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Symbolic Dynamic Filtering and Language Measure
for Behavior Identification of Mobile Robots

Goutham Mallapragada, Asok Ray, Fellow, IEEE, and Xin Jin, Student Member, IEEE

Abstract—This paper presents a procedure for behavior iden-
tification of mobile robots, which requires limited or no domain
knowledge of the underlying process. While the features of robot
behavior are extracted by symbolic dynamic filtering of the ob-
served time series, the behavior patterns are classified based on
language measure theory. The behavior identification procedure
has been experimentally validated on a networked robotic test bed
by comparison with commonly used tools, namely, principal com-
ponent analysis for feature extraction and Bayesian risk analysis
for pattern classification.

Index Terms—Feature extraction, language measure, pat-
tern classification, robotic signatures, symbolic dynamic filtering
(SDF).

I. INTRODUCTION

C LASSIFICATION of patterns in the behavior of dynam-
ical systems is critical for multiagent coordination [1].

For example, a robotic platform is often required to make
real-time decisions for target tracking [2]. Such decisions
could be made based on the ensemble of information acquired
from both mobile and stationary sensors on a distributed net-
work. In these applications, it is necessary to rely on sensor
time series because accurate and computationally tractable
modeling of robot dynamics in changing environments may
not be feasible solely based on the fundamental principles
of physics.

Many techniques, which are largely application specific,
have been reported in literature for feature extraction [3]–
[5] and pattern classification [6], [7]. An example is dynamic
Bayesian networks [8] that have been used to identify and
track targets primarily in military applications. Here, the state
machines are hand-coded, and the probabilities are estimated
with expectation–maximization algorithms. Another example
is conventional hidden Markov modeling (HMM) tools that
have been adopted in the context of robotic soccer [9], where
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the states and the structure of HMM are fixed a priori, and
the state transition and observation probabilities are identified
using the Baum–Welch algorithm [10]. Chang and Huang [11]
constructed an HMM to analyze human motions by making
use of the domain knowledge to extract feature vectors. In
contrast, this paper presents feature extraction and pattern
classification for identification of mobile robot type and motion
based on time-series analysis with limited or no requirements
of domain knowledge about the robot kinematics. The pro-
posed pattern classification method has general applicability
and is robust relative to spurious noise and environmental
uncertainties.

Three types of motion (e.g., circular, square, and random)
for two different types of mobile robots (e.g., Pioneer 2AT
and Segway RMP) have been investigated in this paper; they
emulate both structured and unstructured movements of inan-
imate objects (e.g., different types of vehicles) and animate
objects (e.g., human and animals) for pattern analysis from
time-series data of piezoelectric sensors, installed underneath
the laboratory floor, which are representatives of seismic sig-
nals. This research topic is inspired from various real-life
applications of pattern classification. Examples are the fol-
lowing: 1) identification of enemy vehicles and their opera-
tions in air, sea, and ground battlefields [12], and 2) detection
and classification of human and animal movements across
borders [13].

A dynamic data-driven method, called symbolic dynamic
filtering (SDF) [14], has been adopted in this paper for extrac-
tion of robot behavior features. Relying on the probabilistic
finite-state automata (PFSAs) that are constructed from the
observed time series, a coherent procedure is developed to
extract features of robot behavior from the observed time series
and to classify behavior patterns based on the language measure
theory (LMT) [15] from the extracted features. While the theory
of SDF has been reported in the field of anomaly detection with
diverse applications [16], there has been very little work on
SDF-based feature extraction and pattern classification among
multiple classes. Similarly, while LMT has been applied to
optimal decision and control of discrete-event systems [17],
this is the first time that it has been used in the context
of a pattern classification problem. The SDF-based feature
extraction, presented in this paper, is different from that re-
ported in [18] where the reference patterns are similar for
all robot classes, which renders them unsuitable for LMT
pattern classification. This problem is circumvented in the
feature extraction method, developed in this paper, by gener-
ating different reference patterns for individual robot classes,
based on a common data partitioning. From these perspectives,
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the major contributions of this paper are summarized as
follows.

1) Development of a data-driven method for behavior iden-
tification of mobile robots in the following two steps,
which requires limited or no domain knowledge:
a) robust feature extraction from noise-contaminated

sensor time series based on SDF [14];
b) real-time pattern classification based on LMT [15].

2) Experimental validation on a networked robotic test bed
by comparison with commonly used tools of feature
extraction and pattern classification.

This paper is organized in six sections (including the present
section) and an Appendix that reviews the theory of SDF
for construction of feature vectors. Section II lays down a
framework of feature extraction, and Section III presents pat-
tern classification based on the extracted features. Section IV
presents the algorithms to support both Sections II and III.
Section V describes both hardware and software of the exper-
imental apparatus and discusses the experimental results. This
paper is summarized and concluded in Section VI along with
recommendations for future research.

II. FEATURE EXTRACTION FROM TIME SERIES

This section presents a framework of feature extraction from
time series for different classes of robot motion. Let R =
{ρ1, . . . , ρ|R|} be the set of robots, and let each robot execute
one or more of the different motion profiles in the set Φ =
{ϕ1, . . . , ϕ|Φ|}. Let the number of profiles executed by the
robot ρi be ki, and let the indices of the profiles executed
by ρi be denoted as {θi

1, . . . , θ
i
ki
}, i.e., ρi executes profiles

{ϕθi
1
, . . . , ϕθi

ki

}. Thus, the total number of pattern classes

is |Ξ| =
∑

i ki ≤ |R||Φ|. For each class, robots’ behavioral
patterns may vary due to, for example, changes in the payload,
type of drive system, and faults.

A. SDF for Feature Extraction

This section presents SDF-based feature extraction that gen-
erates a unique reference pattern for each robot class from the
respective time series. Details of the SDF theory have been
reported in previous publications [14], [16], [18]. However, for
completeness of this paper, the essential ingredients of SDF are
presented in the Appendix, and the algorithms for SDF-based
feature extraction are listed in Section IV-A. The features of
robot behavior are extracted as state probability vectors of the
PFSAs in the setting of SDF [14]. The performance of SDF-
based feature extraction is compared with that of the principal
component analysis (PCA) [6], [7].

Let Ξ = {ξi, i = 1, 2, . . . , |Ξ|} be defined as a (nonempty
finite) set of pattern classes, where |Ξ| is the cardinality of Ξ
such that 2 ≤ |Ξ| ≤ n and n is the number of PFSA states.
The training data sets for all pattern classes are combined as a
single time series to construct a common partition ℘ for symbol
generation. In the training stage, PFSAs Gi, i = 1, 2, . . . , |Ξ|,
are constructed from the respective symbol sequences based on
the partition ℘. The state probability vector p̄i of each PFSA

Gi is chosen as a pattern. In the sequel, p̄i, i = 1, 2, . . . , |Ξ|,
are called reference patterns.

Let x ∈ R
1×N be a single time series of robot motion data

in the testing stage, where N is the length of the time series.
The goal here is to obtain a feature vector p(x) ∈ R

1×m

that is a low-dimensional representation (i.e., m � N ) of the
data set x.

