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Abstract As an alternative to the batch means (BM) method
in the stopping rule for symbolic dynamic filtering, this short
paper presents an analytical procedure to estimate the vari-
ance parameter and to obtain a lower bound on the length of
symbol blocks for constructing probabilistic finite state auto-
mata (PFSA). If the modulus of the second largest eigenvalue
of the PFSA’s state transition matrix is relatively small or if
the symbol block length is not too large, then the perfor-
mance of the proposed stopping rule is superior to that of
the stopping rule based on BM method. The algorithm of the
proposed stopping rule is validated on ultrasonic data col-
lected from a fatigue test apparatus for damage detection in
the polycrystalline alloy 7075-T6.
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1 Introduction

Recently Wen and Ray [1] have reported a stopping rule for
symbolic dynamic filtering (SDF) [2], where a key issue is
how to obtain a lower bound on the length of symbol blocks
for computing the state probability vector of probabilistic
finite state automata (PFSA). The stopping rule is formu-
lated in the setting of Markov chain Monte Carlo (MCMC)
and its key parameter to be estimated is the variance of the
symbol sequence in the central limit theorem.

In the MCMC literature, there are many well-studied var-
iance estimation techniques (e.g., batch means [3], regenera-
tive simulation [4] and spectral variance estimators [5]). The
Markov chain is known a priori in MCMC and its parameters
contribute to the variance estimation. In the current context,
the parameters of the Markov chain are unknown and need to
be estimated. Hence, both regenerative simulation and spec-
tral variance estimators, which rely on the knowledge of the
chain parameters, are not suitable in the present formulation;
and the BM method, used in an earlier stopping rule [1],
is an asymptotic numerical tool that is purely based on the
simulated data. However, the BM method requires partition-
ing the time series into several batches of data by heuristic
rules, where an inappropriate choice of the batch size could
adversely affect the convergence rate of the variance esti-
mator. It has been observed in [1] that the BM method may
require an unnecessarily long observed sequence, which is
not conducive to the quasi-stationarity assumption in SDF.

Within a similar framework, the current paper formu-
lates an alternative stopping rule, where a theoretical upper
bound of the variance is derived from online estimates of the
state transition matrix and the state probability vector of the
Markov chain. It is shown by numerical simulations that
the proposed variance estimation approach enhances the per-
formance of the stopping rule, especially if the modulus of
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the second largest eigenvalue of the PFSA’s state transition
matrix is relatively small or if the symbol block is not very
long. The algorithm of the proposed stopping rule is validated
on ultrasonic data collected from a fatigue test apparatus for
damage detection in the polycrystalline alloy 7075-T6.

The paper is organized as follows. The stopping rule prob-
lem is formulated in Sect. 2. The algorithm of the stopping
rule is developed in Sect. 3. Numerical results are presented
in Sect. 4 to evaluate the performance of the proposed stop-
ping rule algorithm relative to the algorithm [1] based on the
BM method. The application for fatigue damage detection
in polycrystalline alloys is discussed in Sect. 5. The paper is
concluded in Sect. 6.

2 Statement of the problem

Let a statistically (quasi-)stationary dynamical system be
modeled as a stationary Markov chain S = {s0, s1, s2, . . .} of
finite order D, where D is a positive integer. Let the symbols
si ∈ S belong to a (finite) alphabet � and let �∗ be the set of
all finite-length strings of symbols including the null string ε.
Each state of S is labeled with a symbol block of length D
belonging to �∗ and let j be the unique label of the j th state.
For example, if � = 0, 1 and D = 2, then the possible states
are as follows: 00, 01, 10, and 11.

