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Abstract: This article presents a robust and computationally inexpensive technique of
component-level fault detection in aircraft gas-turbine engines. The underlying algorithm is
based on a recently developed statistical pattern recognition tool, symbolic dynamic filtering
(SDF), that is built upon symbolization of sensor time series data. Fault detection involves
abstraction of a language-theoretic description from a general dynamical system structure,
using state space embedding of output data streams and discretization of the resultant
pseudo-state and input spaces. System identification is achieved through grammatical inference
based on the generated symbol sequences. The deviation of the plant output from the nominal
estimated language yields a metric for fault detection. The algorithm is validated for both single-
and multiple-component faults on a simulation test-bed that is built upon the NASA C-MAPSS
model of a generic commercial aircraft engine.

Keywords: fault detection, model identification, gas turbine engines, language-theoretic
analysis

1 INTRODUCTION

The propulsion system of modern aircraft performs

as a collection of a large number of interconnected

components, where fault detection and health

monitoring at both component and system levels

are of paramount importance. Especially, the inher-

ent complexity and uncertainties in these systems

pose a challenging problem because pertinent first-

principle models are usually unavailable or are over-

simplified as lump-parameter models. Therefore,

in the absence of high-fidelity models, the major

challenge is fault detection by developing a

description of the component dynamics primarily

from the input/output characteristics. These deci-

sions of fault detection should not only be responsive

to changes in the critical parameters of the dynamical

system but also be invariant to changes in the oper-

ating/input conditions as much as practicable.

Several data-driven techniques have been reported

in literature for fault detection and health monitor-

ing in dynamical systems, which include statistical

linearization [1], Kalman filtering [2], unscented

Kalman filtering (UKF) [3, 4], particle filtering

(PF) [5], Markov chain Monte Carlo (MCMC) [6],

Bayesian networks [7], artificial neural networks

(ANN) [8], maximum likelihood estimation (MLE)

[9], wavelet-based tools [10], and genetic algorithms

(GA) [11]. However, fault detection in single compo-

nents is only a small part of the health monitoring

problem in its entirety. In the setting of a more

complex problem of fault detection in multiple

components under changing input/operating
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conditions, the underlying algorithms and associated

optimization techniques may have certain draw-

backs. For example, computationally expensive

algorithms may not be suitable for engineering sys-

tems like commercial-scale transport aircraft, where

on-board health monitoring is needed to ensure flight

safety.

In previous publications, the authors have addressed

the problem of anomaly detection using symbolic

dynamic filtering (SDF) [12, 13] with applications to

fault diagnosis in aircraft engines [14–16]. The anomaly

detection algorithms, constructed in the SDF setting,

have shown superior performance in terms of early

detection of anomalies and robustness to measurement

noise by comparison with other existing techniques

such as principal component analysis (PCA), ANN,

and Bayesian techniques [17]. However, the issue of

varying operating condition has not been addressed in

SDF-based fault detection. Since multiple components

of gas turbine engine systems are usually intercon-

nected physically as well as through feedback control

loops, the effects of degradation even in a single com-

ponent may affect the input streams to the remaining

components. Furthermore, in many situations (e.g. tac-

tical aircraft), the system might need to be operated in

different regimes and under diverse input conditions.

To address the above-mentioned issues and

achieve the associated objectives, this article devel-

ops a robust and computationally inexpensive tech-

nique of system identification and fault detection that

is built upon formal language theory and symbolic

information. A central step is the proposed system

identification method is discretization of the sen-

sor time-series data for conversion into a corre-

sponding sequence of symbols to achieve enhanced

robustness and computational efficiency [12, 13, 18].

Specifically, the fault detection algorithms are

designed to be robust with respect to sensor noise

and, at the same time, simple enough to be embed-

ded in the sensors themselves. This method would

also facilitate construction of a reliable sensor net-

work to serve as a backbone to higher levels in the

decision-making hierarchy of large-scale engineering

systems (e.g. communication and control of aircraft’s

vehicle health and energy management system).

The real-time fault detection method, proposed

in this article, has been validated on a test-bed that is

built upon the NASA Commercial Modular Aero

Propulsion System Simulation (C-MAPSS) model [19].

This facility is particularly relevant for testing and

validation of condition-monitoring algorithms as it

allows the users to choose and design operational

profiles (e.g. thrust levels), controllers, and environmen-

tal conditions to simulate scenarios of interest. Most

importantly, the test facility allows the users to tune

efficiency and flow parameters to simulate specific

fault modes. Main contributions of this article beyond

the work reported in the authors’ previous publications

[14–16] are succinctly stated below:

(a) formulation of a language-theoretic system iden-

tification method for fault detection under

dynamically changing operating conditions;

(b) validation of the proposed technique for data-

driven detection of single and multiple compo-

nent faults in aircraft gas turbine engines under

noisy condition.

This article is organized in six sections. Section 2

briefly describes the C-MAPSS test-bed on which

the fault detection algorithms have been validated.

The concept and theoretical aspects of symbolic

identification are presented in section 3 along with

a necessary mathematical background. The resulting

fault detection scheme is developed in section 4.

The pertinent results of algorithm validation on the

C-MAPSS test-bed are presented in section 5. This

article is summarized and concluded in section 6

along with recommendations for future research.