The salient steps for construction of the patterns (i.e., state
probability vectors of PFSA) for SDF-based feature extraction
are delineated in the following:

1) identification of a set of pattern classes spanning the robot
behavior under different operational scenarios;

2) generation of sets of time series for all pattern classes;
3) generation of a reference partition that is subsequently

used to obtain the unique probability vectors representing
the patterns.

B. PCA for Feature Extraction

Let the training data sets (i.e., time series) of a given robot
class be organized as an (M × N)-dimensional data matrix,
where M is the number of data sets and N is the length of each
(1-D) time series as stated earlier. Let X be the centered version
of the original (M × N) data matrix, where each row of X is an
individual data sample x with zero mean. For M < N (which is
the situation in the robot experiments conducted in this paper),
it is numerically efficient [7] to analyze the (M × M) matrix
(1/M)XXT that has the same nonzero eigenvalues as the
(N × N) computed covariance matrix (1/M)XTX.

Let {vi} be the (normalized) eigenvectors of the real sym-
metric matrix (1/M)XXT corresponding to the (real positive)
eigenvalues {λi} that are arranged in the decreasing order of
magnitude, i.e., λ1 ≥ λ2 ≥ · · · ≥ λM . The smallest integer m
is selected such that

∑m
i=1 λi > η

∑M
i=1 λi, where 1 ≤ m ≤ M

and the threshold parameter η is a real positive fraction close to
one. The corresponding (normalized) eigenvectors ui ∈ R

N in
the original data space are obtained as follows [7]:

ui =
1√

(Mλi)
XTvi, i = 1, 2, . . . , m. (1)

The m eigenvectors obtained from (1) are grouped to form
the (N × m) projection matrix

WPCA
∆= [u1,u2, . . . ,um]. (2)

An (M × m) data matrix Ytrain is generated from the train-
ing data set Xtrain that has a similar structure as X ∈ R

M×N

Ytrain
∆= XtrainWPCA. (3)

Each of the m columns of the matrix Ytrain is considered as a 
feature vector. Subsequently, for pattern classification, a (1 ×
m) reference pattern is defined for each class as

p̄
∆=

1
M

1Ytrain, with  1 ∆= [1 1  · · ·  1] ∈ R1×M        (4)

where (2) and (3), respectively, yield the projection matrix
WPCA and the low-dimensional data matrix Ytrain from the
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training data matrix Xtrain. Similarly, in the testing stage, a
time series xtest ∈ R

1×N yields the (1 × m) feature vector as

p
∆= xtestWPCA. (5)

The algorithms for PCA-based feature extraction are de-
scribed in Section IV-A.

III. PATTERN CLASSIFICATION IN MOBILE ROBOTS

This section presents two methods of online pattern classi-
fication based on the extracted features p(x) that are obtained
from the observed time-series data x by SDF and PCA. The
first method of pattern classification is constructed based on the
measure of formal languages [15] and, thus, is called LMT clas-
sification. Its performance is compared with that of Bayesian
risk analysis (BRA), which is a commonly used tool for pattern
classification [6]. Both pattern classification methods make
use of the extracted features p(x) that are computed online
by either SDF or PCA from the observed time series x (see
algorithms in Section IV-B).

A. LMT for Pattern Classification

The underlying concept of the LMT pattern classification is
built upon signed real measures of formal languages [15] as
an alternative to existing pattern classification tools [6], [7]. In
general, LMT classification is computationally inexpensive be-
cause it is a deterministic method based on orthogonal projec-
tion in a Hilbert space, and LMT does not require identification
of a priori and a posteriori probability distributions.

It is noted that LMT classification is a natural extension of
SDF-based feature extraction because the underlying measure
is directly applied to the language of PFSAs that are generated
from the symbol sequences obtained by partitioning the time se-
ries. In essence, the PFSA constructed from a symbol sequence
acts as a language generator, and a signed real measure of the
language is obtained by assigning a weight to each of the states
of the constructed PFSAs [15]. In this setting, the task of pattern
classification reduces to selection of the state weight vector for
each pattern class, and this decision is based on maximizing the
language measure generated by different pattern classes. The
concept is formally presented hereinafter.

Let a deterministic finite-state automaton (DFSA) be repre-

sented as G
∆= (Q,Σ, δ, qinit, Qm), where Q is the finite set

of states with |Q| = n; qinit ∈ Q is the initial state; Σ is the

(finite) alphabet of symbols, i.e., |Σ| ∈ N1
∆= {1, 2, 3, . . .}; the

Kleene closure of Σ is denoted as Σ� that is the set of all finite-
length symbol strings including the empty string ε (with |ε| =
0); the (possibly partial) function δ : Q × Σ → Q represents
state transitions; δ� : Q × Σ� → Q is an extension of δ; and
Qm ⊆ Q is the set of marked (i.e., accepting) states.

An observed time series is first converted to a symbol
sequence that, in turn, is modeled as a PFSA. This PFSA
is a DFSA augmented by a state weight vector and symbol
generation probabilities [15] as described hereinafter.

Definition 1: The state weight vector χ :Q→ [−1, 1] assigns
a signed real weight to each state qi, i=1, 2, . . . , n such that

relatively more positive weights are assigned to relatively more
desirable states. The (1×n) state weight vector is defined as

χ = [χ1 χ2 · · · χn] where χj
∆= χ(qj). (6)

Definition 2: The symbol generation probabilities are spec-
ified as π̄ : Σ� × Q → [0, 1] such that ∀qj ∈ Q, ∀σk ∈ Σ, and
∀s ∈ Σ�, the following statements are true, respectively.

1) π̃[σk, qj ]
∆= π̃jk ∈ [0, 1], and

∑
k π̃jk = 1.

2) π̃[σk, qj ] = 0 if δ(qj , σk) is undefined, and π̃[ε, qj ] = 1.
3) π̃[σks, qj ] = π̃[σk, qj ]π̃[s, δ(qj , σk)].

Elements of the Π̃ matrix are defined as Π̃jk
∆= π̃(qj , σk),

where qj ∈ Q and σk ∈ Σ.
Remark 1: The Π̃ matrix is analogous to the morph matrix

of a Markov chain in the sense that an element π̃ij represents
the probability of the jth symbol occurring at the ith state.

Definition 3: The probabilistic state transition map of the
PFSA is defined as a function π : Q × Q → [0, 1] such that

π(qj , qk)

=




0, if {σ∈Σ:δ(qj , σ)=qk}=∅∑
σ∈Σ:δ(qj ,σ)=qk

π̃(σ, qj)
∆=πjk, otherwise.

(7)

The Π matrix is defined as Πij = π(qj , qk), where qj , qk ∈ Q.
Remark 2: The Π matrix is the state transition probability

matrix of an irreducible Markov chain in the sense that an
element πjk is the transition probability from state qj to state
qk. The language generated by the PFSA under consideration
is a sublanguage of the Kleene closure Σ∗ of the alphabet Σ. In
the SDF setting, (quasi-)stationarity of time series implies that
the associated DFSA is independent of the initial state qinit ∈ Q
and every state is a marked state, i.e., Qm = Q. Therefore, the
resulting PFSA could be represented as a 4-tuple (Q,Σ,Π,χ).

