can then be estimated as shown in Fig. 3(a).

⊗

⊗

dM

Mobility Radius

(a)

⊗ ⊗ ⊗ ⊗

Initial Mobility Radius

Updated Mobility Region

(b)

Fig. 3. Track generation

Formally, the estimated velocity ϑ̂Gk of the pattern Gk with respect to the

cluster Cℓ
t (G

k) in the physical space is given by:

ϑ̂Gk =






1
∆T

dM , if |dM | ≦ rM

Undefined , otherwise

where dM =
ρ⋆

k,Cℓ(Gk)(t+ ∆T) − ρ⋆
k,Cℓ(Gk)(t)

∆T
(4)

The information gathered over several slow-time epochs can be used to refine

the estimated future position of the target in the physical space and to compute

August 5, 2011 10:58 WSPC/INSTRUCTION FILE journal

Designing a Fusion-Driven Sensor Network to Selectively Track Mobile Targets 7

the estimated velocity of the target that subsequently updates the mobility regions,

as shown in Fig. 3(b). The update algorithms can be based on simple Bayesian

techniques or may involve more advanced fusion criteria.

After the command carried by the message from the Information Space has

been executed in the Network Design Space, the Network Design Space sends the

feedback to the Information Space regarding the outcome of the execution.

2.2. Network Design Space

Reliable estimation of position and velocity of a moving target requires clustering

nodes for information fusion. On the other hand, forming clusters increases the com-

munication load of the network. The DSTC algorithm [12] is efficient and reliable in

clustering nodes that observe the same pattern of interest such that in any cluster,

only one node, called the cluster head, is responsible for coordinating the commu-

nication among all other cluster members. DSTC protocol assumes that nodes have

unique node IDs and defines five basic operations on a cluster: creating a cluster,

disbanding a cluster, adding a node to a cluster, removing a node from a cluster,

and moving the data from the cluster head to another cluster member. We add a

new operation, called pre-cluster formation, that groups all the sensors observing

the same pattern. The pre-cluster becomes a cluster after a cluster head is selected.

As the target moves through the sensor field, a sensor generates a stream of data

and then looks for patterns in it. The first node that recognizes a pattern requests

the formation of a pre-cluster. This node becomes the temporary pre-cluster head,

creates a unique cluster ID, and broadcasts to its immediate neighbors a message

join cluster containing the pattern ID and the corresponding metric value that

measures the node’s suitability as a cluster head. All nodes examine the join cluster

messages that arrive within a time frame and may decide to join some pre-cluster

by sending a message hello. Alternatively, a node may simply choose not to reply if

it does not see any pattern of interest. Eventually, the pre-cluster head collects the

state of each neighboring node that does reply and chooses the most suitable one as

the cluster head. The DSTC algorithm checks periodically whether there is a cluster

member with a better metric (closer to the node in terms of physical distance) for

the observed pattern than the cluster head. In such case, that node becomes the

new cluster head. This ensures the robustness of the cluster in case the cluster head

fails or has moved significantly away from the target. In general, we can have more

than one current cluster in the space-time vicinity of an event.

Once a cluster has been formed, cluster members will periodically send their

sensed pattern and the associated metric (the semantic distance between the com-

puted PFSA and the observed pattern of interest) to the corresponding cluster

head so that data fusion can be performed; the time period depends on how long

it takes for a sensor node to construct the PFSA. These messages are necessary

for continuous pattern identification, since a cluster will contain only nodes that

identify the same pattern. We define two types of messages, position estimate

August 5, 2011 10:58 WSPC/INSTRUCTION FILE journal

8 Parallel Processing Letters

and position result. When a cluster member detects an event, it sends a message

position estimate to the cluster head. After the data fusion is done, the cluster

head broadcasts a message position result to the cluster members, so that every

cluster member receives the fused data.

2.3. InfoNet Interface

Data fusion is done in the Information Space using mathematically rigorous tools

such as probabilistic finite state automata and non-linear symbolic dynamics filter-

ing. On the other hand, the Network Design Space is a stack of standard protocols

and function calls. The Application Programming Interface (API) is the way to

communicate with the Network Design Space.

