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This paper addresses pattern classification in dynamical systems, where the underlying

algorithms are formulated in the symbolic domain and the patterns are constructed

from symbol strings as probabilistic finite state automata (PFSA) with (possibly) diverse

algebraic structures. A combination of Dirichlet and multinomial distributions is used to

model the uncertainties due to the (finite-length) string approximation of symbol

sequences in both training and testing phases of pattern classification. The classifier

algorithm follows the structure of a Bayes model and has been validated on a

simulation test bed. The results of numerical simulation are presented for several

examples.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Commonly used classification algorithms may not always
be well-suited for applications to nonlinear dynamical sys-
tems [1–3]. This phenomenon has led to departure from the
conventional continuous-domain modeling towards a formal
language-theoretic paradigm [4] in the symbolic domain
[5,6], where a symbol sequence is generated from the output
of the dynamical system by partitioning (also called quanti-
zation) of the time-series data. Thereafter, a probabilistic
finite state automaton (PFSA) is constructed from the (finite-
length) symbol string via one of the construction algorithms
(e.g., [7–9]). Due to the quasi-stationarity assumption in the
construction of PFSA, it may not be feasible to obtain
sufficiently long strings of symbols in both training and
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testing phases of classification. Therefore, the estimated
parameters of the resulting PFSA model may not be precise.

The problem of symbol string approximation has been
addressed in the literature from different perspectives.
For example, Kumar et al. [10] reported approximate
string matching as a process of searching for optimal
alignment of two finite-length strings in which compar-
able patterns may not be obvious; and Raskhodnikova
et al. [11] approximated the compressibility of a symbol
string with respect to a fixed compression scheme in
sublinear time. In contrast, the current paper derives the
probability distributions for constructing the PFSA to fit
the classification algorithms via symbol string approxi-
mation. These algorithms are formulated by quantita-
tively incorporating the effects of (finite-length) symbol
strings on both training and testing phases of pattern
classification. In this setting, pertinent information (e.g.,
the probability morph matrix and state transition func-
tion) derived from a PFSA model serves as a feature vector
even though the structures of PFSA may be dissimilar. The
approach undertaken in the current paper is unique to the
knowledge of the authors.

While previous publications in the above research area
have addressed the important issues of alphabet size
selection (e.g., [12]), partitioning of data sets for symbol
generation (e.g., [13,14]), modeling of the hidden

www.elsevier.com/locate/sigpro
www.elsevier.com/locate/sigpro
dx.doi.org/10.1016/j.sigpro.2012.08.002
dx.doi.org/10.1016/j.sigpro.2012.08.002
dx.doi.org/10.1016/j.sigpro.2012.08.002
mailto:yxw167@psu.edu
mailto:kum162@psu.edu
mailto:axr2@psu.edu
dx.doi.org/10.1016/j.sigpro.2012.08.002


Y. Wen et al. / Signal Processing 93 (2013) 252–260 253
structure of symbolic systems (e.g., [7–9]) and model
order reduction of Markov chains [15], the goal of the
current paper is to construct a Bayesian classifier for
identification of the probability morph matrices of PFSA
based on finite-length time series data. In this context, a

priori and a posteriori models of uncertainties have been
constructed by using Dirichlet and multinomial distribu-
tions, respectively. Other researchers (e.g., [16]) have
used Dirichlet-compound-Multinomial (DCM) models to
address a variety of applications, especially in the area of
text modeling. Specifically, DCM distributions provide a
concise approach to model burstiness [17,18], i.e., if an
event occur once, it is likely to occur repeatedly in the
future.

The paper is organized in four sections, including the
present section, and an Appendix. In Section 2, the basic
concepts and notations of semantic models are presented.
In Section 3, the classification problem is defined and the
adaptive classifier is constructed. Numerical results are
shown in Section 4 to illustrate the effectiveness of the
designed classifier by considering the van der Pol equa-
tion with different parameter values. The paper is con-
cluded and summarized with recommendations for the
future research in Section 5. The Appendix summarizes
the pertinent principles of the Dirichlet distribution.

2. Preliminaries

In the formal language theory [19], an alphabet S is a
(non-empty finite) set of symbols. A symbol string x over
S has a finite length and the length of x, denoted by 9x9,
represents the number of symbols in x. The Kleene closure
of S, denoted by S%, is the set of all finite-length symbol
strings including the null string E, where 9E9¼ 0. The set of
all strings of length d 2 N09f0,1,2, . . .g is denoted by
SdD! S%. The string xy is called the concatenation of two
strings x and y.

Definition 2.1 (PFSA). A probabilistic finite state auto-
maton (PFSA) is a tuple G9ðQ ,S,d,P,qoÞ, where
�
 The input alphabet S is a nonempty finite set of
symbols, i.e., 9S9 2 N19f1,2, . . .g.