Definition 4: (Language Measure [15]): A measure of the
generated language of a PFSA with respect to a given state
weight vector is defined as

ν̄(θ) = θ [I − (1 − θ)Π]−1 χT (8)

where the scalar parameter θ ∈ (0, 1) ensures invertibility of the
matrix on the right-hand side of (8) and implies a terminating
automaton. As θ → 0+, the terminating automaton converges
to a nonterminating automaton [15].

Proposition 1: Following Definition 4, the limiting measure

vector ν̄(0) ∆= limθ→0+ ν̄(θ) exists and ‖ν̄(0)‖∞ ≤ 1.
Proof: See [15]. �

Proposition 2 (Scalar Measure [15]): Given a primitive (i.e.,
irreducible and acyclic) state transition matrix Π, the measure
vector in Definition 8 is given by the expression ν̄(0) = ν1,

where 1 ∆=[1 1 · · · 1]T. Then, the scalar measure ν is denoted as

ν = pχT or ν = χpT (9)

where p is the (1 × n) state probability vector which is the
(sum-normalized) left eigenvector of Π corresponding to its
unique unity eigenvalue [19]. (Note that each element of p is
strictly positive due to irreducibility of Π.)
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Proof: See [15]. �
Now, the language measure classifier is synthesized by com-

puting a state weight vector χ for each pattern class ξi ∈ Ξ from
the respective (1 × n) reference probability vector {p̄i, i =
1, . . . , |Ξ|}. Given the reference patterns p̄i’s, let

Hi
∆=

[
p̄T

1 · · · p̄T
i−1p̄

T
i+1 · · · p̄T

|Ξ|

]
. (10)

Corresponding to each pattern ξi, the state weight vector χi

is assigned as

χi
∆= p̄i

[
I −Hi

(
HT

i Hi

)−1 HT
i

]
. (11)

Remark 3: The n × (|Ξ| − 1) matrix Hi in (10) has rank
(|Ξ| − 1) because the (1 × n) reference probability vectors p̄i’s
are linearly independent and |Ξ| � n (see Section II-A). There-
fore, the (|Ξ| − 1) × (|Ξ| − 1) matrix (HT

i Hi) is invertible.
The state weight χi in (11) is also interpreted based on

the concept of parity space [20]. In this setting, the projection
matrix [I −Hi(HT

i Hi)−1HT
i ] in (11) is expressed as

V T
i Vi =

[
I −Hi(HT

i Hi)−1HT
i

]
(12)

where Vi is known as the (n − |Ξ| + 1) × n parity matrix for
the pattern class ξi and Vip

T is the corresponding (n − |Ξ| +
1) × 1 parity vector for a time-series data set that generates the
stationary probability vector p.

Let ψi
∆= Vip̄

T
i and φi

∆= Vip
T be the ((|Ξ| − 1) × 1) parity

vectors for the reference probability vector p̄i and the observed
probability vector p, respectively. Then, the inner product is
computed as

〈ψi, φi〉 = ψT
i φi = p̄iV

T
i Vip

T. (13)

Following (11) and (12), the state weights are assigned as

χi = p̄iV
T
i Vi, i = 1, . . . , |Ξ| (14)

and a combination of (14) and (13) yields

〈ψi, φi〉 = χip
T = pχT

i . (15)

Equivalently, the inner product 〈ψi, φi〉 is the same as the
language-theoretic measure defined in (9).

The magnitude ‖Vip
T‖ of the parity vector determines

whether p belongs to the pattern class ξi. Following the concept
of orthogonal projection related to the parity space, it follows
that ‖Vip

T‖ is large if p = p̄i is correct, i.e., ξi is the correct
pattern, and that ‖Vip

T‖ is small if p = p̄i is incorrect, i.e., ξi

is an incorrect pattern.
Let p be the stationary (1 × n) state probability vector of

the PFSA constructed from an observed time series that is
symbolized by using a given partition ℘. Then, the decision
for pattern classification is made by maximizing the (scalar)
language measure (9) in terms of the state weight vector χi

in (11) as

d� = arg max
i

pχT
i . (16)

Remark 4: It follows from (10) and (11) that the state
weight vectors χi, i = 1, 2, . . . , |Ξ|, can be assigned in terms
of the precomputed features (i.e., reference patterns) p̄j , j =

1, . . . , |Ξ|. Therefore, the execution time of (16) for making an
online decision is very small.

B. BRA for Pattern Classification

This section presents BRA classification of robot behavior
patterns. The set {ξ1, ξ2, . . . , ξ|Ξ|} of pattern classes is selected
as the image of identity mapping from the set {d1, d2, . . . , d|Ξ|}
of decisions. The objective is to autonomously identify the
behavior patterns (e.g., type, payload, and the kind of motion)
of mobile robots, in which respective partitions are gener-
ated for a priori determined classes of behavioral patterns.
In the sequel, it is shown how the pattern vectors identify
the robot type (e.g., Segway RMP or Pioneer 2AT) and mo-
tion profile (e.g., random motion, circular motion, or square
motion).

Let x be a time series that truly belongs to the pattern class ξj

for some j ∈ {1, . . . , |Ξ|}. The following definition formalizes
the notion of (nonnegative real) deviation measure of a decision
di, i ∈ {1, . . . , |Ξ|}.

Definition 5: Given a time series x whose true pattern is ξj ,
the deviation measure mij(x) of the decision di is defined in
terms of the respective pattern pj(x) and the reference pattern
p̄i as

mij(x) ∆= Θ
(
p̄i,pj(x)

)
(17)

where Θ(•, •) is a distance function that can be selected
as a norm of the difference between the pattern vectors p̄i

and pj(x).
Due to noise and uncertainties prevalent in both the phys-

ical process and sensing devices, it is reasonable to treat the
time series x as a random vector. It follows from (17) that
the deviation measure mij compresses the random vector x
as a (scalar) random variable and that mij(x) would not be
identically equal to zero in the almost sure sense, regardless
of whether the decision di is correct or not. Nevertheless, it
is expected that mij(x) would be relatively small if di is the
correct decision, i.e., if i = j.

Let Mij(x) denote the random variable associated with the
deviation measure mij(x) for a time series x for the decision di

(i.e., x belonging to the pattern class ξi), while x truly belongs
to the jth pattern class ξj . Then, realization of Mij(x) is the
nonnegative real mij(x) in (17). Hence, for each pattern class
ξi, there could be decisions di, i = 1, 2, . . . , |Ξ|, that give rise
to realizations of Mij(x), i, j = 1, 2, . . . , |Ξ|, as mij(x), and
there would be a total of |Ξ| × |Ξ| = |Ξ|2 random variables
Mij . In the sequel, the probability distribution of Mij is
denoted as pMij

.
Let P [x|ξi, dj ] be the a priori probability distribution of

the random vector x conditioned on the true pattern ξj and
the decision di of choosing the reference probability vector p̄i

that represents the pattern ξi. The next task is to identify an a
priori probability distribution P [x|ξi, dj ] for each pair (ξi, dj)
by statistically (e.g., in the χ2 sense) fitting the observed data
of Mij(x) at an allowable significance level, i.e.,

P [x|ξj , di] ≈ pMij
(mij(x)) (18)
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and the a posteriori probabilities are given by

P [ξj |x, di] =
P [x|ξj , di]P [ξj |di]

P [x|di]
. (19)

Equation (19) is expressed in a different form as

P [ξj |x, di] =
P [x|ξj , di]P [ξj ]∑
k P [x|ξk, di]P [ξk]

(20)

based on the following two assumptions.
1) The pattern classes ξj’s form a mutually exclusive and ex-

haustive set. It follows from the total probability theorem
that

P [x|di] =
∑

k

P [x|ξk, di]P [ξk|di].