2 DESCRIPTION OF IN THE C-MAPSS

TEST-BED

The C-MAPSS test-bed [20], developed at NASA,

is built upon the model of a commercial-scale two-

spool turbofan engine and its control system. While

the details of the model are available in open literature

[19], a brief outline of C-MAPSS is provided here for

completeness of this article. The engine under con-

sideration produces a thrust of approximately

400 000 N and is designed for operation at:

(a) altitudes from sea level up to 12 200 m;

(b) Mach numbers from 0 to 0.90;

(c) temperatures from approximately�50 �C to 50 �C.

The throttle resolving angle (TRA) can be set to any

value in the range between 0 � (minimum power) and

100 � (maximum power).

As seen in Figs 1(a) and 1(b), the simulation test-

bed of the gas turbine engine system consists of

high-pressure compressor (HPC), combustor, and

high-pressure turbine (HPT), which form the core of

the engine model; this subsystem is also referred to as

the gas generator. In the turbofan engine, the engine

core is surrounded by the fan and low-pressure

compressure (LPC) in the front and an additional

low-pressure turbine (LPT) at the rear. The fan, LPC,

and LPT are mechanically connected by an additional

shaft. The fan shaft passes through the core shaft and,

due to this type of arrangement, the engine is called a

two-spool engine.
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A gain-scheduled control system is incorporated in

the engine system, which consists of:

(a) a fan-speed controller for a specified TRA;

(b) three high-limit regulators that prevent the

engine from exceeding its design limits for core-

spool speed, engine-pressure ratio, and HPT exit

temperature;

(c) the fourth limit regulator that attempts to prevent

the static pressure at the HPC exit from dropping

too low;

(d) acceleration and deceleration limiters for the

core-spool speed;

(e) a comprehensive logic structure that integrates

these control-system components in a manner sim-

ilar to that used in real engine controllers such that

integrator-windup problems are avoided.

To achieve fast execution of simulation runs, the sen-

sors and actuators are approximated to have instan-

taneous response, no computational time delays,

and no drift and/or bias. Given the inputs of TRA,

altitude (a) and Mach number (M), the interac-

tively controlled component models at the simula-

tion test-bed compute non-linear dynamics of real-

time turbofan engine operation. Both steady-state

and transient operations are simulated in the con-

tinuous-time setting. This study addresses the

detection of those faults that cause efficiency deg-

radation in engine components. In the current

configuration of the C-MAPSS test-bed, there are

13 health parameter inputs, namely, efficiency

health parameters ( ), flow health parameters (�),

and pressure ratio modifiers, that simulate the

effects of faults and/or degradation in the engine

components. Out of these 13 health parameters,

are selected to modify efficiency (�) and flow (�),

which are defined [21] as:

(a) � X ratio of changes in actual and ideal

enthalpies;

(b) �X, ratio of tip rotor and axial fluid flow velocities.

Fig. 1 The C-MAPSS simulation test-bed
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For the engine’s five rotating components (i.e. fan,

LPC, HPC, HPT, and LPT), ten respective health

parameters are: (a) fan ( F , �F), (b) low-pressure com-

pressure ( LPC , �LPC ), (c) high-pressure compressor

( HPC, �HPC), (d) high-pressure turbine ( HPT, �HPT),

and (e) low-pressure turbine ( LPT, �LPT). Out of the

different types of sensors (e.g. pressure, temperature,

and shaft speed) used in the C-MAPSS simulation

model. Table 1 lists the sensors that are commonly

adopted in the Instrumentation and Control system

of commercial aircraft engines, as seen in Fig. 1(b).

The overall objective is to detect changes in the

health condition of gas-turbine components, param-

eterized by its efficiencies. The detection procedure

has to be robust with respect to sensor noise, different

operating conditions of the aircraft such as take-off,

cruise, and landing, as well as possible presence of

fault in one or more other components in the loop.

The processing of the sensor information in order to

arrive at such a fault detection algorithm form the

subject matter of the rest of this article.

3 CONCEPT OF SYMBOLIC IDENTIFICATION

Symbolic feature extraction from time series data is

posed as a two-time-scale problem [12]. The fast scale

is related to the response time of the process dynam-

ics. Over the span of data acquisition, dynamic

behaviour of the system is assumed to remain invari-

ant, i.e. the process is quasi-stationary at the fast

scale. On the other hand, the slow scale is related to

the time span over which non-stationary evolution

of the system dynamics may occur. It is expected

that the features extracted from the fast-scale data

will depict statistical changes between two different

slow-scale epochs if the underlying system has

undergone a change.

For the symbolic analysis of time-series informa-

tion (e.g. temperature and pressure sensor signals

from a gas turbine engine), data acquired from the

instrumentation and data-acquisition system, are

discretized temporally and spatially to generate

blocks of symbols, also called words. A grammar is

the mathematical structure that constrains the

inter-relationship among these words. In essence,

the grammar G of a language is the set of rules that

specify all words in the language and their relation-

ships. Grammatical inference-making is an inductive

problem, where the underlying grammar dictating

these interrelationships has to be identified with

just positive examples of valid sentences. To apply

grammatical inference procedures to identification

of non-autonomous dynamical systems, the system

must be considered as an entity (i.e. a linguistic

source) capable of generating a specific language.