�
 The set of states Q is nonempty and finite, i.e.,

9Q9 2 N1.

�
 The state transition function d : Q � S-Q naturally

induces an extended transition function d% : Q �S%-Q

such that d%

ðq,EÞ ¼ q and d%

ðq,osÞ ¼ dðd%

ðq,oÞ,sÞ for
every q 2 Q , o 2 S% and s 2 S.

�
 The morph function p : Q �S-½0,1� is an output

mapping that satisfies the condition:
P

s2Spðq,sÞ ¼ 1
for all q 2 Q . The morph function p has a matrix
representation P, called the (probability) morph matrix
Pij9pðqi,sjÞ,8qi 2 Q and 8sj 2 S. Note that P is a
ð9Q9� 9S9Þ stochastic matrix, i.e., each element of P is
non-negative and each row sum of P is equal to 1.

�
 The start state qo 2 Q .

Remark 2.1. For a PFSA G¼ ðQ ,S,d,P,qoÞ, it is possible to
generate a random symbol string S9fsjg

N�1
j ¼ 0, where each

sj 2 S and N 2 N1. Let qk 2 Q denote the state of S at an
instant k before the symbol sk is generated. Upon gen-
eration of the symbol sk based on the symbol distribution
at state qk, namely, pðqk,�Þ, the next state follows from the
transition qkþ1 ¼ dðqk,skÞ.

Definition 2.2 (Irreducibility). A PFSA G¼ ðQ ,S,d,P,qoÞ is
called irreducible if, for any qi,qj 2 Q , there exits a symbol
string oij 2 S

% such that d%

ðqi,oijÞ ¼ qj.

Definition 2.3 (State transition matrix). For every PFSA G¼

ðQ ,S,d,P,qoÞ, there is an associated ð9Q9� 9Q9Þ stochastic
matrix P, called the state transition probability matrix,
which is defined as follows:

Pjk ¼
X

s:dðqj ,sÞ ¼ qk

pðqj,sÞ ð1Þ

Remark 2.2. It follows from Perron–Frobenius Theorem
[20] that every irreducible stochastic matrix has one and
only one unity eigenvalue; each element of the left
eigenvector corresponding to the unity eigenvalue is
non-zero and has the same sign. Therefore, the state
probability vector that is the left eigenvector correspond-
ing to the unity eigenvalue is unique subject to the
normalization with the sum of all its (strictly positive)
elements being unity. Equivalently, for every 9Q9� 9Q9
irreducible stochastic matrix P, there exists a unique ð1�
9Q9Þ row-vector p such that

pP¼ p, where pj40 8j and
X9Q9

j ¼ 1

pj ¼ 1 ð2Þ

where p represents a stationary probability distribution
over the states of the PFSA G.

Definition 2.4 (Synchronizing string in PFSA). Let G¼

ðQ ,S,d,P,qoÞ be a PFSA. Then, o 2 S% is called a synchro-
nizing string of symbols for a state q 2 Q if d%

ðqi,oÞ ¼ q for
all qi 2 Q . A PFSA is called synchronizable if there exists a
synchronizing string for a state q 2 Q .

Remark 2.3. For a synchronizable PFSA, a synchronizing
string yields perfect state localization. For example, if o is
a synchronizing string for a state q 2 Q in the PFSA G, then
the substring skskþ1 . . . of a string s1s2 . . .oskskþ1 . . .
shall have the initial state q, although the perfect state
localization of the original string may not be possible.

3. The online classification problem

Let there be K classes of symbolic systems of interest,
denoted by C1,C2, . . . ,CK , over the same alphabet S and
each class Ci is modeled by an ergodic (i.e., irreducible)
PFSA Gi

¼ ðQi,S,di,Pi,qi
0Þ, where i¼ 1,2 . . . ,K. Note that the

initial state qi
0 would not have any significance eventually

for a synchronizable PFSA (see Remark 2.3).
During the training phase, a symbol string Si9

si
1si

2 . . . s
i
Ni

is generated from each class Ci. If a PFSA Gi is
obtained for each class by executing one of the available
PFSA construction algorithms, then their structures may
not necessarily be the same. Thus, having Qi and di known
for all K classes, Pi’s become the only unknowns that
could be selected as the feature vectors for the purpose of
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classification. The distribution of the morph matrix Pi is
computed in the training phase.