Definition 2.4. A (Network Design Space) API can be represented by a 5-tuple

A = (F ,I ,O, In,Out) where F is the set of all available function calls in the API,

I is the set of input variables for all function calls, O is the set of output variables

for all function calls, In : F −→ 2I represents the set of inputs for a function, and

Out : F −→ 2O represents the set of outputs for a function. An output variable for

function call is a four-tuple (k, F lag, f,Np) where

• k denotes the type of the API

• Flag = {0, 1}. Value 0 means that the network controller has successfully

carried out the command and Value 1 means that the network controller

could not execute the command.

• f ∈ J where J is a set of feedback function calls available in the API

Feedback interface. J and F are closely related in the sense that the

Interface calls some function in J to drive the network like a controller

driving an actuator and the network calls some function in F to reply

back to the API Feedback Interface about what the network controller has

actually accomplished.

• Np is a set of input arguments of a function f ∈ J . In other words, Np

contains the parameters that the network controller will pass back to the

API Feedback Interface.

We define next Forward Interface, which converts the requirements of Informa-

tion Space into commands can be executed by Network Design Space, and Feedback

Interface, which gives back the results of these commands (see Fig. 1).

2.3.1. Forward Interface

The Forward Interface takes a command from the Information Space and trans-

lates it into a language understood by the Network Design Space. APIs enable the

network controller to exchange messages with the Forward Interface to achieve the

communication with the Information Space. The higher order API is provided to

keep consistency when dealing with the two different design spaces (Network and

August 5, 2011 10:58 WSPC/INSTRUCTION FILE journal

Designing a Fusion-Driven Sensor Network to Selectively Track Mobile Targets 9

Information Spaces) and to provide a coherent framework for expandability in case

future functions are to be added. Also, such a formal structure allows symbolic al-

gorithms to monitor the statistics of the network at different levels (network packet,

API function call, etc.) in order to reconfigure the network in response to stimuli.

Definition 2.5. The Forward Interface is modeled as (M ,C) where M is a col-

lection of finite state automata and C is a library of input-output mappings. Each

Mk ∈ M is a Mealy machine with Mk = (Qk,Σk
I ,Σ

k
O, δ

k, F k), where k is the index

of the machine because each machine is specifically designed for one API of the

Network Design Space, Qk is the set of the states of Mk, Σk
I is the alphabet set of

inputs of Mk, Σk
O is the alphabet set of outputs of Mk such that there is a bijective

mapping κ : Σk
O −→ F where F are the function calls in the k-th API, δk is a

mapping δ : Qk × Σk
I −→ Qk, and F k is a mapping F k : Qk × Σk

I −→ Σk
O.

Together with each Mk there is a collection of mappings C k ⊆ C defined as

C k = {(Ip,I , ϕ)} where Ip is the set of output parameters from the Information

Space and also the input of the Forward Interface, I is the set of input parameters

to Network Design Space and also the output of the Forward Interface, and ϕ ∈ C k

is some mapping ϕ : Ip −→ I

Each node in the network can implement a subset of all the APIs available

depending upon its role in the network. For instance, a sensor node in the network

can implement cluster API where as a router can implement a routing API in

addition to the cluster API.

It follows from Definition 2.5 that the inputs from the Information Space can be

classified into two classes. One class L1 = {s : s ∈ Σk
I} is an input of a specific finite

state machine Mk ∈ M and becomes a sequence of function calls {w : w ∈ Σk
O} in

the Network Design Space. The other class (L2) will be handled by the mapping C

and converted to the input arguments for the function calls. An illustrative example

would be to assign the priority on a specific node. The priority value assigned to

the node belongs to L1 and the node ID in the Information Space is in L2. C is

actually composed of a library of mappings ϕ that can be shared among all the spe-

cific models of the Forward Interface. For instance, the message createCluster (see

Section 3) is in L1 class and its input arguments such as NodeAddress, PatternID

and Metric value belong to L2 class.