2) The prior probability of a pattern ξj is independent of the
process of making the decision di, i.e.,

P [ξj |di] = P [ξj ].

Substitution of (18) in (20) yields

P [ξj |x, di] ≈
pMij

(mij(x)) P [ξj ]∑
k pMik

(mij(x)) P [ξk]
. (21)

Let the risk of making a decision di when truly the pattern
class is ξj be specified as λij . Then, the total risk of making a
decision di becomes [6]

R(di|x) =
|Ξ|∑
j=1

λijP (ξj |x, di) (22)

and the decision on pattern identification is made by minimiz-
ing the risk in (22) as

d� = arg min
i

R(di|x). (23)

The following assumptions could be made in the absence of
any specific information on P [ξj ] in (21) and λij in (22):

1) uniform probability of the prior probabilities of oc-
currence of the pattern classes ξj’s, i.e., P [ξj ] =
(1/|Ξ|) ∀j ∈ {1, . . . , |Ξ|};

2) uniform nonzero risk for all wrong decisions and zero
risk for correct decisions, i.e., λij = 1 − δij , where δij ={

1, if i = j
0, if i �= j

is the Kronecker-delta function.

With the aforementioned choices of λij’s and P [ξj ]’s, risk
minimization in (23) is equivalent to having the maximum
likelihood estimate of the pattern class as

arg max
i

(P [x|di, ξi]) = arg max
i

(pMii
(mij(x)) . (24)

Assuming that the prior probabilities for all ξj’s are equal,
(21) reduces to

P [ξj |x, di] =
pMij

(mij(x))∑
k pMik

(mij(x))
. (25)

The risk of of making decision di when the true hypothesis
is ξj is chosen as λij = (1 − δij). With this choice of the risk

parameters, the total risk of making the decision di given by
(22) becomes

R(di|x) =
∑
j �=i

P (ξj |x, di). (26)

IV. ALGORITHMS FOR BEHAVIOR IDENTIFICATION

This section lists the algorithms for both feature extraction
and pattern classification from the time series of robot classes.

A. Feature Extraction Algorithms: SDF and PCA

For SDF feature extraction (see Section II-A), the parti-
tioning ℘ is constructed by combining training data sets of
all robot classes, followed by generation of reference pattern
vectors p̄j , j = 1, . . . , |Ξ|, belonging to each pattern class ξj .
Algorithm 1 describes the SDF procedure to construct a feature
vector from time series, which makes use of Algorithm 2 for
maximum entropy partitioning (MEP) [16], [21]. In this way,
a single common partition ℘ and the reference patterns are
constructed from the training data. Similarly, for PCA feature
extraction (see Section II-B), the procedure first generates a
projection matrix Wj

PCA for each pattern class j = 1, . . . , |Ξ|
and then obtains the respective reference pattern vectors p̄j’s.
Algorithm 3 describes the procedure.

Algorithm 1: SDF for feature extraction

Input: Time-series data xj , j = 1, 2, . . . , |Ξ|
Output: Reference probability vectors p̄j , j = 1, . . . , |Ξ|,

and the common partitioning ℘
1: x = ∅
2: for j = 1 to |Ξ| do
3: x = x

⋃
xj

4: end for
5: Partition x using Algorithm 2 to obtain the common

partition vector ℘
6: for j = 1 to |Ξ| do
7: Partition xj using ℘ to obtain the symbol sequence s
8: Construct PFSA G using s
9: Compute reference probability vector p̄j for G

10: end for

Algorithm 2: MEP

Input: Time-series data x, number of symbols |Σ|
Output: Partitioning ℘
1: Sort x in ascending order
2: Let K = length(x)
3: ℘(1) = x(1), i.e., the minimum element of x
4: for i = 2 to |Σ| do
5: ℘(i) = x (ceil(i − 1) ∗ K/|Σ|))
6: end for
7: ℘(|Σ| + 1) = x(K); maximum of x
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Algorithm 3: PCA for feature extraction

Input: Training time-series data sets Xj ∈ R
Mj×Nj

, j =
1, 2, . . . , |Ξ|, tolerance η ∈ (0, 1)

Output: Reference patterns {p̄j} and the projection matrices

{Wj
PCA}

1: Find the minimum sample size M = min(M1,M2, . . . ,
M |Ξ|)

2: Find the minimum time-series length N = min(N1, N2,
. . . , N |Ξ|)

3: for j = 1 to |Ξ| do
4: for � = 1 to M j do
5: Obtain the training data xj

� as the �th row of the
matrix Xj

6: Remove the DC component of xj
� , i.e., xj

� ←
(xj

� − x̄j
�)

7: end for
8: Generate the (M j × N) training data matrix Xj

train =
[xj

1, . . . ,x
j
Mj ]

9: the covariance matrix Sj = (1/M j)(Xj
train)TXj

train

10: Compute the (normalized) eigenvectors {vj
i } of Sj

with their corresponding eigenvalues {λj
i} in the de-

creasing order of magnitude
11: Compute the normalized eigenvectors uj

i = (1/√
M jλj

i )(X
j
train)Tvj

i

12: Find the smallest mj ≤ M such that
∑mj

i=1 λj
i >

η
∑Mj

i=1 λj
i

13: end for
14: Compute the feature space dimension m = max(m1,

m2, . . . ,m|Ξ|)
15: for j = 1 to |Ξ| do

16: Construct (N × m) projection matrices Wj
PCA

∆= [uj
1,

uj
2, . . . ,u

j
m]

17: Construct (M j × m) data matrices Yj
train

∆=
Xj

trainW
j
PCA

18: Generate (1 × m) reference patterns p̄j =

(1/M j)1Y j
train, where 1 ∆= [1 1 · · · 1] ∈ R

1×Mj

19: end for

B. Pattern Classification Algorithms: LMT and BRA

For LMT classification based on SDF feature extraction,
Algorithm 4 presents the procedure of computing the state
weight vectors, where the inputs are reference pattern vectors
p̄j , j = 1, 2, . . . , |Ξ|, generated by Algorithm 1. This informa-
tion is used as inputs in Algorithm 6 to generate the decision d�

for LMT classification. The decision is made by maximizing
the language measure in line 7 of Algorithm 7 that is executed
online.