In the testing phase, let another symbol string ~S be
generated by one of the PFSA models that are constructed
in the training phase. Then, the task is to classify which
class this observed symbol string ~S belongs to. While the
previous work [7–9] has aimed at identification of a PFSA
from a given symbol string, the objective of this paper is
to imbed the uncertainties due to the finite length of the
symbol string in the identification algorithm that would
influence the final classification decision. Fig. 1 presents
an overview of the classification procedure for Class Ci in
terms of the following information:
(1)
Fig.
struc

tion

(3) m

obse
Hidden structure ðQi,di
Þ of the training symbol string

Si, generated by a standard PFSA construction algo-
rithm from a symbol string (e.g., [7–9]).
(2)
 Dirichlet distribution [21] of Pi, computed from Si and
ðQi,di

Þ.

(3)
 Multinomial distribution [21] to obtain Prð ~S9Si

Þ from
the PFSA Gi and the observed string ~S of symbols.
A pertinent assumption in the training phase is that
each symbol string Si is state-synchronized, which implies
that it is possible to find the initial state qo

i
for Si and

therefore localize the states in Gi for each symbol in Si.
This is a realistic assumption in the training phase,
because the state synchronization is usually a part of
the existing PFSA construction algorithms. In many cases,
the state can be localized after the occurrence of a few
symbols.

Following Remark 2.3, the training data are truncated
and it is possible to use a part of the data after the point
where the state has been synchronized to the structure of
the corresponding PFSA. Having known the initial state qo

i

for each class Ci, a sequence of states is admitted for each
string Si in the training set. Let a sequence of states of
length Ni

þ1, belonging to the class Ci be denoted as Vi9
vi

0vi
1vi

2 � � �v
i
Ni with

vi
09qi

o and vi
kþ1 ¼ dðvi

k,si
kÞ ð3Þ

Therefore, each row of Pi is treated as a random
vector. Let the mth row of Pi be denoted as Pi

m and the
1. Overview of the classification procedure for Class Ci: (1) hidden

ture ðQi ,di
Þ of the training symbol string Si; (2) Dirichlet distribu-

of the morph matrix Pi computed from Si and ðQi ,di
Þ; and

ultinomial distribution to obtain Prð ~S9Si
Þ from ðQi ,di ,Pi

Þ and the

rved string ~S .
nth element of the mth row as Pi
mnZ0 and

P9S9
n ¼ 1

Pi
mn ¼ 1 for each row m. Conditioned on a given current

state, the probability of the subsequent symbol is inde-
pendent of the past states of the string and is time-
invariant, i.e., if the same state is visited again, the
probabilities of occurrence of subsequent symbols would
be identical. Therefore, the a priori probability density

function fPi
m9Si of the random row-vector Pi

m, conditioned

on a symbol string Si, follows the Dirichlet distribution
[22,23] as explained in the Appendix. The pertinent
results are summarized below.

fPi
m9Si ðh

i
m9S

i
Þ ¼

1

Bðai
mÞ

Y9S9
n ¼ 1

ðyi
mnÞ

ai
mn�1

ð4Þ

where hi
m is a realization of the random vector Pi

m, namely

hi
m ¼ ½y

i
m1 yi

m2 . . . yi
m9S9�

and the normalizing constant is

Bðai
mÞ9

Q9S9
n ¼ 1 Gða

i
mnÞ

Gð
P9S9

n ¼ 1 ai
mnÞ

ð5Þ

where Gð�Þ is the standard gamma function and ai
m ¼ ½a

i
m1

ai
m2 . . . ai

m9S9� with

ai
mn ¼Ni

mnþ1 ð6Þ

where Ni
mn is the number of times the symbol sn in Si is

emanated from the state qi
m, i.e.,

Ni
mn99fðsi

k,vi
kÞ : si

k ¼ sn,vi
k ¼ qi

mg9 ð7Þ

Recalling that sk
i

is the kth symbol in Si, and denoting
the number of occurrence of the state qm

i
in the state

sequence Vi
\fvi

Ni g as Ni
m9

P9S9
n ¼ 1 Ni

mn, it follows from Eqs.
(5) and (6) that

Bðai
mÞ ¼

Q9S9
n ¼ 1 GðN

i
mnþ1Þ

Gð
P9S9

n ¼ 1 Ni
mnþ9S9Þ

¼

Q9S9
n ¼ 1ðN

i
mnÞ!

ðNi
mþ9S9�1Þ!

ð8Þ

by use of the relation GðnÞ ¼ ðn�1Þ! 8n 2N1.
By the Markov property of the PFSA Gi, the ð1� 9S9Þ

row-vectors, fPi
mg,m¼ 1, . . . 9Q9, are statistically indepen-

dent of each other. Therefore, it follows from Eqs. (4) and
(8) that the a priori joint density fPi9Si of the probability
morph matrix Pi, conditioned on the symbol string Si, is
given as

fPi9Si ðh
i9Si
Þ ¼

Y9Qi9

m ¼ 1

fPi
m9Si ðh

i
m9S

i
Þ

¼
Y9Qi9

m ¼ 1

ðNi
mþ9S9�1Þ!