Given the inputs from the Information Space, the following generic conversion

algorithm for the Forward Interface decomposes them into two classes, class L1 and

L2, as follows. Assume that p ∈ L1 and q ∈ L2.

(1) Represent p as an input string σ1σ2σ1σ3σ2

(2) Feed the input string into the corresponding automata Mp.

(3) Obtain the output string s3s1s1s1s2 . . . from Mp.

(4) Obtain the input arguments from C (q).

(5) According to the output string, execute the function calls with appropriate

input arguments.

August 5, 2011 10:58 WSPC/INSTRUCTION FILE journal

10 Parallel Processing Letters

An example of the above automata formulation can be a simplified version of

the state transition diagram for an individual node in the sensor field as shown in

Fig. 4. A sensor node keeps collecting data and remains in the state Alone until

the automaton built from the raw data matches a pattern in the pattern library.

As stated at the beginning of Section 2.1, a pattern is any observable physical

phenomena of interest captured in the form of a probabilistic finite state machine.

In Section 3 we consider four types of (moving) patterns for a Segway RMP. Then

a node goes to the state Initial Election, waits for messages from neighbors and

attempts to elect a cluster head among the nodes that observe the same pattern.

Based on the metric value, a pre-cluster head is elected and a pre-cluster thus is

formed, which ultimately leads to a cluster after checking if some other constraints

are satisfied. Finally, after a while, if the pattern is not observed anymore, the

cluster head initiates the disbanding of the cluster. Then the nodes go back to state

Alone again. The same process repeats over and over for each node in the network.

Fig. 4. State transition diagram for a sensor node

2.3.2. Feedback Interface

The Feedback Interface passes the outputs from the Network Design Space back

to the Information Space. The outputs of the Network Design Space are of two

types. One type consists of API outputs such as whether the API function was

executed successfully, etc.. The type consists of network statistics that describe the

communication quality; based on the network statistics, the Information Space will

be able to differentiate whether a bad data fusion is due to inappropriate cluster

formation or to a bad communication.

Definition 2.6. The finite state automaton N of the API Feedback Interface

for APIs outputs is the Cartesian product of two automata Nk ×Nf where Nk =

(Qk,Σk, δk), Qk = { Cluster Control API, Prioritization API, Delay API, Data Rate

August 5, 2011 10:58 WSPC/INSTRUCTION FILE journal

Designing a Fusion-Driven Sensor Network to Selectively Track Mobile Targets 11

API }, Σk = Qk, δk(qk
i , s) = qk

i for any s ∈ Qk, and Nf = (Qf ,Σf
I ,Σ

f
O, δ

f , F f)

where Qf = J is the set of all available feedback function calls in the API Feedback

Interface, Σf
I = Qf , Σf

O is the alphabet of updating actions, δf (qf
i , q

f
j) = q

f
j for all

q
f
i , q

f
j ∈ Qf , and F f : Qf × Σf

O −→ Σf
O.

Definition 2.7. The API Feedback Interface is a tuple (N ,D), where N is the

automaton from Definition 2.6, and D is a library of input-output mappings of the

form (Np, Ip, ψ), where ψ : Np −→ Ip.

D can be interpreted as the inverse mapping of C , but D is not exactly C−1.

The outputs of APIs have been presented in Definition 2.4 as a tuple O =

(k, F lag, f,Np). Flag is a single bit, informing the Information Space that the

network is unable to fully complete the command that has been given. Let us

not consider Flag at this moment. f and Np carry all the information about what

the network has already done. From the Network Design Space one will obtain

O = (k, F lag, f,Np). The algorithm is the same as the generic algorithm of the

Forward Interface except that here k and f belong to the class L1, denoted by p,

and Np belongs to the class L2, denoted by q.

(1) Represent p as an input string σ1σ2σ1σ3σ2

(2) Feed the input string into the feedback automata N .

(3) Obtain the output string s3s1s1s1s2 . . . from N .

(4) Obtain the input arguments from D(q).

(5) According to the output string, execute the updating actions with appropriate

input arguments.