For BRA classification based on SDF feature extraction,
Algorithm 5 estimates the probability densities pMij

’s. With
these estimated pMij

’s as inputs, Algorithm 7 performs BRA
classification of patterns. In the event of a correct decision, the

generated pattern vector should be very close to the chosen
reference pattern, implying that the deviation measure is very
small in (17). The a posteriori probabilities and the Bayes risk
functions are then computed from pMij

(mij) via (21) and (22),
respectively, as shown in lines 10–12 of Algorithm 7 that is
executed online. The decision d� is to minimize the risk in
line 14 of Algorithm 7.

For LMT classification based on PCA feature extraction, Al-
gorithm 9 computes the language measures νj , j = 1, . . . , |Ξ|,
in line 4, where the inputs are the projection matrices {Wj

PCA}
generated by Algorithm 3 and the state weights {χi} generated
by Algorithm 4. This information is used as inputs to make
the decision d� for LMT classification by maximizing the
language measure in line 6 of Algorithm 8 that is executed
online.

For BRA classification based on PCA feature extraction,
Algorithm 9 first computes the feature vectors {pi} and their
deviation measures {mij} from the reference vectors {p̄j}.
Then, the probability densities pMij

(•) are estimated by Al-
gorithm 5. With these estimated probability densities as inputs,
Algorithm 9 performs BRA classification of patterns similar to
what is done in Algorithm 7.

In all cases of pattern classification (i.e., Algorithms 6, 7,
8, and 9), the pattern vector index for the identified decision
d� is converted into the corresponding indices of the robot i
and the movement profile θi

� (see the beginning of Section II).
Upon arriving at the classification decision d�, the information
on the robot ρi and its motion profile ϕθi

�
is retrieved as

follows.

1) Compute the cumulative sequence {0, k1, k1 + k2, . . . ,∑i=|R|
i=1 ki} to form the new sequence {N0, N1, N2,

. . . , N|R|} from the sequence {k1, k2, . . . , k|R|}.
2) Find i such that Ni−1 < d� ≤ Ni and � = Ni − d�.
3) Conclude that the robot ρi has executed the ϕθi

�

profile.

Algorithm 4: Computation of state weights for LMT
classification

Input: reference pattern vectors p̄i, i = 1, 2, . . . , |Ξ|
Output: state weight vectors {χi}

1: for i = 1 to |Ξ| do
2: Compute Hi = [p̄T

1 · · · p̄T
i−1p̄

T
i+1 · · · p̄T

|Ξ|] [See (10)]

3: Compute χi = p̄i[I −Hi(HT
i Hi)−1HT

i ] [See (11)]
4: end for

Algorithm 5: Probability density estimation for BRA
classification

Input: Time-series data sets, common partitioning ℘, and #
of sample data sets Lj , j = 1, . . . , |Ξ|

Output: Probability densities pMij
(•) ∀ i, j = 1, . . . , |Ξ|

1: for j = 1 to |Ξ| do
2: for � = 1 to Lj do
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3: Collect time-series data x�
j

4: for i = 1 to |Ξ| do
5: Partition x�

j using ℘ to obtain symbol sequence s
6: Construct PFSA G using s
7: Compute state probability vector pj for G

8: Compute deviation measure m�
ij = Θ(pj , p̄i)

9: end for
10: end for
11: end for
12: From realizations {m1

ij , . . . ,m
Lj

ij } estimate the probabil-
ity density for pMij

(•) ∀ i, j = 1, . . . , |Ξ|

Algorithm 6: Decision making for LMT classification using
SDF

Input: Time series x, partitioning ℘, state weight vectors χi,
i = 1, . . . , |Ξ|

Output: Identified pattern i.e., decision d�

1: Partition x using ℘ to generate symbol sequence s
2: Construct PFSA using s
3: Compute state probability vector pj� for G, where j�

corresponds to the unknown pattern ξj� that is yet to be
identified

4: for i = 1 to |Ξ| do
5: Compute the language measure νi = pj�χT

i

6: end for
7: Compute d� = arg maxi νi

Algorithm 7: Decision making for BRA classification using
SDF

Input: Time series x, reference patterns p̄j , j = 1, . . . , |Ξ|,
common partitioning ℘, and density estimates pMij

,
i, j = 1, . . . , |Ξ|

Output: Identified pattern, i.e., decision d�

1: Partition x using ℘ to generate symbol sequence s
2: Construct PFSA G using s
3: Compute state probability vector pj� for G, where j�

corresponds to the unknown pattern ξj� that is yet to be
identified

4: for i = 1 to |Ξ| do
5: Compute the deviation measure mij� = Θ(pj� , p̄i)
6: for j = 1 to |Ξ| do
7: Compute P [x|di, ξj ] as pMij

(mij�(x)) [see (18)]
8: end for
9: for j = 1 to |Ξ| do

10: Compute P [ξj |x, di] using (21)
11: end for
12: Compute the Bayes risk R(x|di) using (22)
13: end for
14: Compute d� = arg mini R(x|di)

Algorithm 8: Decision making for LMT classification using
PCA

Input: Time series x, projection matrices Wj
PCA, j = 1,

. . . , |Ξ|, and state weight vectors χj , j = 1, . . . , |Ξ|
Output: Identified pattern i.e., decision d�

1: Remove the DC component of x, i.e., x ← (x − x̄)
2: for i = 1 to |Ξ| do
3: Compute (1 × m) feature vectors pi = xWi

PCA

4: Compute the language measure νi = piχ
T
i

5: end for
6: Compute d� = arg maxi νi

Algorithm 9: Decision making for BRA classification using
PCA

Input: Time series x, reference patterns p̄jj = 1, . . . , |Ξ|,
projection matrices Wj

PCA, j = 1, . . . , |Ξ|, and density
estimates pMij

, i, j = 1, . . . , |Ξ|
Output: Identified pattern, i.e., decision d�

1: Remove the DC component of x, i.e., x ← (x − x̄)
2: for i = 1 to |Ξ| do
3: (1 × m) feature vectors pi = xWi

PCA

4: for j = 1 to |Ξ| do
5: Compute the deviation measure mij = Θ(pi, p̄j)
6: Compute P [x|di, ξj ] as pMij

(mij(x)) [see (18)]
7: end for
8: for j = 1 to |Ξ| do
9: Compute P [ξj |x, di] using (21)

10: end for
11: Compute the Bayes risk R(x|di) using (22)
12: end for
13: Compute d� = arg mini R(x|di)

V. EXPERIMENTAL RESULTS AND DISCUSSION

This section describes the experimental procedure and vali-
dation of the feature extraction and pattern classification meth-
ods based on the experimental results. The objective here is
to identify the statistical patterns of robot behavior, which
include both parametric and nonparametric uncertainties such
as follows:

1) small variations in the robot mass that includes unloaded
base weights of the platform itself and its payload;

2) uncertainties in friction coefficients for robot traction;
3) fluctuations in the robot motion due to small delays in

commands due to communication delays and compu-
tational delays particularly if the processor is heavily
loaded;

4) sensor uncertainties due to random noise in the A/D
channels of the microprocessor.