Y9S9
n ¼ 1

ðhi
mÞ

Ni
mn

ðNi
mnÞ!

ð9Þ

where hi9½ðhi
1Þ

T
ðhi

2Þ
T . . . ðhi

9Q9Þ
T
�T 2 ½0,1�9Q9�9S9.

In the testing phase, the probability of an observed
symbol string ~S belonging to the ith class of PFSA
ðQi, S,di,Pi,qi

0Þ, i¼ 1, . . . ,K , is modeled by the multino-
mial distribution [21]. The multinomial distribution pro-
vides the probability of observing a certain distribution
(e.g., frequency count) of symbols conditioned on a given
state and a morph function Pi. For an arbitrary initial
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state qi
0 ¼ qi

j 2 Qi, the probability of observing ~S is derived
below

Prð ~S9Qi,di,Pi
Þ ¼

X9Qi9

j ¼ 1

Prðqi
jÞPrð ~S9Qi,di,Pi,qi

jÞ ð10Þ

Prð ~S9Qi,di,Pi
Þ ¼

X9Qi9

j ¼ 1

piðjÞPrð ~S9Qi,di,Pi,qi
jÞ ð11Þ

Prð ~S9Qi,di,Pi
Þ ¼

X9Qi9

j ¼ 1

Ni
j

Ni

Y9Qi9

m ¼ 1

ð ~N
i

mÞ!
Y9S9

n ¼ 1

ðPi
mnÞ

~N
i

mn

ð ~N
i

mnÞ!
ð12Þ

Prð ~S9Qi,di,Pi
Þ9Prð ~S9Pi

Þ when Qi and di are kept invariant

ð13Þ

where Eq. (10) is applied in the chain rule of conditional
probability; and Eq. (11) replaces PrðqiÞ by the stationary
state probability vector pi of the identified PFSA Gi, because
the operations of state transition are assumed to be
statistically stationary [7] and hence, it follows that the
condition piðjÞ ¼ Prðqi

jÞ 8j is satisfied by the initial state
probability vector pi; and Eq. (12) computes the stationary
probability vector pi by the (off-line) maximum likelihood
estimate (MLE) for each class Ci. In addition, with the initial
condition qo specified for the observed symbol string ~S and
using the statistical independence among the row ele-
ments of the morph matrix, the joint distribution of the
symbol string ~S is obtained as the product of 9Qi9 multi-
nomial distributions.

Similar to Ni
mn, defined earlier for Si, let ~N

i

mn be the
number of times the symbol sn is emanated from the
state qi

m 2 Qi in the symbol string ~S in the testing phase,
i.e.

~N
i

mn99f~sk : ~sk ¼ sn, ðdi
Þ
%

ðqi
o, ~s1 . . . ~sk�1Þ ¼ qi

mg9 ð14Þ

where ~sk is the kth symbol in the observed string ~S. It is
noted that ~N

i

mn and hence ~N
i

m9
P9S9

n ¼ 1
~N

i

mn cannot be
computed unless the initial state corresponding to the
symbol string ~S is specified. Therefore, both ~N

i

mn and ~N
i

m

may depend on the index j of the initial state qj
i

(see
Eqs. (10)–(12)), which is not explicitly written for the
conciseness of notation. Finally, the notation is simplified
in Eq. (13).

The results, derived in the training phase and the
testing phase, are now combined. Given a symbol string
Si in the training phase, the probability of observing a
symbol string ~S in the testing phase is obtained as follows

Prð ~S9Si
Þ ¼

Z
� � �

Z
Prð ~S9Pi

¼ hi
Þf i

Pi9Si ðh
i9Si
Þ dhi

¼

Z
� � �

Z X9Qi9

j ¼ 1

Ni
j

Ni

Y9Qi9

m ¼ 1

ð ~N
i

mÞ!
Y9S9

n ¼ 1

ðyi
mnÞ

~N
i

mn

ð ~N
i

mnÞ!

2
4

3
5

�
Y9Qi9

m ¼ 1

ðNi
mþ9S9�1Þ!

Y9S9
n ¼ 1

ðyi
mnÞ

Ni
mn

ðNi
mnÞ!

dyi
mn

2
4

3
5

¼
X9Qi9

j ¼ 1

~N
i

j

Ni

Y9Qi9

m ¼ 1

ð ~N
i

mÞ!ðN
i
mþ9S9�1Þ!
�

R
� � �
R Q9S9

n ¼ 1ðy
i
mnÞ

~N
i

mn þNi
mn dyi

mnQ9S9
n ¼ 1ð

~N
i

mnÞ!ðN
i
mnÞ!