If S is an ergodic Markov chain (i.e., the associated state
transition matrix � is irreducible), then it follows from the
Perron–Frobenius theorem [6,7] that there exists a unique
probability vector p = [p1, p2, . . . , pn], where n ≤ |�|D ,
such that p� = p with the constraints:

∑
i pi = 1 and pi >

0 ∀ i . Then, p is called the state probability vector of the
Markov chain S. In the setting of SDF, the quasi-stationary
state probability vector of the PFSA is commonly selected
as a feature vector [8], which captures the statistical property
of the dynamical system. Let Nr

i be the number of times the
block sr visits the state i and Nr

i j be the number of times the
block sr encounters a transition to the state j from the state i .

For a particular symbol block sr = {si }ri=1 generated by
S, let p̂(r) � [ p̂1(r) p̂2(r) . . . p̂n(r)] be the estimated state
probability vector. Each element of p̂(r) is defined as

p̂i (r) � 1

r

r∑

j=1

Ji ◦ T j (sr ) = Nr
i

r
(1)

where Ji (x) is an indicator function, i.e.,

Ji (x) =
{

1 if the state i is a prefix of the string x
0 otherwise

and T is the left shift operator [i.e., T (s1s2s3 . . .) = s2s3 . . .].
By the ergodic theorem for Markov chain [6], it is guar-

anteed that p̂(r) → p as r → ∞. The problem is to find
a minimal stopping point rstop such that p̂(rstop) computed

from a symbol block of length rstop satisfies the following
condition:

‖p̂(rstop)− p‖∞ < ε with a confidence level (1− α) (2)

where ‖ • ‖∞ is the max norm of the finite-dimensional
vector • and ε is the absolute error bound of estimation.

3 Algorithm development

For the finite-order Markov chain S = {s0, s1, s2, . . .},
let g(•) be a real-valued, μ-integrable function on the
signal space � such that the second moment Eμ g2 �∫
�

g2(x)μ(dx) < ∞. Defining the time average ḡr �
1
r

∑r−1
i=0 g(si ), the estimate Eμ g �

∫
�

g(x)μ(dx) is
obtained by Markov chain Monte Carlo (MCMC) tools and
an application of the central limit theorem [4] as

√
r
(
ḡr − Eμ g

) distribution−−−−−−−−→ N (0, σ 2
g ) as r →∞ (3)

where the variance σ 2
g � Varμ{g(s0)}+2

∑∞
i=1 Covμ{g(s0),

g(si )}. The ergodic theorem [4] yields

ḡr
almost surely−−−−−−−−−→ Eμ g as r →∞ (4)

Taking g as the indicator function of the state i , the limit of
the time average ḡr becomes pi , the i th element of the state
probability vector p.

Next an estimate for the variance σ 2
g is analytically derived

by restricting the irreducible state transition matrix � to be
aperiodic. Then, for each state i, (σg)

2
i is defined as

(σg)
2
i � Varμ{g(s0)} + 2

∞∑

k=1

Covμ{g(s0), g(sk)} (5)

= Varμ{I(s0 = i)} + 2
∞∑

k=1

Covμ{I(s0 = i), I(sk = i)} (6)

Assuming that the initial condition s0 has a stationary dis-
tribution p, it follows that

Pr(sk = i) = pi and Pr(sk �= i) = 1− pi (7)

Therefore, we obtain

E{I(sk = i)} = pi and Var{I(sk = i)} = pi (1− pi ) (8)

For the second term in Eq. (6), we have

Cov{I(s0 = i), I(sk = i)}
= E(I(s0 = i) · I(sk = i))− E(I(s0 = i))E(I(sk = i))

= Pr(I(s0 = i) = 1, I(sk = i) = 1)− p2
i

= Pr(s0 = i) Pr(sk = i |s0 = i)− p2
i

= pi Pr(sk = i |s0 = i)− p2
i

= pi

(
�

(k)
i i − pi

)
(9)
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where �
(k)
i i is the i th row and i th column element of the

kth power of the state transition matrix �. By the ergodic-
ity property, Eq. (9) approaches zero when k becomes large,
which implies that s0 and sk are uncorrelated in the limit.
Then, Eq. (6) becomes

(σg)
2
i = pi (1− pi )+ 2pi

∞∑

k=1

(
�

(k)
i i − pi

)
(10)

The “plug-in” rule is directly applied here to obtain an
estimate of (σg)

2
i based on the consistent estimates of pi and

� online, namely,

�̂i j =
Nr

i j

Nr
i

and p̂i = Nr
i

r
(11)

Since there is an infinite sum in Eq. (10), we need to choose
where to truncate the infinite tail. To bound the infinite tail,
we introduce the following classical convergence theorem
with a proposition for finite Markov chains.