Since many physical processes of interest can be

faithfully represented by a dynamical system operat-

ing in the continuous time and in continuous state

space, it is logical to construct a language-theoretic

model to capture the pertinent dynamics in a robust

and computationally efficient way. In this context,

estimation of deviation of such a system from its

nominal operating condition with grammatical

inference techniques can be decomposed into three

tasks.

1. Abstraction: This task is abstracting a discrete qual-

itative counterpart of the general dynamical

system representing the physical process, such

that the system output of this abstracted descrip-

tion constitutes a unique language in the setting

of the formal language in the Chomsky hierarchy

[22].

2. Identification: This is the learning task in dynami-

cal systems, the grammatical inference technique

develops a grammatical description of a dynamical

system from the input/output characteristics

such that it is not only invariant with respect to

the input conditions, but also sensitive to changes

in the parameters of the actual dynamical system.

3. Comparison: Upon completion of abstraction and

identification, this task compares the output of

the abstracted system with the actual output in

the sense of an appropriately defined metric for

estimation of degradation of the system under

investigation.

3.1 Generalization of qualitative dynamical
systems

In the context of the concepts, introduced above,

the underlying structure of a dynamical system is

represented by a generalized dynamical system

(GDS).

Definition

A GDS is defined as an 8-tuple automaton [23].

D ¼ ðT , U , W , Q, P, f , g ,4Þ ð1Þ

Table 1 Sensor suite for the engine system

Sensors Description

P2 Fan inlet pressure
T2 Fan inlet temperature
P24 LPC exit / HPC inlet pressure
T24 LPC exit / HPC inlet temperature
Ps30 HPC exit static pressure
T30 HPC exit / combustor inlet temperature
T48 HPT exit temperature
Nf Fan spool speed
Nc Core spool speed
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where T is a time set (e.g. T¼ [0,1)), U and W are the

input and output sets, respectively, Q are internal

states, P is the input process P : T!U, and f is the

global state transition

f : T � T �Q � P ! Q for time-varying systems ð2Þ

f : T �Q � P ! Q for time-invariant systems ð3Þ

g denotes the output function

g : T �Q!W for time-varying systems ð4Þ

g : Q!W for time-invariant systems ð5Þ

Let Di be a GDS indexed by i representing dif-

ferent parametric conditions. Let D0 be the nomi-

nal or healthy condition of the plant (i.e. the

system under consideration), and i¼ 1, 2, . . . signify

deterioration of the plant health conditions due to

an evolving anomaly. Let a component of the GDS

Di be denoted by the corresponding symbol with a

subscript denoting its health condition. For exam-

ple, fi denotes the global state transition function

for a system in the ith health state. Let Uk, k¼ 1,

2, . . . ,K be K different input conditions, y i
k be the

output from the ith system Di receiving the kth

input Uk.

Definition

Let the nominal plant D0 be represented as a GDS

and let its grammar be denoted as G. Then, the

quantized abstraction of the GDS is called a qualita-

tive dynamical system (QDS) that is represented as a

5-tuple

G ¼ fQ, �, �, �, �g ð6Þ

where

QX {q1, q2, . . . , qf } is the finite set of qualitative states

of the automaton,

�X {�1, �2, . . . , �m} is the set of qualitative input events,

�X {s1,s2, . . . ,sn} is the set of output alphabets,

where the output symbols are one-to-one with

the quantized values of output from the dynamical

system, and

� : Q��!Q is the state transition function that

maps the current state into the next state upon

receiving the input �. The state transition function

can be stochastic; in that case

� : Q��! PrfQg ð7Þ

where Pr{Q} is a probability distribution over Q.

g :Q!� is the output generation function that deter-

mines the output symbol from the current state.

In its full generality, g can be stochastic as well,

i.e. (with similar notation as before)

� : Q! Prf�g ð8Þ

3.2 Abstraction

Abstraction is the process of transforming a general

dynamical system into its qualitative counterpart.

The method is formalized as follows: Let � denote

a set of qualitative abstraction functions

v :D0 ! G ð9Þ

It is noted that � is a 3-tuple consisting of three indi-

vidual abstraction functions

v ¼ �TQU ,�Q ,�W

� �
, where

�TQU : T �Q �U ! � ð10Þ

�Q : Q!Q ð11Þ

�W : W ! � ð12Þ

Kokar [23] introduced a set of necessary and suffi-

cient conditions, or ‘consistency postulates’ that

the pair G, � must satisfy in order to be a valid repre-

sentation of the general dynamical system. In this

article, since the transfer of the QDS, � is probabilistic,

the consistency postulates have been redefined in

a probabilistic sense. The modified consistency

postulates can be stated as follows.

Definition

LetD, G, and � represent a GDS, QDS, and an abstrac-

tion function, respectively. Then, the pair (G,�)

forms a consistent representation in a probabilistic

sense if, 8q, u, t

�ð�QðqÞÞ ¼ �W ð g ðqÞÞ ð13Þ

�Q f ðt , q, uÞ
� �

� � �QðqÞ,�TQU ðt , q, uÞ
� �

ð14Þ

where X � P means the random variable X

is distributed according to the probability distribu-

tion P.