A family of patterns is generated for behavior recognition of
each of the robot classes. Each member of a family represents
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TABLE I
PARAMETERS USED FOR VARIOUS TYPES OF MOTION

the pattern measure of a single experiment of one robot exe-
cuting a particular motion profile. As a robot changes its type
of motion from one (e.g., circular) to another (e.g., square),
the pattern classification algorithm is shown to be capable
of detecting this change after reaching a (statistically quasi-
stationary) steady state. During the brief transient period, the
pattern classification is not applicable as the resulting time
series is not likely to be sufficiently long and statistically
stationary for accurate feature extraction.

The Segway RMP and Pioneer 2AT robots are commanded
to execute three different motion trajectories, namely, random
motion, circular motion, and square motion. Both robots were
made to execute each of the three different types of trajectories
on a pressure-sensitive floor of the laboratory environment
for about an hour. The voltage generated by the piezoelectric
pressure sensors, embedded under the floor, is converted to a
digital signal by using a 10-b A/D converter over the range
of 0–5 V to generate readings in the range of 0–1023. The
data from the 144 sensors in the (9 × 16) grid floor were
collected at the sampling rate of approximately 10 Hz. The
144 readings were stacked row-wise to create a 1-D array of
length 144. This configuration facilitates identification of the
type of robot and its motion profile, but not its exact location.
A total of approximately 1440 points per second are collected
for an hour to create a sufficiently long 1-D time-series data
set. This procedure was repeated to collect six data sets for two
different robots executing each of the three different motion
behaviors. It is assumed that, during the execution of each
motion, the statistical behavior of the robot is stationary and
does not switch behaviors in between.

Since the robot movements influence those sensors that
surround its location, only a few sensors generate significantly
higher readings than the remaining sensors. A simple back-
ground subtraction was used to eliminate the readings from
sensors away from the robot’s location. Since the spatial dis-
tribution of the pressure-sensitive coils underneath the floor is
statistically homogenous, the decisions on detection of robot
behavior patterns are assumed to be statistically independent
of the robot location (e.g., center of the circle, center and
orientation of the square, and mean of the distribution for
random motion). Table I lists the parameters for the three types
of robot motion.

For the two types of robots and three types of motion, a
total of six different behavior patterns are defined. The data
sets for each of the six pattern classes are collected and
processed to create the respective reference probability vectors
p̄i, i ∈ 1, . . . , |Ξ|, where |Ξ| = 6. The statistics of a particular
type of a robot and its motion with different parameters (e.g.,
Segway robot’s circular motion of two different diameters)
should be statistically identical. However, in reality, some
differences are expected due to statistical inhomogeneity of

the sensor field layout, imperfection in robot motion due to
kinematic constraints, and finite length of the available time-
series data.

For all cases considered in this paper, the following options
have been used in the SDF procedure for construction of
D-Markov machines.

1) Partitioning method parameters: For the Hilbert-
transform-based analytical signal space partitioning
(ASSP) [21] (see also the Appendix), # of radial direction
cells |ΣR| = 3 and # of angular direction cells |ΣA| = 4;
the alphabet size |Σ| = |ΣR| · · · |ΣA| = 12. In this paper,
MEP has been used for both radial and angular direc-
tions. Uniform probability distribution of the partitioning
blocks is a consequence of MEP, where the time series
is partitioned such that the regions with more information
are partitioned finer and those with sparse information are
partitioned coarser [22]; conceptually, MEP serves as a
nonlinear discriminant that is effective for separation of
pattern classes.

2) D-Markov machine parameters: With the alphabet size
|Σ| = 12 and depth D = 1, the number of PFSA states
n = |Σ|D = 12.

3) Distance function for computation of deviation measure:
Standard Euclidean norm of the difference between the
pair of patterns. Since the space of pattern vectors is finite
dimensional, all norms are topologically equivalent, and
any other norm could have been used [14].

The aforementioned combination of the parameters |Σ| and
D is found to be adequate in this application to successfully
recognize all six behavioral patterns with only eight states
and was computationally very fast in the sense that the code
execution time is orders of magnitude smaller than the process
response time. Further increase of the alphabet size |Σ| did not
provide any noticeable improvement in the results because a
finer partitioning did not generate any significant new infor-
mation. Increasing the value of D beyond one was also found
to be ineffective, which increases the number of states of the
finite-state automaton, many of them having near-zero or zero
probabilities, and requires a larger data set for computational
convergence of the state probability vectors.

The efficacy of SDF for feature extraction is evaluated
by comparison with PCA. The PCA method, described in
Algorithm 3 in Section IV, is implemented to identify the
eigendirections of the time-series data sets and to obtain the
orthogonal linear operators that project the time series onto a
low-dimensional compressed feature space; the feature space
dimension m = 8 is obtained for the threshold parameter η ≥
0.9 that satisfies all six classes (see Algorithm 3).

A. Generation of Statistical Patterns

A set of L = 50 experiments was conducted and exhaustively
divided into half training and half testing. This section describes
the procedure for generation of statistical patterns for both LMT
and BRA classifiers.

1) Language measure: As shown in Algorithms 6 and 8, the
LMT classifier is deterministic and does not need any



MALLAPRAGADA et al.: SDF AND LANGUAGE MEASURE FOR BEHAVIOR IDENTIFICATION OF MOBILE ROBOTS 655

Fig. 1. Typical probability histograms of Mij and their lognormal fits.

statistical computation. It acts directly upon the patterns
provided by the feature extractor that could be either SDF
(see Algorithm 1) or PCA (see Algorithm 3).

2) BRA classifier: A set of L = 50 experiments was con-
ducted to generate an ensemble of realizations for each
of these random variables. To compute a realization
m�

ij , where � ∈ {1 · · ·L}, the following procedure is
adopted.
a) Partition the �th data set for pattern j using the parti-

tion vector ℘.
b) Construct a D-Markov machine (of state cardinality

less than or equal to |Σ|D) for each generated symbol
sequence, and compute the state probability vector pj .

c) Compute the realization m�
ij as the distance between

pj and reference probability vector p̄i.
Thus, an ensemble consisting of L = 50 realizations

{m1
ij , . . . ,m

L
ij} is created for each Mij . A two-parameter

lognormal distribution was hypothesized for each Mij . The ra-
tionale for selecting lognormal distribution of Mij , as opposed
to other distributions (e.g., Weibull), is stated as follows.

1) The fact that the lognormal distribution is one directional
on the position axis is consistent with the deviation mea-
sure Θ that is nonnegative [see (17)].

2) For a sample data set using the correct reference prob-
ability vector, the probability of the deviation measure
being extremely close to zero is very small, but it is very
likely to have a relatively large positive value for a cer-
tain range and then gradually decreases as the deviation
measure increases. This is easily modeled by a lognormal
distribution.

3) Since the random variable �n(Mij) is Gaussian,
many standard statistical tools are available for data
analysis.

Each lognormal distribution satisfied the 10% significance
level which suffices for the conventional standard of 5% signif-
icance level. Fig. 1 shows four typical histograms of Mij (out
of a total of 36). The goodness of fit of these histograms evinces
that the lognormal distribution is an adequate approximation for
the statistics of Mij .