ð15Þ

The integrand in Eq. (15) is the density function for the
Dirichlet distribution up to the multiplication of a con-
stant. Hence, it follows from Eq. (8) that

Z
� � �

Z Y9S9
n ¼ 1

ðyi
mnÞ

~N
i

mnþNi
mn dðyi

mnÞ

¼

Q9S9
n ¼ 1ð

~N
i

mnþNi
mnÞ!

ð ~N
i

mþNi
mþ9S9�1Þ!

Then, it follows from Eq. (15) that

Prð ~S9Si
Þ ¼

X9Qi9

j ¼ 1

Ni
j

Ni

Y9Qi9

m ¼ 1

ð ~N
i

mÞ!ðN
i
mþ9S9�1Þ!

ð ~N
i

mþNi
mþ9S9�1Þ!

�
Y9S9

n ¼ 1

ð ~N
i

mnþNi
mnÞ!

ð ~N
i

mnÞ!ðN
i
mnÞ!

9
X9Qi9

j ¼ 1

Ni
j

Ni
� Prð ~S9Si,qi

jÞ ð16Þ

In Eq. (16), it is recognized that Prð ~S9Si,qi
jÞ is the prob-

ability of observing a symbol string ~S provided that the
symbol string Si, belonging to the ith class, and the initial
state for the observed symbol string ~S are known a priori.
Since, in general, the initial state may not be known a
priori, it is necessary to compute Prð ~S9Si,qi

jÞ for each
possible initial state qj

i
. However, if the structure of the

underlying PFSA belonging to the class Ci is synchroniz-
able (i.e., solely dependent on Qi and di), then the initial
state can be identified from the first several symbols in ~S
(see Remark 2.3). Under these circumstances, the initial
state for the observed symbol string is assumed to be
known. Consequently, the likelihood function becomes
independent of the initial state, i.e., Prð ~S9Si

Þ ¼ Prð ~S9Si,qi
jÞ.

In practice, it might be easier to compute the loga-
rithm of Prð ~S9Si,qi

jÞ by virtue of Stirling’s approximation
formula logðn!Þ � n logðnÞ�n [24] because, in most cases,
both Ni and ~N would consist of large numbers.

The posterior probability of the observed symbol string ~S

belonging to the class Ci is denoted as PrðCi9 ~SÞ and is given as

PrðCi9 ~SÞ ¼
Prð ~S9Si

Þ PrðCiÞPK
j ¼ 1 Prð ~S9Sj

Þ PrðCjÞ
, i¼ 1,2, . . . ,K ð17Þ

where PrðCiÞ is the known prior distribution of the class Ci.
Then, the classification decision is made as follows:

Dclass ¼ arg max
i

PrðCi9 ~SÞ ¼ arg max
i
ðPrð ~S9Si

Þ PrðCiÞÞ ð18Þ

If there is no prior information on PrðCiÞ is available, it is
logical to assume a uniform distribution over the classes. In
that case, the rule of classification decision becomes

Dclass ¼ arg max
i

Prð ~S9Si
Þ ð19Þ

Remark 3.1. If the information on Ni
mn’s and ~N

i

mn’s are
available, no other information is needed to obtain the
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statistics of the symbol strings Si’s and ~S. Therefore, Ni
mn’s

and ~N
i

mn’s are sufficient statistics of Si’s and ~S, respectively.

4. Results of numerical simulation

This section presents the results of numerical simula-
tion, which are generated from three examples.

4.1. Example 1: single-state PFSA

Fig. 2 shows two single-state PFSA with the alphabet
S¼ f1,2,3g, which have identical algebraic structures, but
they differ in their morph probabilities; these PFSA belong
to the respective classes, C1 and C2. Since both PSFA have
only one state, each symbol in a string is independent and
identically distributed. Given an observed symbol string ~S,
the task is to identify one of the two classes to which ~S

belongs, i.e., to select one of the two PFSA that would more
likely generate the symbol string ~S. In this example, two
training symbol strings S1 and S2 are chosen, one from each
class. In the testing phase, the quantities ~N

1

01, ~N
1

02, ~N
1

03 are
obtained following Eq. (14), which are essentially frequency
counts of the symbols 1, 2, and 3, respectively. Let Z1, Z2,
and Z3 be the normalized frequency counts obtained by
Zk9 ~N

1

0k=ð
~N

1

01þ
~N

1

02þ
~N

1

03Þ, k¼ 1,2,3. Two classes are gen-
erated on the simplex plane in Fig. 3 that shows how the
classification boundary changes as the length of a symbol
string in the testing phase is increased.

4.2. Example 2: performance comparison with the

deterministic classification rule

This example presents a comparison of the proposed
classification method with the deterministic classification
Fig. 2. Two one-state PFSA with different morph probabilities. (a) Class

C1. (b) Class C2.