Theorem 3.1 (Kokar [23])

Let Wp¼W1, . . . , Wn, n2N be a finite partition of a

GDS’s output space W, given by ��1
W : �!W	. Let

Qp describe a partition of Q defined as an inverse

image of Wp through g

Q	 ¼ g�1ðW	Þ
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and let TQUp describe a partition of T�Q�U defined

as an inverse image of Qp through f

TQU	 ¼ f �1Q	

Then, Qp is a maximal admissible partition of Q, and

TQUp is an admissible partition of T�Q�U.

Proof

If the mapping �Q : Q!Q assigns a Qi to each class

Qi ¼ g�1 ��1
W ðwiÞ

� �
and g assigns wi to Qi, by

construction

�ð�QðqÞÞ ¼ �W ð g ðqÞÞ

The second half of the proof is similar. #

In effect:

(a) a critical hypersurface of partition in Q is an image

of the partition in W through g�1;

(b) a critical hypersurface partitioning T�Q�U is an

image of the partition in Q through f�1.

Lemma 3.2

The abstraction function � defines a congruence

relation.

Proof

Let an equivalence relation E over the elements of the

dynamical system be defined as belonging to the

same admissible partition, for example q1Eq2) q1,

q22Qi. If (t1�q1�u1) E (t2� q2�u2), then f (t1, q1, u1)

E f (t2, q2, u2), because �Q (q1)¼�Q(q2)¼Qi (say), and

�TQU(t1, q1, u1)¼�TQU(t2, q2, u2)¼ �j (say), then from

the consistency postulates,

�Q f ðt1, q1, u1Þ
� �

¼ �Q f ðt2, q2, u2Þ
� �

¼ � Qi , �j

� �

#

Lemma 3.3

The QDS is related to the GDS through a

homomorphism.

Proof

A homomorphism can be associated with every con-

gruence and admissible partitions [24]. #

If the system model, i.e. the equations governing the

GDS is known, the critical hypersurfaces or partitions

can be analytically evaluated and utilized as delin-

eated in the preceding section. However, in the

absence of model equations, this scheme is of little

practical use, unless

(a) there is an alternate means of constructing the

phase space purely from output, without using

the model equations; or

(b) there is an alternate means of arriving at the

proposed partition without information about

the state transition function f and the output

function g.

The next two subsections delineate a method for

achieving these ends in an approximate way.

3.2.1 Phase space construction

Starting from the output signal captured by suitable

instrumentation, a pseudo phase space can be con-

structed from delay vectors using Taken’s theorem

[25]. The embedded phase space can be denoted by

xðkÞ ¼ xk�
 , . . . , xk�m
½ �

where 
 is the time lag and m the embedding dimen-

sion. Takens’ theorem guarantees that, at least in the

noise-free case, a system of state dimension s may

be embedded using a maximum of mT lags where

mT4 2sþ 1.

In order to find optimum values of the embedding

parameters m, n, and 
, the literature reports many

optimization routines. In this case, following [26] the

Kozachenko–Leonenko (KL) [27] estimate of the dif-

ferential entropy

H ðxÞ ¼ �N
j¼1 ln ðN�j Þ þ ln2þ CE ð15Þ

is first calculated, where N is the number of samples,

�j the Euclidian distance of the jth delay vector to

its nearest neighbour, and CE the Euler constant:

CE ¼
R1

0 e�t ln tdt � 0:5772. Then

I ðm, 
Þ ¼
H ðx, m, 
Þ

hH ðxs,i , m, 
Þi

is defined using surrogates (see reference [26] for

details) and finally the entropy ratio (ER) is defined as

Rent ðm, 
Þ ¼ I ðm, 
Þ 1þ
m ln N

N

� �
ð16Þ

by superimposing the minimum description length

(MDL) method to penalize higher dimensions. This

ratio is minimized to find the optimal set of embed-

ding parameters (m*, 
*).

3.2.2 Partitioning

Sensor time series are obtained from the input and

output data streams of the dynamical system D0

under a nominal condition for different input
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conditions. Let Y ¼ {y1, y2,. . .}, yk2� denote the dis-

cretized output sequence. Probabilistic finite state

automata (PFSA) are constructed next, with states

defined by symbol blocks of length D from Y. Such

PFSA are called D-Markov machines; the reader is

referred to references [12–14] for an in-depth

description of the procedure.

The state space is constructed from the output

space by using Taken’s theorem as discussed in the

final section. In the very next step, the phase space

and the input space are individually discretized.

The crux of the method is to place the boundaries of

the partition segments in such a way, that a change

in both input and output symbols is synchronized.

The phase space and input variables hold the last

symbol till there is a change in the output state

sequence. Periodicity (or at least quasi-periodicity)

guarantees that the number of phase space and

input symbols will not explode. The partitioning

scheme is illustrated in Fig. 2.

Remark

A partition constructed in this way is admissible,

but may not be maximal, since this partition is a

subpartition of the original partition proposed in

Theorem 3.1.