B. Performance Comparison

Table II presents the confusion matrices [23] to compare
the performance of feature extraction (i.e., SDF and PCA)
and pattern classification (i.e., LMT and BRA) algorithms for
identification of both robot type and motion profile. The left
column in Table II shows the confusion matrices for SDF-based
feature extraction and LMT/BRA classification with LMT at
the top left and BRA at the bottom left. The right column in
Table II shows the confusion matrices for PCA-based feature
extraction and LMT/BRA classification with LMT at the top
right and BRA at the bottom right. The diagonal blocks shaded
in both light and dark gray in all four blocks in Table II
represent test samples with correct robot-type classification,
while the diagonal elements shaded only in dark gray represent
the test samples with correct motion classification. Table III
summarizes the results of classification accuracy of the robot
type and motion profile. Table IV presents a comparison of
the computation time for SDF and PCA feature extraction
(in both training and testing stages) and for LMT and BRA
pattern classification, when these two classifiers are used in
conjunction with either SDF or PCA feature extraction. The
amount of computation time required for the feature extraction
is relatively large. This is particularly true for SDF due to
symbolization of data sequences and construction of PFSA. The
following statements are noted: 1) LMT is an order of magni-
tude faster than BRA for pattern classification, when operating
in conjunction with either SDF or PCA feature extraction, and
2) PCA is faster than SDF in both training and testing stages at
the cost of significantly lower performance for classification of
robot motion patterns.

The lower performance of PCA can be attributed to the
fact that principal components (i.e., eigenvectors with largest
eigenvalues) may not be the best discriminating features when
pattern classes are close to each other in the feature space. It
also explains why PCA performs better in classifying robot
type, where pattern classes are relatively far apart; however,
PCA performs significantly worse when classifying different
motion profiles for a robot, where pattern classes are close
together. Another possible reason for relatively superior per-
formance of SDF is the MEP (see Algorithm 2 in Section IV)
that induces a nonlinear discriminant for class separation,
whereas PCA is a linear operation on the covariance matrix
that separates the space of eigenvectors based on their re-
spective eigenvalues. The results of comparison of the feature
extraction and pattern classification methods are summarized as
follows.

1) The feature extraction performance of PCA is close to
that of SDF in robot-type classification for both LMT
and BRA classifiers. However, SDF outperforms PCA in
motion classification in both cases of LMT and BRA.

2) The performances of both LMT and BRA classifiers are
comparable for both types of feature extraction, with
BRA being modestly superior. However, the LMT clas-
sifier is significantly simpler in terms of computational
complexity, as shown by inspection of the algorithms
in Section IV. This computational advantage accrues
from the fact that the LMT classifier does not require
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TABLE II
CONFUSION MATRICES OF ROBOT BEHAVIOR RECOGNITION WITH SDF/PCA FEATURE EXTRACTION AND LMT/BRA CLASSIFICATION

TABLE III
COMPARISON OF THE CLASSIFICATION ACCURACY BY USING SDF/PCA

FEATURE EXTRACTION AND LMT/BRA CLASSIFICATION

TABLE IV
COMPUTATION TIME FOR EXECUTION OF THE ALGORITHMS

(25 × 6 TRAINING SAMPLES AND 25 × 6 TESTING SAMPLES)

estimation of the probability density functions for the
random variables Mij’s (see Section III-B).

VI. SUMMARY, CONCLUSION, AND FUTURE WORK

This paper has presented a dynamic data-driven method for
identification of behavior patterns in autonomous agents such
as mobile robots. The proposed method utilizes SDF [14] to
model the statistical behavior patterns of mobile robots that,
in turn, serve as extracted features for classification of robot
behavior patterns (e.g., the type of robot and the kind of robot
motion) in real time. The decision of pattern classification is
based on time-series data collected from an array of sensors on
a pressure-sensitive floor, over which the mobile robots make
movements. The SDF-based feature extraction method has the
following distinct properties in contrast to standard feature
extraction tools (e.g., PCA) [6], [7].

1) Fully automated pattern identification in the symbol
space via coarse graining of the transformed time series.

This property allows usage of relatively low-precision
and inexpensive commercially available sensors.

2) Robustness to parametric and nonparametric uncertain-
ties due to, for example, phase distortion and imprecise
initial conditions.

3) Insensitivity to environmental and spurious disturbances
due to the inherent noise suppression capability of
SDF [14].

Upon extraction of the robot behavior features, based on
SDF and PCA, an LMT method [15] of pattern classification is
investigated by comparison with BRA [6]. These two methods
of pattern classification have been experimentally evaluated on
a networked robotic test bed to identify the type and motion
profile of the robots under consideration. Their detection per-
formance is comparable (with BRA being marginally superior
to LMT) for identification of both robot type and motion profile
if SDF-based feature extraction is adopted; however, LMT
classification is computationally significantly faster than BRA
classification. The rationale is that the LMT classification is
deterministic and does not require estimation of probability
distributions of the random variables. The performance of PCA
as a feature extractor is found to be inferior to that of SDF
when used for classification of robot type and is much worse
for classification of robot motion.

Further theoretical and experimental research is needed be-
fore its implementation beyond the laboratory environment.
Topics of future research include the following.

1) Comparison of SDF with other existing feature extraction
tools for robot behavior identification under different op-
erating (e.g., change of payload) and environmental (e.g.,
change of terrain) conditions: Performance evaluation of
SDF has been reported for other applications such as
fatigue damage detection and nonlinear active electronic
systems [24] for different operating conditions. Similar
investigation is needed for robot behavior identification.

2) Behavior identification of multiple robots simultaneously
operating in a dynamic environment: This scenario poses
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a challenging problem because the time-series data are
intermingled and signal separation becomes very dif-
ficult, particularly in real time. A possible solution to
circumvent this problem is spatial localization of data by
noting the initial positions and keeping track of the robot
motion throughout the operation.

3) Learning and pattern discovery from time series: The
pattern classification method, presented in this paper,
makes online decisions on a priori determined classes of
robot type and motion. It does not address discovery of
new pattern classes (i.e., encountering a new type of robot
or an unknown motion profile). Future research should
address the research problems in learning and pattern
discovery, which are important in different applications
such as autonomy of multivehicle operation in changing
environments. This research should also explore alter-
native methods of pattern classification such as additive
support vector machines [25] that combine the simplicity
and transparency/interpretability of linear classifiers with
the generalizing performance of nonlinear models.

4) Augmentation of data-driven analysis with model-based
information: If the domain knowledge is available for dy-
namic models of robot motion and the flexible pressure-
sensitive floor, integration of the model-based and data-
driven information would improve the performance of
pattern classification.

APPENDIX

SDF

This appendix succinctly reviews the theory and salient prop-
erties of SDF based on the previous work that has been reported
in recent literature [14], [21], [22], [24]. The core concept
of SDF is built upon the fundamental principles of symbolic
dynamics, finite-state automata, and pattern recognition.