Theorem 3.1 ([9]) Let S be a finite-order Markov chain. If
the state transition matrix � is irreducible and aperiodic,
then there exists 0 < q < 1 and b > 0 such that
∥
∥
∥�

(k)
i · − p

∥
∥
∥∞ < bqk (12)

where p is the unique state probability vector and �
(k)
i · is the

i th row of of the kth power of the state transition matrix �.

Theorem 3.1 does not specify the values of b and q. Clas-
sical results show that the rate of convergence in Eq. (12) is
asymptotic as dictated by the modulus of the second largest
eigenvalue of the state transition matrix �, but the constant
b is not provided for this exact bound. Moreover, the second
largest eigenvalue itself is difficult to compute online [10].
For these reasons, it is preferable to use the bound, stated in
the following Proposition 3.1, which is easy to compute and
is shown to be a good approximation in many cases.

Proposition 3.1 ([11]) If the conditions in Theorem 3.1 hold,
then Eq. (12) is valid with the following choice of b and q:

q = 1− β and b = 1 (13)

where β = ∑
i min j �i j , which is simply the sum of the

minimum values of the entries in each column of the state
transition matrix �.

Let us define the finite sum of the second term in Eq. (10)
as follows

(
σ 2

L

)
(i) � pi (1− pi )+ 2pi

L∑

k=1

(
�

(k)
i i − pi

)
(14)

where L ∈ N. Then, by applying Theorem 3.1 and Proposi-
tion 3.1 in the last two steps, the error between (σ 2

L)(i) and

(σ 2
g )(i) is obtained as

eL(i) � |
(
σ 2

g

)
(i)− (σ 2

L)(i)| ≤ 2pi

∞∑

k=L+1

∣
∣
∣�

(k)
i i − pi

∣
∣
∣

≤ 2pi

∞∑

k=L+1

∥
∥
∥�

(k)
i · − p

∥
∥
∥∞

≤ 2pi bq L+1

1− q
= 2pi (1− β)L+1

β
(15)

It is still necessary to select the parameter L that should be
sufficiently large to make the error eL(i) small. However,
the computational load increases as L becomes larger. In this
setting, a ratio γL ∈ (0, 1) is introduced.

γL � 2pi (1− β)L+1

βσ 2
L(i)

(16)

where the parameter γL is the ratio of the tail portion of the
sum to the finite sum. The user is free to choose an upper
bound γ for γL to make a trade-off between accuracy and
efficiency of the finite approximation. In most cases, γL =
0.1 or 0.05 should suffice. The infinite sum is truncated after
L terms and a bound is added on the tail if γL < γ . Defining

the estimated variance as σ̂ 2
g (i) � (σ 2

L)(i) + 2pi (1−β)L+1

β
, it

follows that
(
σ 2

g

)
(i) ≤

(
σ 2

L

)
(i)+ eL(i) ≤ σ̂ 2

g (i) (17)

Algorithm 1 Variance Estimation Algorithm
Input: symbol block sr of length r , number of states n, parameter
0 < γ < 1;
Output: variance estimation σ̂ 2

g ;
Compute Nr

i and Nr
i j ;

γL ← 1 and L ← 0;