Let U ¼ {u(1), u(2), . . .} denote the discretized input

data sequence. Similarly let Q¼ {q(1), q(2), . . .} denote

the discretized state variable sequence. It is noted

that the state space can be multi-dimensional

depending on the embedding dimension m*. Once

the input and state spaces are both discretized,

they can be combined to form the discretized aug-

mented input space �¼ {�(1), �(2), . . .}, where each

�(i )¼ {q(i ), u(i )}.

The transition function used in the current meth-

odology has a stochastic structure. Specifically,

� :Q��!Pr{Q} yields the probability distribution

of transition from state qi to {q1, q2, . . . , qf } upon

receiving an input �j. A grammar constructed in this

way has the advantage over the context-sensitive

grammar, described in reference [28], where the

number of production rules may become inconve-

niently large. However, the function g : Q!�,

which maps the current state qi to the current

output symbol �i is deterministic, which is really an

artifact of the state construction procedure [12].

3.3 Identification

The learning scheme, depicted in Fig. 3, explains

identification of the state transition function � from

the input–output symbol sequences obtained from

experiment on the plant while it is under nominal

condition. The fixed structure automata model is

trained during the learning phase and outputs p and

Fig. 2 Partitioning scheme

Fig. 3 Overall scheme for learning and fault detection
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~p (shown using dotted arrows) are obtained during

testing (fault detection) phase and will be described

later.

It is assumed that inputs and outputs are time-

synchronized. The state transition function � can be

expanded into two dimensional matrices ��i, indexed

by the input variable alphabets. That means

� ¼ f��1 , ��2 , . . . , ��m g ð17Þ

where ��i : qj� �i!Pr{Q} maps the current state and

input to the probability distribution over all possible

states. The algorithm for estimating the matrices ��i

is straightforward and involves counting the fre-

quency of each transition in the learning phase.

Since the state transition matrices are constructed

simply by counting, this method is ideal for imple-

menting in the sensor electronics for real-time

prognoses.

The learning algorithm has to make sure that the

probability values of �i converge. The convergence

depends on the length of the input–output symbol

sequences. In this study, a stopping rule [12] has

been used for detecting the optimal data length.

In the learning phase, it has to be ensured that

the grammar G is trained with sufficient input data

belonging to a particular equivalence class. This is

the so-called coverage problem.

4 FAULT DETECTION SCHEME

The concept of fault detection is largely similar to that

of the learning phase in Fig. 3 with the following

exception. The input and output time series data

from the actual plant are discretized to form symbol

sequences, which are fed to the trained fixed struc-

ture automaton. The discretization is performed

using the same partitioning as was done during

the learning phase. It is noted that the resulting

finite state automaton (FSA) uses the output from

the actual system in addition to the input, and

hence cannot serve as an independent ‘system iden-

tification’ procedure in the classical sense of the term.

Nevertheless, the automaton can serve as a system

emulator if the state transition function � is comple-

tely deterministic. That is, given the current state qj

and the current input symbol �i

��i ðqj , �iÞ ¼ pq1
pq2

. . . pqj�j

� �T
ð18Þ

where pqk
¼ 1 for one and only one k ð19Þ

¼ 0 otherwise ð20Þ

It can be shown that by a proper redefinition of

partitioning and depth used for the construction

of states, a stochastic automaton can be converted

to a deterministic finite state automata [29]. But

that transformation inevitably leads to state explo-

sion and uneconomical growth in the computational

complexity.

Instead, in the current scheme, the state transition

probability vectors 	�i
qj

, which are the rows of the state

transition matrix �, serve as feature vectors, and are

used for the purpose of fault detection. An extremely

convenient feature of using state transition probabil-

ities as feature vectors, and using stochastic methods

to define distances between nominal and off-nominal

behaviours of plants is that this technique is very

robust to noise.

This article proposes a Pseudo-Learning technique

of utilizing the stochastic state transition function �

for the purpose of fault detection. In this method, the

actual state transitions inside the fixed-structure

automaton in the fault detection phase occur accord-

ing to the output symbol sequence obtained from the

actual system; and, at each instant of state transition,

the trained automaton produces a state transition

probability vector pn [29] that represents the charac-

teristics of the nominal system corresponding to

inputs at this nth instant.

It is noted that the pattern vector pn, produced by

the trained automaton, is characteristic of the nomi-

nal behaviour of the plant given the past history of

input, state, and output. The current (possibly off-

nominal) condition of the plant is characterized by

another state probability vector ~	n. This is defined

for the actual system output at an instant n, for

which only one element of the vector will be 1, rest

are zeros. The next step is to use the sequences of

instantaneous state probability vectors {nn} and f ~png

obtained at each time instant, to construct a pattern

vector. Under the assumption of ergodicity of the

system, a pattern can be generated from frequency

count of the state visits over a wide time window in

case of symbolic time series analysis [12]. The equiv-

alent process in the present case would be calculation

of mean state probability vectors p and ~p from the

collections {n1, n2, . . . , nn} and f ~p1, ~p2, . . . , ~png respec-

tively over time instants 1, 2, . . . , n. During the fault

detection phase, the fixed structure automata model

(already trained), as shown in Fig. 3 is used and state

probability vectors p and ~p are obtained.