3. Experimental Results

Extensive experiments were conducted to measure and validate the effectiveness

of our proposed architecture for mobile target tracking, using the data collected

from distributed pressure sensors connected through piezoelectric wires, forming

a pressure sensitive floor. A coil of piezoelectric wire is placed under square floor

tiles measuring 0.65m x 0.65m such that each sensor generates an analog voltage

due to pressure applied on it. This voltage is sensed by a micro-controller using

one of its 10-bit A/D channels thereby yielding sensor readings in the range of 0

to 1023. A total of 144 sensors are placed in a 9 x 16 equidistant grid to cover

the entire laboratory. The data is then fed into a NS-2 program that simulates the

wireless communication between nodes and executes the clustering, localization and

tracking algorithms at nodes. Scalability tests were thus done by integrating limited

hardware into large-scale simulations.

The objective is to detect and track spatio-temporal events of the behavior

patterns of a Segway RMP, moving in different types of motion trajectories. Four

types of motion trajectories were considered: 1) random, 2) circular, 3) sinusoidal,

and 4) fast random.

August 5, 2011 10:58 WSPC/INSTRUCTION FILE journal

12 Parallel Processing Letters

In the training phase, a library of patterns (PFSA) is created by the following

way:

• The raw time-series data is collected from each pressure sensor during a fixed

time interval.

• A PFSA is built based on the data using the D-Markov machine construction

algorithm [14]. A D-Markov machine is a type of probabilistic finite state au-

tomaton (used to represent patterns) that has Dth order Markov properties.

For details of definition and the construction algorithm please refer to [14]. The

construction algorithm allows one to represent the underlying symbolic process

to a desired level of accuracy as a Dth order Markov chain, where D is a positive

integer. The choice of both the alphabet size and the depth D affect how accu-

rately the D-Markov machine represents the underlying physical phenomenon

which in turn reflects the tracking accuracy. In general, higher alphabet size

and higher depth D models the observed data more closely at the expense of

increase in model complexity.

• The PFSA is added to the library by ensuring that it satisfies the fundamental

equation of sensor network operation (see [17]) which ensures that the patterns

are not close to each other in terms of a given metric θ in order to avoid

ambiguity in deciding on a pattern given a PFSA in the presence of noise of a

certain level.

In the operational phase, the spatio-temporal information of the Segway’s move-

ment is fused by clustering the sensors along the estimated path of the Segway. The

sensed data is used to build PFSA locally at each node using D-Markov machines,

and the constructed PFSA is compared against the pattern library.

To simulate the network related aspects of the experiments we used the NS-2.

The data collected by each sensor during the experiment is fed into a corresponding

simulated node in the NS-2 environment to create a detailed simulation of the

distributed sensor network. The algorithms associated with the Information Space,

the Network Controller and the InfoNet Interface are implemented at each node. For

the Information Space algorithms, a library of patterns (PFSA) is created off-line

and stored at every node. During the online operation of the sensor network, each

node collects the raw data from its pressure sensor. After collecting a fair amount of

data, a probabilistic finite state machine is built using the construction algorithm

for a D-Markov machine [14]. The PFSA constructed in this manner is then matched

with the existing set of patterns in the pattern library. We say that the sensor has

detected a pattern if it can decide on a (single) pattern from that library. The

semantic sensing radius is chosen appropriately using the metric θ defined on the

set of PFSA ([16]). a Next, a pre-cluster is formed among the neighboring sensors

aThe semantic sensing radius specifies how far apart a computed PFSA could be from some pattern
in the pattern library in order for the sensor to decide that it had detected the pattern from the
library.

August 5, 2011 10:58 WSPC/INSTRUCTION FILE journal

Designing a Fusion-Driven Sensor Network to Selectively Track Mobile Targets 13

that observe the same pattern. This pre-cluster eventually becomes a cluster, using

the DSTC algorithm defined at the Network Controller level of each node of the

pre-cluster, and a cluster head is elected.