�̂i j ← Nr
i j

Nr
i

;
(
σ̂ 2

L

)
(i)← p̂i (1− p̂i ), p̂i ← Nr

i
r , and β̂ ←∑

i min j
Nr

i j
Nr

i
;

while γL > γ do
L ← L + 1;
(
σ̂ 2

L

)
(i)← (

σ̂ 2
L

)
(i)+ 2 p̂i

(
�̂

(L)

i i − p̂i

)
;

γL = max1≤i≤n

{
2 p̂i (1−β̂)L+1

β̂σ̂ 2
L (i)

}

;

end while
σ̂ 2

g (i) = (
σ̂ 2

L

)
(i)+ 2 p̂i (1−β̂)L+1

β̂
for all 1 ≤ i ≤ n

4 Numerical results

The following three state transition matrices for 1-D Markov
chains [2] are analyzed to compare the performance of the
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Fig. 1 Comparison of the variance (σ 2
g ) estimation errors computed by Algorithm 1 and by the BM method. a �1(|λ2| = 0.20), b �2(|λ2| = 0.70),

c �3(|λ2| = 0.93)

proposed variance estimation algorithm with that of the BM
algorithm [1].

�1 =
⎛

⎝
0.3 0.3 0.4
0.2 0.4 0.4
0.3 0.5 0.2

⎞

⎠ ,�2 =
⎛

⎝
0.8 0.1 0.1
0.1 0.2 0.7
0.1 0.1 0.8

⎞

⎠ , and

�3 =
⎛

⎝
0.4 0.5 0.1
0.03 0.95 0.02
0.03 0.02 0.95

⎞

⎠

Each of the above three (irreducible and aperiodic) sto-
chastic matrices has exactly one unity eigenvalue by the
Perron–Frobenius theorem [6,7] and the moduluss of their
second largest eigenvalues (|λ2|) are 0.20, 0.70, and 0.93,
respectively. We conducted 10 independent simulation runs
of 1-D Markov chains for each of these state transition matri-
ces. Both Algorithm 1 and the BM method [1] were applied
to estimate the variance σ 2

g for different values of the data
length r ranging from 103 to 106; the parameter γL was set
to be 0.05 in Algorithm 1 and the batch size was taken as

√
r

in the BM method.
Figure 1 exhibits the averaged errors between σ 2

g and σ̂ 2
g

computed by the L∞ norm as the data length r varies for both
algorithms in all three cases. The solid (blue) lines indicate
the error curves generated by Algorithm 1 and the dashed
(red) curves for the BM method. It is concluded from Fig. 1a
that the proposed algorithm outperforms the BM method for
the entire range of the data length when |λ2| is relatively
small. As |λ2| is increased, the BM method progressively
becomes more accurate and outperforms Algorithm 1 for
large r as seen in Fig. 1b, c. It is observed that the conver-
gence of the upper bound σ̂ 2

g in Algorithm 1 is fast in the
sense that a more accurate estimate of variance is generated
even if the data length r is not very large.

5 Algorithm validation on experimental data

This section presents validation of the stopping rule on ultra-
sonic data collected from a test apparatus for fatigue damage
detection in polycrystalline alloys [12]. A description of the
test apparatus, the experimental procedure, and the analysis
of experimental data are presented in the next three subsec-
tions.

5.1 Test apparatus and experimental procedure

The experimental apparatus is a special-purpose uniaxial
fatigue damage testing machine that is instrumented with
ultrasonic flaw detectors and an optical traveling microscope,
as shown in Fig. 2. The apparatus is operated under load con-
trol or strain control at speeds up to 12.5 Hz. The tests have
been conducted using center notched 7075-T6 aluminum
specimens at a constant amplitude sinusoidal load, where the
maximum and minimum loads were kept constant at 87 and
4.85 MPa. The test specimens are 3 mm thick and 50 mm wide
and have a slot of 1.58 × 4.5 mm at the center. The central
notch is made to increase the stress concentration factor that

Fig. 2 Computer-instrumented and computer-controlled fatigue test
apparatus
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Fig. 3 Schematic of ultrasonic sensing on a test specimen

ensures crack initiation and propagation at the notch ends.
The test apparatus is equipped with two types of sensors
that have been primarily used for damage detection: travel-
ing optical microscope and ultrasonic flaw detector. The top
plate in Fig. 3 shows a cracked specimen and the bottom
plate in Fig. 3 illustrates a schematic of the ultrasonic flaw
detector mounted on the specimen; the sampling frequency
of the ultrasonic sensing device is 20 MHz.