It may be noted that in an ideal case, p should con-

verge to ~p, while they should start to diverge from

each other as the fault progresses. Thus, any measure

of divergence of the two probability vectors, such

as the difference, p � ~p is a natural choice (similar

to residuals in Bayesian filtering based fault detec-

tion schemes [30]) for constructing the pattern

vector corresponding to that specific fault condition.

Once the pattern vectors for a fault condition are
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obtained, a suitable classification algorithm, such as a

support vector machine can be utilized to create the

hyperplane separating the nominal patterns from

the possibly off-nominal pattern vectors.

Remark

In the Learning Automata literature, learning [29] is

done by continuous feedback from environment to

the automaton at each time instant. Here, also similar

feedback technique is taken but not for learning or

changing the structure or internal functions of the

finite state machine, but only to provide actual his-

tory of past outputs to the nominal automaton based

model. Hence, the technique can be called a Pseudo-

Learning Technique.

5 RESULTS AND DISCUSSION

Time series data have been collected for different sen-

sors under persistent excitation of TRA inputs that

have truncated triangular profiles. To simulate differ-

ent operating conditions, each TRA input profile has

been designed to have a wide range of mean values,

amplitude, and frequency of excitation. Specifically,

the algorithm has been tested for a mean TRA angle of

40 �, 60 �, and 80 �, with amplitude ranging from �1 �,

�2 � and �3 � and the frequency of input excitation

varying between 0.1, 0.06, and 0.04 Hz. Also, the

effects of altitude and aircraft speed have been

taken into account by collecting data, while the air-

craft is at sea-level (i.e. altitude a¼ 0.0, Mach number

M¼ 0.0) when the engine is on the ground for fault

monitoring and maintenance by the engineering per-

sonnel, as well as when it is in flight at �3000 m with

Mach number M¼ 0.3. So, the entire learning set

comprises of 3� 3� 3� 2¼ 54 operating conditions.

Figure 4 shows readings from sensor P24 at different

operating conditions for a nominal engine. Figure 5

illustrates the process of learning a PFSA from input–

output signal pairs. However, the figure shows a sim-

plified generic automata in order to explain the

underlying concept. There is no direct correspon-

dence to the actual automata used for fault detection.

Data corresponding to only 4 out of the 54 operating

conditions considered, are shown here to preserve

clarity of presentation.

The engine simulation is conducted at a frequency

of 66.67 Hz (i.e. inter-sample time of 15 ms) and

the length of the simulation time window is 150 s,

which generate 10 000 data points for each learning

or test case, out of which the last 8000 data points are

used to reduce the effects of initial transience.

An engine component C is considered to be in

nominal condition when both  C and �C are equal

to 1. Fault is injected in the fan by simultaneously

reducing both  C and �C by same amount in the

results reported in this article. For example,

 F¼ �F¼ 0.98 signifies a 2 per cent relative loss in

efficiency and flow capacity for fan.

5.1 Detection of a single fault

To analyse a representative single component fault

situation in the current engine model, fault in fan

has been considered, which is realized by modifying

fan efficiency ( F) and flow modifier (�F). For both

learning (i.e. forward problem) and testing (i.e.

inverse problem), time series data from relevant

sensor (P24 in this case) are generated with  F and

�F ranging from 1.0 to 0.96 (i.e. 4 per cent relative

loss in fan efficiency) in steps of 0.005.

The learning set comprises of the input signal pro-

file of TRA and the output signal profile of P24 for

all 54 operating conditions. The output data P24

from all these operating conditions are first normal-

ized and then concatenated to form the complete

output set. Such data are then discretized using a

maximum entropy partitioning [12]. The number of

states in the PFSA is selected to be 15. Following the

procedure outlined in section 3, the augmented input

space is constructed by discretizing the input and

phase space. In this case, the output itself suffices

as the phase space, i.e. m*¼ 1. The input specific

probabilistic state transition matrices are next con-

structed, which conclude the learning process of the

PFSA.

Fig. 4 Sensor reading at several operating conditions;
in each set: solid lines imply input TRA oscilla-
tion amplitude¼�1� and frequency¼ 0.1 Hz;
dotted lines imply amplitude¼�2� and
frequency¼ 0.06 Hz; and dashed lines imply
amplitude¼�3� and frequency¼ 0.04 Hz
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In the validation part, the input and output data

corresponding to a single fault level (for example,

when the fan efficiency level is, say, 0.995) but for

all different input and operating conditions, are

fed into the algorithm. The pattern vector cluster cor-

responding to this fault condition is calculated

according to the algorithm described in section 3.

The success or failure of the algorithm depends on

the distinguishability of these patterns from the pat-

tern cluster generated by the machine when the

engine was running in its nominal health state,

albeit at different operating conditions.

A support vector machine (SVM) classifier with linear

kernel [31] has been used to classify the nominal from

the off-nominal cases. The validation is done by choos-

ing one of the datasets as test data and using the remain-

ing data as the learning data, and noting whether it could

be classified correctly. This is repeated for all the data-

sets to yield a true positive rate (TPR), true negative rate

(TNR), false positive rate (FPR), and false negative rate

(FNR). Here, ‘positive’ denotes nominal condition and

‘negative’ denotes off-nominality. Thus, false positive

implies a missed event, i.e. a faulty engine is classified

as healthy, and a false negative implies a false alarm, i.e.

a healthy engine is misclassified as faulty.