0
0.5

1

0

0.5

1

0

0.5

1

η1η2

η 3

Fig. 3. Both subfigures (a) and (b) show the classification boundaries for the tw

testing string ~S . The training strings S1 and S2 for classes C1 and C2 are obtaine

Testing data length¼25. (b) Testing data length¼80.
rule [7] that does not take the length of symbol sequences
into consideration. That is, the deterministic classification
rule computes the morph matrices Pi for each class i in
the training phase and the morph matrix ~P for the
observed string ~S in the testing phase without considering
the effects of the individual string lengths, based on the
following rule:

Dclass ¼ arg min
i

J ~P�PiJ ð20Þ

where all classes are assumed to have a common alge-
braic structure; the rationale for this assumption is that
morph matrices in all classes must be of the same size. It
is noted that, for classes with different algebraic struc-
tures, the PFSA in each class is first transformed to have a
common structure by synchronous composition [4]. In
this example, two classes with alphabet size 2 (i.e.,
9S9¼ 2) are considered for both classification methods,
where each class is represented by a D-Markov machine
[7] with depth D¼1; therefore, they have the same
algebraic structure.

The PFSA in each class is used to generate respective
training symbol strings of length Ltrn; and testing symbol
strings of length Ltst are generated by randomly choosing
a class. Then, the proposed classification method and the
deterministic classification rule are evaluated by classify-
ing the same testing strings, the classification perfor-
mance is the number of correct classification counts in
1000 iterations for different values of Ltrn and Ltst as listed
in Table 1. It is observed, in general, that both algorithms
perform better as Ltrn and Ltst are made larger. Table 1
shows that the proposed method outperforms the deter-
ministic rule; the performance gain is more evident if
both Ltrn and Ltst are small. That is, the proposed method is
more advantageous if the available data sets are small.
This is so because the uncertainty of the morph prob-
abilities due to the finite length of both training and
testing symbol strings is taken into account in the
proposed classification method, but not in the determi-
nistic algorithm.

4.3. Example 3: unforced van der Pol oscillators

This section presents the classification results for a
family of unforced van der Pol oscillators, whose
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Table 1
Comparison of classification performance: number of correct classifica-

tions out of 1000 iterations.

Ltrn9Ltst 10 20 50 100 500

(a) The proposed classification method

10 748 754 780 813 843

20 811 830 876 891 909

50 830 863 915 936 948

100 848 913 935 962 976

500 862 922 963 982 990

(b) The deterministic classification method

10 747 730 773 784 783

20 758 799 854 866 876

50 814 826 884 917 934

100 816 868 911 957 965

500 845 891 940 972 979

Table 2
The values of m for the four classes.

Class C1 C2 C3 C4

m 1.00 1.15 1.30 1.45
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Fig. 4. Time series for four classes (van der Pol equation).
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Fig. 5. Posterior probabilities for a test time series in Class C2 (m¼1.15).
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differential-equation form is given below

d2x

dt2
þmðx2�1Þ

dx

dt
þx¼ 0 : m40

yðtÞ ¼ xðtÞþwðtÞ ð21Þ

where the observed output time series y(t) is contami-
nated by additive zero-mean white Gaussian noise w(t)
with the signal-to-noise ratio being approximately 20 dB.
A family of time series data sets are created for different
values of the dissipation parameter m in the training
phase. In the testing phase, the objective is to identify
the class to which the unknown parameter m for an
observed time series belongs. In this test example, let m
take four permissible values that are referred to as the
four classes as shown in Table 2, which can be generalized
for a larger number of classes.

Fig. 4 shows a family of plots for the output y(t)
belonging to the four classes of m in the van der Pol
equation, where the data for the four classes have similar
characteristics. The time series data are sampled at 10 Hz
to generate a discrete-time representation for each class.
For the purpose of training, the length of the time series is
chosen to be 8000 (i.e., a period of � 800 s).

The next step is to partition the data sets to yield
respective symbol strings. The size of the alphabet S is
chosen to be 15, i.e., 9S9¼ 15 as a trade-off between loss
of information and computational complexity [12]. By
adopting uniform partitioning [7], the range of the time
series is divided into 15 equal intervals, each of which
corresponds to a distinct symbol si 2 S, i¼ 1,2, . . . ,9S9.
The conversion to symbol strings is achieved by substi-
tuting each real-valued data point in the discrete time
series by a symbol corresponding to the interval within
which the data point lies. It is noted that selection of the
alphabet size and the associated task of data set partition-
ing are critical issues in symbolic dynamic analysis;
however, these issues are not highlighted in this example
that focuses on explaining the relative impact of a finite
data length (i.e., a (finite-length) symbol string) on the
accuracy of classification decision.