The newly formed cluster has a lifetime, at the end of which the cluster is auto-

matically disbanded. The timeout starts as soon as the cluster head stops observing

the pattern for which the cluster was formed. While in the cluster, the cluster head

fuses the data from its members to estimate the current position of the target. Fig.

5(a) shows a run of the tracking algorithm. The actual trajectory of the Segway

robot is shown as a line (red) and the estimated positions are shown by dots (blue).

The corresponding error in position estimation over time for every slow-time epoch

is shown in Fig. 5(b).

5 6 7 8 9 10
7

8

9

10

11

12

13
Moving Profile of Robot versus Position Estimation

x

y

0 500 1000 1500
0

0.5

1

1.5
Error of Position Estimation

Time

E
st

im
at

io
n

E
rr

or
 (

m
)

(a) Robot trajectory vs. estimated position (b) Error in position estimation

Fig. 5. Robot trajectory versus estimated position

The fusion of data from more sensors leads to better localization of the target.

Fig. 6(a) illustrates the average error in the position estimation versus the cluster

size. Overall, the random fast trajectories have the largest average error, followed

by the sinusoidal ones, random, and the circle. For smaller size clusters (less than

8 nodes), the average error is relatively the same for all four trajectories, with the

random trajectory having the smallest value. As the maximum size of the cluster

increases, the difference between trajectories increases, and the circle trajectories

have the smallest error.

Fig. 6(b) illustrates the standard deviation in the position estimation as a func-

tion of cluster size; it indicates that there is an optimal value of cluster size after

which the standard deviation of the error increases. The rationale for this is: as

the cluster size increases beyond the optimal value, in calculating the position esti-

mation there will be an increased contribution from the nodes that do not observe

the event accurately. Overall, the random trajectory has the smallest value. The

random fast trajectories have smaller values than the random and sinusoidal ones.

The circle trajectories have a mixed behavior. For a smaller cluster size (less than

15 nodes), the circle trajectories have the second smallest values. As the maximum

August 5, 2011 10:58 WSPC/INSTRUCTION FILE journal

14 Parallel Processing Letters

0 10 20 30 40

0.4

0.5

0.6

0.7

Cluster Size

A
ve

ra
ge

 E
rr

or
 in

 P
os

iti
on

(m
)

Random
Circle
Sinesoid
Random(Fast)

0 10 20 30 40
0.2

0.25

0.3

0.35

0.4

0.45

Cluster Size

S
ta

nd
ar

d
D

ev
ia

tio
n

of
 E

rr
or

 in
 P

os
iti

on
(m

)

Random
Circle
Sinesoid
Random(Fast)

(a) Average error (b) Standard deviation

Fig. 6. Target estimation error

cluster size increases, the standard deviation error increases and the circle trajec-

tories have increasingly larger values, so that for a cluster size larger than 20, the

circle trajectories have the largest value among all four trajectories.

4. Conclusion and Future Work

We presented the design of a sensor network for tracking mobile targets in which

the design space of the sensor network is decomposed into Information Space and

Network Design Space with the InfoNet Interface between the two. Since the sensor

modality does not play a key role in the current design, the current architecture

can be extended to heterogeneous sensors.

A semantic approach based on probabilistic finite automata is employed in the

Information Space to fuse the data at various levels of hierarchy. Data is compressed

at the lower level at each sensor, which reduces the network communication over-

head. Data fusion is done at each cluster head, by taking the data from the cluster

members; the failure of a few cluster member nodes affects only slightly the result

of fusion. The advantage of this semantic approach is that the sensor network is

not only able to detect the presence of a target, but also to specify some motion

trajectories of the mobile target.

Future work will include two major enhancements. The first enhancement will

involve optimizing the pattern library in terms of library size and pattern resolution,

based on the semantic sensing radius. The semantic sensing radius measures how

far a measured pattern can vary from a pattern of interest and has a significant

effect on the network behavior, since it trades the unambiguous classification of the

patterns and the network performance measured in terms of tracking the target

accurately, with low communication overhead.