In order to estimate the robustness of the tech-

nique with noisy data [32, 33], the data are contam-

inated with additive white gaussian noise. The SNR

in dB is decreased from 100 dB in the first run to 10 dB

in steps of 10 dB. Figure 6 shows the output signals

contaminated with white Gaussian noise for four

different signal-to-noise intensity.

Figure 7 displays the results of the SVM classifier

when applied to patterns corresponding to different

fan efficiencies. It is noted in Fig. 7(a) that even a

decrease of 0.5 per cent in fan efficiency can be

detected with TPR¼ 100 per cent and FPR¼

0 per cent for noise contamination at SNR¼ 40 dB.

Even for SNR¼ 30 dB, the receiver operating charac-

teristic (ROC) curve [34] closely approaches the

Fig. 5 Input (TRA) and output (Pressure) signals at different operating conditions and the learnt
PFSA model
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left-hand top corner. There is a significant decrease in

performance for noise contamination at SNR¼ 20 dB

and beyond.

Remark

A typical use of an ROC graph is to enable the oper-

ator to assess the risk versus the gain potential of

a decision. For example, the typical results from a

certain risk-analysis study are as follows. A 2 per cent

probability of failure to detect a degraded fan perfor-

mance is acceptable for a certain kind of aircraft

operation.

The corresponding result for a relatively larger

fault, corresponding to a decrease of 2.5 per cent in

fan efficiency, is shown in Fig. 7(b). As expected, the

noise tolerance for this classification is much higher,

since the fault signature is also less subtle. It can be

seen that an almost sure classification can be per-

formed even when SNR¼ 20 dB.

Table 2 displays the probability of actually detect-

ing failures for an allowable FPR of 2 per cent for three

different fault levels and several SNR conditions. It is

noted that for very noisy signals (SNR¼ 20 dB), subtle

faults (e.g. efficiency decrease of 0.5 per cent) are

almost impossible to detect if the probability of

missed detection is kept below 2 per cent. However,

for slightly more degraded conditions (efficiency

decrease of 3 per cent), failures can be detected with

100 per cent confidence while guaranteeing that

missed detection rate is kept below 2 per cent.

5.2 Detection of multiple faults

In an interconnected system (e.g. an gas turbine

engine), detection of multiple faults is inherently a

difficult problem, because a failure in one of the

components, say Component A essentially changes

the input conditions to some other component, say

Component B and then off-nominal performance of

Component B can either be due to an actual fault in

Component B or due to the off-nominal input received

by it. Thus, probabilities of missed detections and/or

false alarms tend to rise. To resolve this problem, the

key idea here is to treat possible fault conditions of

Component A as different operating conditions for

Component B and then to follow the similar procedure

as before. In order to test the reliability of the

algorithm against simultaneously occurring faults,

two components have been chosen. The fan is

assumed to be slowly deteriorating in terms of its

efficiency as both  F and �F are decreased from

their nominal values of 1. However, in contrast

(a)

(b)

Fig. 7 ROC of symbolic identification classifier at
different SNRs

(a) (b) (c) (d)

Fig. 6 Effects of additive white noise on pressure sensor data: signal- to noise ratio (SNR)
decreasing from left to right
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to the last simulation study, three levels of faults are

considered here:

(a) ‘low’, where  F¼ �F¼ 0.995;

(b) ‘medium’, where  F¼ �F¼ 0.975;

(c) ‘high’, where  F¼ �F¼ 0.960.

At the same time, further down the gas path, the

low-pressure turbine also undergoes similar types

of faults, i.e.  LPT¼ �LPT¼ 0.995, 0.975, and 0.960

progressively. The low-pressure turbine has been

chosen as the second component to fail, because not

only the turbine inlet temperature and pressure are

dependent on the fan operation but also the turbine

is directly mechanically linked to the fan through a

shaft. This close interconnection obviously

makes the problem of unambiguous detection much

harder.

Similar to the last simulation study, the robustness

of the algorithm is tested by running the engine

at different operating conditions. The main actuator

input TRA is again varied to have a wide range in

mean, amplitude as well as frequency. The mean

takes on three different values, 40 �, 60 �, and 80 �,

with amplitude ranging from �1 �, �2 �, and �3 �

and the frequency of input excitation varying

between 0.1, 0.06, and 0.04 Hz. Altitude and mach

number are changed to simulate both ground opera-

tion and flight at � 3600 m. These two testing envi-

ronments combined together with 3� 3� 3¼ 27

types of throttle inputs result in 54 operating condi-

tions in all. However, the four health conditions

(nominal and three fault conditions as defined

before) of the fan appear as four new operating con-

dition for the low-pressure turbine, since faults in the

fan effectively change the input condition down-

stream. The same holds for LPT faults also. Hence,

effectively, the number of operating conditions for

which each component is tested turns out to be

54� 4¼ 216.

The simulation studies are divided into two parts:

(a) Part 1, where faults in the fan are identified in the

presence of faults in the LPT;

(b) Part 2, where faults in the LPT are identified in

the presence of faults in the fan.