The training phase commences after the symbol strings
are obtained for each of the four classes in Table 2. In the
D-Markov construction [7], the depth D is chosen to be 1,
which implies that the probability of generation of a future
symbol depends only on the last symbol, and hence the set
of states is isomorphic to the symbol alphabet (i.e., Q 	S).
For every class Ci, the parameters Ni

mn are obtained by
counting the number of times the symbol sn is emitted
from state qm.

In the testing phase, a new time series is obtained from
one of the classes and is partitioned to obtain a symbol
string by using the same alphabet and partitioning as in
the training phase. Following Eq. (17), the posterior
probability of each class is obtained as a function of the
length of the training data set. Fig. 5 shows the posterior
probability of each class as a function of the length of the
observed test data. It is seen in Fig. 5 that the observed
string is correctly identified to belong to the class of
m¼ 1:15 as the posterior probability of the corresponding
class exponentially approaches one, while each of the
remaining classes (i.e., for three other values of m) approaches
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zero very fast. For 600 test cases, the posterior probability of
each symbol string correctly converged to either zero or one.

A classifier can also be chosen based on its receiver
operating characteristic (ROC) [25]. To illustrate this
concept for binary classification, let there be only two
classes of van der Pol equations, namely, m¼ 1:0 belong-
ing to the class C1, and m¼ 1:3 belonging to the class C2.
The length of the training data for each class is chosen to
be 8000. The general classification rule [25] in a symbol
string ~S is given by

Prð ~S9C1Þ

Prð ~S9C2Þ
_

C1

C2

l ð22Þ

where the threshold l is varied to yield the ROC curve. For
the binary classification problem at hand, the ROC curve
provides the trade-off between the probability of detec-
tion PD ¼ Prfdecide C19C1 is trueg and the false alarm rate
PF ¼ Prfdecide C19C2 is trueg. Fig. 6 exhibits a family of
ROC curves for the proposed classification algorithm with
varying lengths of test data. It is observed that the ROC
curve improves (i.e., moves toward the top left corner)
considerably as the test data length is increased from
Ntest ¼ 100 to Ntest ¼ 700. Based on a family of such ROC
curves, it is possible to select a best combination of PD and
Ntest for a given PF, which would lead to a choice of the
parameter l.

The classification capability of the proposed algorithm
is tested on two classes of the van der Pol equation, C1 and
C2, where the nominal class C1 has its parameter m¼ 1 and
the model parameter m of the other class C2 is perturbed
from 1 within the range from 0.8 to 1.2. A classifier is built
based on the model in Eq. (22) by choosing l¼ 1. Fig. 7
depicts the classification error between the classes C1 and
C2 obtained from 400 samples for each of the two classes.
As expected, if the model parameter m is identical for both
classes C1 and C2, then the classification rate is approxi-
mately 50%. As m for class C2 deviates from 1, the error
rate decreases. It is also noted that none of the three plots
in Fig. 7 are symmetric about m¼ 1 because of the
nonlinearity of the van der Pol equation.
0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

PF: false alarm rate

P D
: d

et
ec

tio
n 

ra
te

NTest=300

NTest=500

NTest=700

NTest=600

NTest=400

NTest=100

NTest=200

Fig. 6. ROC curves for classification with different test data lengths NTest.
4.4. Example 4: PFSA of dissimilar algebraic structure

The algorithm of classifier design remains effective
even if the PFSA models, belonging to different classes,
have dissimilar algebraic structures, but they must be
constructed over the same alphabet S. As an example,
Fig. 8 shows two PFSA models over the alphabet S¼ f0,1g,
where the first class (C1) is described by a D-Markov
machine [7] of depth D¼1 and hence has two states. The
second class (C2) is described by a general synchronizable
machine [9] (that is not a D-Markov machine) and similar
morph probabilities are chosen for these two PFSA mod-
els. Note that although both machines in Fig. 8 are
synchronizable PFSA, the D-Markov machine on the left
is a subclass of shift of finite type [26] whereas the non-
D-Markov machine on the right is not restricted to have
that algebraic structure.

Symbol strings Si, i 2 f1,2g, of length 8000 are simu-
lated for each of the two class with a different initial state,
respectively. Another symbol string S is generated from
the PFSA belonging to the class C2 as the test case, and the
maximum likelihood estimation (MLE) of the stationary
probability [25] is computed based on Eq. (12). Finally,
following Eq. (19), a classifier is constructed to compute
the posterior probabilities of the symbol string ~S for
different lengths 9 ~S9, as shown in Fig. 9. Although the
classifier is initially unable to make correct decisions due
to indistinguishable morph probabilities for C1 and C2, the
posterior probability of the correct class (C2) approaches
to one very fast when the observed data length becomes
sufficiently large (e.g., 150) as seen in Fig. 9.
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5. Summary and future work