5.2 Experimental procedure

The ultrasonic sensing device is triggered at a frequency of
5 MHz at each peak of the sinusoidally fluctuating load at
∼12.5 Hz. The time epochs, at which data are collected, have
been chosen to be 1,000 load cycles (i.e.,∼80 s) apart. At the
beginning of each time epoch, the ultrasonic data points are
collected for 50 load cycles (i.e., ∼4 s) which produced a
string of 15,000 data points. It is assumed that no significant
changes occur in the fatigue crack behavior of the test spec-
imen during the tenure of data acquisition at a given time
epoch. The nominal condition at the slow-time epoch τ0 is
chosen to be 1.0 kilocycles to ensure that the electro-hydrau-
lic system of the test apparatus comes to a steady state and that
no significant damage occurs till that point. The anomalies
at subsequent slow-time epochs, τ1, τ2, . . . , τk . . ., are then
calculated with respect to the nominal condition at τ0. There
are in total 46 epochs, which are taken every 1 kilocycles in
the fatigue testing.

5.3 Results of experimental data analysis

Under the nominal condition, the time-series data set is con-
verted to a symbol sequence based on the maximum entropy
partition (MEP) [13] on the alphabet of size |�| = 6. Each
partition segment is associated with a unique symbol in the
alphabet. The symbol sequence characterizes the evolving
fatigue damage and is modeled via a first-order Markov chain

that has six states. By the property of the MEP, the stationary
state probability vector p0 of the resulting probabilistic finite
state automaton (PFSA) model is uniformly distributed, that
is, p0 = 1

6 e, where e is the 6-dimensional row vector of all
ones.

A pre-specified number (rmin) of data points are collected
from the test apparatus. A symbol block srmin is obtained
for each of the time series at individual epochs by using
the data partitioning constructed under the nominal condi-
tion. Then, Algorithm 1 is used to estimate the variance and
rstop. After the stationary probability vector p̂ is estimated
at an epoch, the damage increment is quantified in terms of
the divergence of the probability distribution from the nom-
inal condition. To that end, a statistic test is conducted to
obtain the corresponding p-value [14] as the damage mea-
sure. It follows from Eq. (3) that p̂i ∼ N (p0, σ̂

2
g (i)). Hence,

Z = ∑n
i=1( p̂i (r) − p0)

2/σ̂ 2
g follows χ2−distribution with

n−1 degrees of freedom and thus the corresponding p-value
can be found. This online anomaly detection procedure is
described in Algorithm 2.

Algorithm 2 Online Anomaly Detection Algorithm
Input: Observed symbol block srmin of length rmin at a slow-time
epoch τ , state probability vector under the nominal condition p0,
absolute error bound ε, number of states n, significance level α, and
variance residual bound γ ;
Output: p-value pvalue;
rstop = r ← rmin;
while 1 do

Compute σ̂ 2
g for the symbol block sr based on Algorithm 1;

rstop = maxi
(σ̂g)2

i
ε2

[
�−1

(
1− α

2

)]2
;

if r < rstop then
Observe more data (update sr );

else
break;

end if
end while{Obtain p-value at the slow-time epoch τ}
Compute p̂i (r) for all state i by Eq. (1);
Compute test statistics Z =∑n

i=1( p̂i (r)− p0)
2/σ̂ 2

g ;
pvalue = 1− Fn(Z);
{where Fn is the cumulative distribution function of χ2−distribution
with n − 1 degrees of freedom}