The signals monitored for detection of fan faults

remain the same as those in the final section, i.e.

TRA is used as the input signal profile, while P24

as the output signal. The output signal is discretized

into 15 states with maximum entropy partitioning.

The procedure explained in section 3 is followed

exactly, and the results obtained are displayed in

the left-hand side of Fig. 8.

Temperature sensors at the input and output of the

low-pressure turbine, T48 and T 50, respectively, are

simultaneously monitored for change detection in

the LPT. Although sensors to monitor T 50 are not

generally used in commercial engines, they could be

mounted easily as LPT exit typically does not present

any harsher environment compared to those at the

other usual sensor locations. A similar processing

yields the pattern vectors corresponding to each

operating conditions.

For a faulty condition of the component under

investigation, say a drop in relative efficiency of

0.005, the pattern vectors generated for all 216 oper-

ating conditions are tested for their ‘classifiability’

from pattern vectors generated by the healthy com-

ponent for the same 216 operating conditions.

The top row in Fig. 8 shows the receiver-operating

characteristics, i.e. the rate of correct and false diag-

noses when the components have failed to a very

small degree. Figures 8(a) and (b) shows that the algo-

rithm becomes less and less trustworthy as the noise

level increases for ‘low’ level faults. Compared to the

last simulation study with single faults, where even at

SNR¼ 40 dB, 100 per cent correct classification was

possible, this simulation is conducted in the presence

of faults in other components having several trade-

offs between TPR and FPR. As the fault signatures

become stronger, almost certain detection of faults

is possible even in the presence of substantial noise

(i.e. SNR¼ 40 dB). This is illustrated for ‘medium’

level faults (i.e. efficiency¼ 0.975) in both fan and

LPT in Figs 8(c) and (d), respectively. For ‘high’ level

faults (i.e. efficiency¼ 0.960), the same trend is visible

in Figs 8(e) and (f). Similar to Table 2 for single-com-

ponent faults, Table 3 provides the probability of

actually detecting failures for an allowable FPR of

2 per cent for three different fault levels and several

SNR conditions.

Table 2 Fault detection rates for an allowable false positive rate of 2 per cent for different fault

levels and several SNR conditions

Fan efficiencies

SNR 0.995% 0.990% 0.985% 0.980% 0.975% 0.970% 0.965% 0.960%

20 9.26% 35.19% 66.67% 88.89% 98.15% 100.00% 100.00% 100.00%
30 70.37% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
40 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Aircraft gas turbine engines 433

Proc. IMechE Vol. 226 Part G: J. Aerospace Engineering



For very small faults, the fault signature is hidden

in the noisy signal; particularly the simultaneous pres-

ence of other faults affect the information stream

throughout the complex system. However, even for

relatively small changes in efficiency, as small as

2.5 per cent, the algorithm can effectively detect and

isolate faults in closely linked components.

6 SUMMARY, CONCLUSIONS AND
FUTURE WORK

A syntactic method has been proposed for the detec-

tion of single- and multi-component faults in aircraft

gas turbine engines. The two primary features of this
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Fig. 8 Receiver-operating characteristics of the symbolic identification classifier. From top to
bottom, fault level increases from low!medium!high; left and right panels are fault
detection performance in fan and LPT, respectively, in (possible) presence of fault in
the other

Table 3 Fault detection rates for both FAN and LPT for an allowable false positive rate of 2 per cent

Fan degradation level LPT degradation level

Low (%) Medium (%) High (%) Low (%) Medium (%) High (%)

40 14.35 93.06 95.83 31.48 100.00 100.00
60 57.87 100.00 100.00 46.76 100.00 100.00
80 97.69 100.00 100.00 81.48 100.00 100.00

100 100.00 100.00 100.00 100.00 100.00 100.00
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fault detection method are: (a) symbolic identification

and (b) pseudo-learning. A PFSA model of the process

dynamics is constructed from the input–output data;

the PFSA representation is analogous to a non-linear

system model that is functionally equivalent to a

linear system transfer function. The reported work

is a step towards building a real-time data-driven

tool for estimation of parametric conditions in com-

plex dynamical systems. Scalability may become a

critical issue for this method of fault detection with

increase in number of components and fault levels.

However, a natural way to circumvent this problem is

to perform isolation of a faulty subsystem with a rel-

atively small number of components before detection

of a fault in a particular component [14, 15].

Further theoretical, computational, and experi-

mental work is necessary before this fault detection

tool can be considered for incorporation into the

instrumentation and control system of aircraft

engines. For example, real flight record data and envi-

ronmental condition data need to be incorporated to

investigate the effects of atmospheric temperature

and pressure variations on the fault detection algo-

rithm. The following theoretical topics are currently

under investigation:

(a) development of a multi-dimensional partitioning

for a MIMO system, which should be computa-

tionally inexpensive;

(b) development of a comprehensive sensor fusion

algorithm to handle multiple sensor data simulta-

neously for detection;

(c) estimation of a theoretical bound on the error

incurred in this process of fault detection;

(d) extension of the symbolic identification tech-

nique to incorporate transient engine operations,

i.e. during take-off, climb, or landing;

(e) generation of the health status at the vehicle level

via linguistic methods [35].
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