This paper addresses pattern classification in the con-
text of symbolic dynamic filtering (SDF) [7,27], especially
if the lengths of data sets in the test phase and training
phase are not equal. The algorithm is capable of handling
different cases, where the patterns of interest are repre-
sented by probabilistic finite state automata (PFSA) that
could have dissimilar algebraic structures for each class.
In this method, the Dirichlet distribution and the multi-
nomial distribution are used to model the uncertainties
resulting from the finite length of symbol strings in both
the training and testing phases. The Bayes risk function
has been used for classifier design so that the results
could be generated in real time as the test data are
generated. The classification process can be stopped much
earlier than expected if the posterior probability of one of
the classes is sufficiently high. In this context, future
research is recommended in the following two directions.
�
 Identification of non-synchronizable classes: Since relia-
bility of estimation of the stationary probability vector
has not been taken into account in the present for-
mulation, the lack of training data may result in an
inaccurate estimation of the a posteriori probability in
Eq. (16). Therefore, the classification algorithms should
focus on making uncorrupted decisions in the presence
of non-synchronizable classes.

�
 Sequential testing for classification decisions: Since the

objective is to make correct decisions as early as
possible, the classifier should be designed in the
framework of sequential testing and the resulting
ROC curve needs to be investigated for performance
enhancement.

Appendix A. Dirichlet distributions

In this appendix the estimated distribution of a finite
set of independent and identically distributed (iid) dis-
crete random variables is shown to follow the Dirichlet
distribution [21]. Let X be a finite set of iid discrete
random variables defined as

X ¼

1 with probability p1

2 with probability p2

^ ^

N with probability pN

8>>>><
>>>>:

ð23Þ

where piZ0 8i and
PN

i ¼ 1 pi ¼ 1. The numerical values of
pi are estimated by repeated observation of the random
variable X. Assuming that the distribution of pi’s is
Dirichlet, the density function has the following structure:

f ðp1,p2, . . . ,pNÞ ¼
1

Bða1,a2, . . . ,aNÞ
pa1�1

1 pa2�1
2 . . . paN�1

N

such that piZ0 8i and
XN

i ¼ 1

pi ¼ 1 ð24Þ

where ai’s are the parameters of the Dirichlet distribution.
Bða1,a2, . . . ,aNÞ is the normalizing constant that is eval-
uated as

Bða1,a2, . . . ,aNÞ ¼

Z
PN

i ¼ 1
pi ¼ 1

pi Z 08i

pa1�1
1 pa2�1

2 . . . paN�1
N dp1 dp2 . . .dpN

¼
a1!a2! . . .aN!

ða1þa2þ � � � þaNÞ!
ð25Þ

Let a new observation of the random variable be X¼K.
The posterior estimate of the distributions of pi’s is given
by the Bayes rule [21] as

f ðp1,p2, . . . ,pN9X ¼ KÞ ¼
ProbðX ¼ K9p1,p2, . . . ,pNÞf ðp1,p2, . . . ,pNÞRPN

i ¼ 1
pi ¼ 1

pi Z 08i
ProbðX ¼ K9p1 ,p2 ,...,pN Þf ðp1 ,p2 ,...,pNÞ

ð26Þ

f ðp1,p2, . . . ,pN9X ¼ KÞ ¼
pK

1

Bða1,a2, . . . ,aNÞ
pa1�1

1 pa2�1
2 . . . paK�1

K . . . paN�1
NR

PN

i ¼ 1
pi ¼ 1

pi Z 08i
pK

1

Bða1,a2, . . . ,aNÞ
p
a1�1

1
p
a2�1

2
...p

aK�1

K
...p

aN�1

N

ð27Þ

f ðp1,p2, . . . ,pN9X ¼ KÞ ¼
pa1�1

1 pa2�1
2 . . . paK

K . . . paN�1
NRPN

i ¼ 1
pi ¼ 1

pi Z 08i
p
a1�1

1
p
a2�1

2
...p

aK
K
...p

aN�1

N

ð28Þ

f ðp1,p2, . . . ,pN9X ¼ KÞ ¼
1

Bða1,a2, . . . ,aKþ1, . . . ,aNÞ
pa1�1

1 pa2�1
2 . . . paK

K . . .paN�1
N

ð29Þ

Therefore, as the prior estimate of pi’s has a Dirichlet
distribution, the posterior distribution (which is also a
Dirichlet) upon observing X¼K is obtained by adding 1 to
the corresponding parameter aK . This process is repeated
for sequentially observed instances of X.

At the initial stage, if no instance of X is observed, the
least biased estimate of the distribution of pi’s is the
uniform distribution on the simplex plane. Since the
uniform distribution is Dirichlet with the parameters
set as

a1 ¼ a2 ¼ � � � ¼ aN ¼ 1

it follows that the estimated distribution of pi’s is Dirichlet
under the assumption of a uniform prior.
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