Symbol sequence generation from time series is an essential
ingredient of SDF, where the length of the time series is
determined based on a stopping rule [26]. A data sequence (e.g.,
time series) is converted to a symbol sequence by partitioning
into finitely many discrete cells, Φ1,Φ2, . . . ,Φm. These cells
form an exhaustive and mutually exclusive set, i.e.,

|Σ|⋃
j=1

Φj = Ω and Φj

⋂
Φk = ∅ ∀j �= k. (27)

Each cell is labeled as a symbol σ ∈ Σ, where the symbol
set Σ is called the alphabet, consisting of different symbols such
as the alphabet cardinality |Σ|. If a data point falls in a particular
partitioning cell, then it is assigned the corresponding symbol
of that cell; thus, the data sequence is transformed into a symbol
sequence in this manner.

A. ASSP

Several partitioning techniques have been reported in litera-
ture for symbol generation; examples are symbolic false nearest
neighbor [27] and wavelet space partitioning [22]. The method

adopted in this paper is the ASSP [21] that is briefly described
hereinafter.

Let {x̃k} be the Hilbert transform [28] of a real-valued
time series {xk}, which is defined as its convolution prod-

uct (denoted by �) with (1/π){1/k}, i.e., {x̃k} ∆= {xk} �
(1/π){1/k}, which is represented in the Fourier domain as

F [x̃](ξ) = −isgn(ξ)F [x](ξ) (28)

where

sgn(ξ) =
{

+1, if ξ > 0
−1, if ξ < 0.

(29)

The corresponding complex-valued analytic signal sequence
{Axk} is defined as

Axk
∆= (xk + ix̃k) ⇔ Axk = ak exp(iϕk) (30)

where ak and ϕk are called the instantaneous amplitude and
instantaneous phase of Axk, respectively.

It follows from (28)–(30) that the analytic signal sequence
{A[x]k} is obtained from the inverse Fourier transform of
F [Ax](ξ) that is directly obtained from the Fourier transform
F [x](ξ) of the real-valued time series {xk} as

F [Ax](ξ) =
{

2F [x](ξ), if ξ > 0
0, if ξ < 0.

(31)

Thus, given a set of real-valued time-series data, the Hilbert
transform of this data set yields a pseudophase plot that is
constructed from the analytic signal sequence by a bijective
mapping of the complex domain onto the R

2, e.g., by plotting
the magnitude and phase parts of the analytic signal sequence as
a polar plot. The time-dependent analytic signal in (30) is now
represented as a (1-D) trajectory in the 2-D pseudophase space.

The magnitude and phase of the time-dependent analytic
signal in (30) can be partitioned separately according to either
uniform partitioning, MEP, or any other type of partitioning;
the type of partitioning may depend on the characteristics of
the physical process. In this way, each point in the data set is
represented by a pair of symbols—one belonging to the alpha-
bet ΣR based on the magnitude (i.e., in the radial direction)
and the other belonging to the alphabet ΣA based on the phase
(i.e., in the angular direction). The analytic signal sequence is
eventually partitioned as a symbol sequence by associating each
pair of symbols into a symbol from a new alphabet Σ as

Σ ∆= {(σi, σj) : σi ∈ ΣR, σj ∈ ΣA} and |Σ| = |ΣR| · |ΣA|.

Once the symbol sequence is generated, the next step is to
construct a PFSA as described in the next section.

B. Construction of PFSA

This section describes the construction of finite-state au-
tomata from a symbol sequence, where the quasi-stationary his-
tograms of the state probability distribution represent patterns
that are indicative of the nominal (or reference) and anomalous
behavior of the dynamical system.
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A PFSA is constructed, where the PFSA states are defined
corresponding to a given alphabet Σ and window length D. The
alphabet size |Σ| is the total number of partitions, while the
window length D is the length of consecutive symbol words
forming the states of the automaton [14]. The states of the
automaton are chosen as words of length D from the symbol
sequence, thereby making the number n of states to be less
than or equal to the total permutations of the symbols within
words of length D (i.e., n ≤ |Σ|D). The choice of |Σ| and D
depends on specific experiments, noise level, partitioning, and
the available computation power. A large alphabet may be noise
sensitive, while a small alphabet could miss the details of signal
dynamics. Similarly, a high value of D is capable of capturing
more dynamic information but would lead to larger number
of states requiring more computation power and longer data
sets. For PFSA construction, the window of length D on the
symbol sequence · · ·σi1σi2 · · ·σik

· · · is shifted to the right by
one symbol, such that it retains the last (D − 1) symbols of
the previous state and appends it with the new symbol σi�

at the
end. The symbolic permutation in the current window gives rise
to a new state. The constructed automaton is called D-Markov
because of its Markov properties [14].

Definition 6: A symbolic stationary process is called
D-Markov if the probability of the next symbol depends only
on the previous D symbols, i.e.,

P
(
σi0 |σi−1 · · ·σi−D

σi−D−1 · · ·
)

= P
(
σi0 |σi−1 · · ·σi−D

)
.

(32)

The PFSA constructed earlier has D-Markov properties be-
cause the probability of occurrence of symbol σi�

on a partic-
ular state depends only on the configuration of that state, i.e.,
previous D symbols. Once the alphabet Σ and word length D
are assigned at the nominal condition at the time epoch t0,
they are kept invariant for subsequent (slow-scale) epochs
{t1, t2, . . . , tk, . . .}, i.e., the PFSA structure is kept fixed, al-
though its arc probabilities may vary. The PFSA states are
marked with the corresponding symbolic word permutation,
and edges joining the states indicate occurrence of a symbol σi�

.
Definition 7: The probability of transitions from state qj to

state qk belonging to the set Q of states under a transition δ :
Q × Σ → Q is defined as

πjk = P (σ ∈ Σ|δ(qj , σ) → qk) ;
∑

k

πjk = 1. (33)

For a D-Markov machine under quasi-stationary conditions,
the irreducible1 stochastic matrix Π ≡ [πij ] describes all transi-
tion probabilities between states such that it has at most |Σ|D+1

nonzero entries. The left eigenvector p corresponding to the
unique unity eigenvalue of Π is the state probability vector
under the (fast time scale) stationary condition of the dynamical
system [14]. For computation of state transition probabilities
from a given symbol sequence · · ·σi1σi2 · · ·σil

· · · generated
from the time-series data collected at slow-time epoch tk, a

1A square nonnegative real matrix A is called irreducible [19] if, for every
i and j, there exists a positive integer k such that the ijth element of the kth
power of A is strictly positive. The integer k may vary with i and j.

D-block (i.e., a window of length D) is moved by counting
occurrences of symbol blocks σi1 · · ·σiD

σiD+1 and σi1 · · ·σiD

which are, respectively, denoted by N(σi1 · · ·σiD
σiD+1) and

N(σi1 · · ·σiD
). Note that if N(σi1 · · ·σiD

) = 0, then the state
q ≡ σi1 · · ·σiD

∈ Q has zero probability of occurrence. For
N(σi1 · · ·σiD

) �= 0, the transition probabilities are then ob-
tained by these frequency counts as follows:

πjk
∆=P [qk|qj ] =

P
(
σi1 · · ·σiD

σiD+1

)
P (σi1 · · ·σiD

)

≈
N

(
σi1 · · ·σiD

σiD+1

)
N (σi1 · · ·σiD

)
(34)

where the corresponding states are denoted by qj
∆=

σi1σi2 · · ·σiD
and qk

∆= σi2 · · ·σiD
σiD+1 .
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