The second enhancement will involve adding a network statistics generator to

carry out statistical analysis of the network behavior under various control stimuli

given by the Information Space.

August 5, 2011 10:58 WSPC/INSTRUCTION FILE journal

Designing a Fusion-Driven Sensor Network to Selectively Track Mobile Targets 15

References

[1] Smaragdakis, I. Matta, and A. Bestavros. Sep: A stable election protocol for clus-
tered heterogeneous wireless sensor networks. In Proceedings of the 2nd International
Workshop on Sensor and Actor Network Protocols and Applications (SANPA), pages
1–11, 2004.

[2] V. Mhatre and C. Rosenberg. Design guideliness for wireless sensor networks: com-
munications, clustering and aggregation. Ad Hoc Network Journal, 2(1):45–63, 2004.

[3] M. Ye, C. Li, G. Chen, and J. Wu. Eecs: an energy efficient cluster scheme in wireless
sensor networks. In Proceedings of IEEE International Workshop on Strategies for
Energy Efficiency in Ad Hoc and Sensor Networks (IWSEEASN), pages 535–540,
2005.

[4] P. Biswas and S. Phoha. Self-organizing sensor networks for integrated target surveil-
lance. IEEE Transactions on Computers, 55(8):1033–1047, August 2006.

[5] M. Lotfinezhad, B. Liang, and E.S. Sousa. Adaptive cluster-based data collection in
sensor networks with direct sink access. IEEE Transactions on Mobile Computing,
7(7):884–897, July 2008.

[6] Y. Zou and K. Chakrabarty. Distributed mobility management for target tracking in
mobile sensor networks. IEEE Transactions on Mobile Computing, 6:872–887, August
2007.

[7] F. Zhao, J. Shin, and J. Reich. Information-driven dynamic sensor collaboration for
tracking applications. IEEE Signal Processing Magazine, 19(2):61–72, March 2002.

[8] H. Yang and B. Sikdar. A protocol for tracking mobile targets using sensor networks.
Proceedings of IEEE Workshop on Sensor Network Protocols and Applications, An-
chorage, Alaska, USA, May 2003.

[9] W.-P. Chen, J.C. Hou, and L. Sha. Dynamic clustering for acoustic target tracking
in wireless sensor networks. IEEE Transactions on Mobile Computing, 3(3):258–271,
July 2004.

[10] H. Chen and S. Megerian. Cluster sizing and head selection for efficient data aggrega-
tion and routing in sensor networks. In Proceedings of IEEE Wireless Communications
and Networking Conference (WCNC), volume 4, pages 2318–2323, 3-6 April 2006.

[11] H. Gupta, Z. Zhou, S.R. Das, and Q. Gu. Connected sensor cover: self-organization
of sensor networks for efficient query execution. IEEE/ACM Transactions on Net-
working, 14(1):55–67, 2006.

[12] S. Phoha, J. Koch, E. Grele, C. Griffin, and B. Madan. Space-time coordinated dis-
tributed sensing algorithms for resource efficient narrowband target localization and
tracking. International Journal of Distributed Sensor Networks, 1:81–99, 2005.

[13] S. Phoha and A. Ray. Dynamic information fusion driven design of urban sensor
networks. IEEE International Conference on Networking, Sensing and Control, pages
1–6, 2007.

[14] A. Ray. Symbolic dynamic analysis of complex systems for anomaly detection. Signal
Processing, 84(7):1115–1130, 2004.

[15] C.R. Shalizi, K.L. Shalizi, and J.P. Crutchfield. An algorithm for pattern discovery
in time series. Technical Report, Santa Fe Institute, October 2002.

[16] I. Chattopadhyay and A. Ray. Structural transformations of probabilistic finite state
machines. International Journal of Control, 81(5):820–835, May 2008.

[17] S. Phoha, A. Ray, I. Chattopadhyay, G. Mallapragada, and Y. Wen. Mathemati-
cal modeling of sensor network dynamics for control and stability. Technical Report
TR eSensIF-08-01, Applied Research Laboratory, The Pennsylvania State University,
September 2008.