Algorithm 2 is implemented using the fatigue data with
both proposed variance estimation method (Algorithm 1) and
the BM method. Figure 4a shows the computed p-values ver-
sus the increasing cycles of the specimen. We notice that both
methods give similar p-values. Figure 4b gives the rstep for
specimen at different cycles computed by two methods. It is
noted that the BM method results in much larger rstep than our
proposed method. In other words, the BM method requires
much more data points to compute the stationary probability
vector than our method. This illustrates that our proposed
method is more efficient than the BM method under certain
circumstance.
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Fig. 4 Comparison of the results. a p-Value. b Comparison of rstop
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Fig. 5 Optical microscope images of surface crack evolution. a Nominal condition at 5 kilocycles. b Internal damage at 15 kilocycles. c Surface
at 23 kilocycles. d Fully developed crack at 34 kilocycles

To better understand the physical meaning of the p-values
in Fig. 4a, the two-dimensional (optical microscope) images
of the specimen surface and the corresponding profiles of
ultrasonic sensor outputs are, respectively, presented in the
top row and bottom row of Fig. 5 at different slow-time
epochs, approximately at 5, 15, 23, and 34 kilocycles, to
exhibit the gradual evolution of fatigue damage from the ref-
erence condition. As seen in Fig. 4a, the p-values remain
essentially unchanged prior to 23 kilocycles. The fluctuations
in p-values and rstop around 23 kilocycles, as seen in Fig. 4a,
b, result possibly due to the uncertainties in the phase tran-
sition from crack initiation to crack propagation. Figures 5a,
b show that there is no visible surface crack until ∼23 kilo-
cycles. Beyond 23 kilocycles, Fig. 5c shows the appearance

of a crack on the image of the specimen surface and the
corresponding p-values are also seen to decrease to ∼0.9 at
around 23 kilocycles. Afterward, the p-values dramatically
decrease to close to zero in agreement with Fig. 5d when the
surface crack is fully developed at 34 kilocycles.

5.4 Discussion

This SDF-based anomaly detection algorithm is formulated
in [2] and can be applied to detect slowly evolving anoma-
lies in any dynamical systems that satisfy the following two
assumptions:
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1. The system behavior is stationary at the fast time scale
of the process dynamics;

2. An observable non-stationary behavior of the dynamical
system can be associated with anomaly(ies) evolving at
a slow-time scale.

The statistical patterns captured by the state probability vec-
tors for the symbol sequences at the different slow-time
epochs are compared to the reference pattern under the nom-
inal condition for making decisions on detection of anomaly
behavior. The proposed stopping rule allows to circumvent
the effects of uncertainties in the state probability vectors due
to the restriction of finite-horizon observations by comput-
ing the p-values. The proposed stopping rule generalizes the
SDF-based anomaly detection algorithm, described in [2], by
adaptation of decision making to the observed data length.

6 Summary and conclusions

This short paper presents a stopping rule for symbolic
dynamic filtering (SDF) [2] by variance estimation, where
a theoretical upper bound of the variance is derived from
online estimates of the state transition matrix and the state
probability vector of the underlying Markov chain. The pro-
posed stopping rule is an alternative to another stopping rule
[1] that is based on the batch means (BM) method [4]. The
proposed algorithm uses online consistent estimates for both
the state transition matrix and state probability vector of the
Markov chain to calculate an upper bound on the variance.
The performance of the proposed variance-estimation-based
stopping rule is shown to be superior to that of the BM method
[1] if the modulus of the second largest eigenvalue is small,
or if the data length is not too large. Due to the quasi-sta-
tionarity assumption in SDF, the proposed algorithm is more
suitable to compute the variance than the BM method in
the stopping rule in many applications; this is demonstrated
by numerical simulations. Efficacy of the proposed stopping

rule is demonstrated on experimental data for detection of
fatigue damage in the 7075-T6 polycrystalline alloy.
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