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This brief paper presents a symbolic dynamics-based method for
detection of incipient faults in gas turbine engines. The underlying
algorithms for fault detection and classification are built upon the
recently reported work on symbolic dynamic filtering. In particu-
lar, Markov model-based analysis of quasi-stationary steady-state
time series is extended to analysis of transient time series during
takeoff. The algorithms have been validated by simulation on the
NASA Commercial Modular Aero Propulsion System Simulation
(C-MAPSS) transient test-case generator.
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1 Introduction

Performance monitoring of aircraft gas turbine engines is typi-
cally conducted on quasi-stationary steady-state data collected
during cruise conditions. This issue has been addressed by several
researchers by using a variety of analytical tools. For example,
Lipowsky et al. [1] made use of Bayesian forecasting for change
detection and performance analysis of gas turbine engines. Guru-
prakash and Ganguli [2] reported optimally weighted recursive
median filtering for gas turbine diagnostics from noisy signals.
However, transient operational data (e.g., from takeoff, climb, or
landing) can be gainfully utilized for early detection of incipient
faults. Usually engines operate at much higher stress and tempera-
ture conditions under transient operations compared to those at
steady-state conditions. Signatures of certain incipient engine
faults (e.g., bearing faults, controller miss-scheduling, and starter
system faults) tend to magnify during the transient conditions [3],
and appropriate usage of transient data could enhance the proba-
bility of fault detection [4]. Along this line, several model-based
and data-driven fault diagnosis methods have been proposed by

making use of transient data. For example, Wang et al. [5] devel-
oped a neural network-based fault diagnosis method for automo-
tive transient operations, and Surender and Ganguli [6] used an
adaptive myriad filter to improve the quality of transient opera-
tions for gas turbine engines. However, model-based diagnostics
may suffer from inaccuracy and loss of robustness due to low
reliability of the transient models. This problem is partially cir-
cumvented through usage of data-driven diagnostics; for example,
Menon et al. [7] used hidden Markov models (HMMs) for tran-
sient analysis of gas turbine engines.

A recently developed data-driven technique, called the
symbolic dynamic filtering (SDF) [8], has been shown to yield
superior performance in terms of early detection of anomalies
and robustness to measurement noise in comparison to other tech-
niques such as principal component analysis (PCA), neural net-
works (NN), and Bayesian techniques [9]. Recently, in a two-part
paper [10,11], an SDF-based algorithm for detection and isolation
of engine subsystem faults (specifically, faults that cause effi-
ciency degradation in engine components) has been reported and
an extension of that work to estimate simultaneously occurring
multiple component-level faults has been presented in Ref. [12].
Furthermore, an optimized feature extraction technique has been
developed under the same semantic framework in Ref. [13]. How-
ever, all of the above studies were conducted on steady-state
cruise flight data that conform with the assumption of quasi-
stationarity made in SDF. Due to this assumption, SDF may
not be able to adequately handle transient data that are usually of
limited length.

The goal of this brief paper is to extend SDF’s capability to
handle (short-length) transient data, beyond what is currently
done for quasi-stationary data sets of sufficient length. This paper
uses Dirichlet and multinomial distributions to construct the a
priori and a posteriori models of uncertainties, respectively. The
algorithms are formulated by quantitatively incorporating the
effects of finite-length symbol strings in both training and testing
phases of fault detection. The resulting algorithm is validated
using the transient test-case generator [14] of the C-MAPSS test
bed [15], developed by NASA.

2 Symbolic Analysis of Time-Series Data

A symbol string is obtained from the output of gas turbine
engine dynamics by partitioning, also called quantization, of the
time-series data. Thereafter, a probabilistic finite state automaton
(PFSA) model is developed from the (finite-length) symbol
sequence [8]. This section constructs a Bayesian classifier for
identification of the probability morph matrices of PFSA based on
the transient data in both training and testing phases. The Dirichlet
and multinomial distributions have been used to construct the a
priori and a posteriori models of uncertainties, respectively. This
formulation quantitatively incorporates the effects of finite-length
symbol strings in both training and testing phases of pattern
classification.

2.1 Partitioning of Time-Series Data. The sensor time
series is encoded by data partitioning in the range of the signal
[13,16], where the conversion to symbol strings is achieved by
substituting each (real-valued) data point in the time series by a
symbol corresponding to the region (i.e., interval) within which
the data point lies. This step enables transformation of the sensory
information from the continuous domain to the symbolic domain;
in other words, the sensor data at each sampling instant is replaced
by a symbol. Sarkar et al. [12,13] have reported details of data
partitioning and its usage for fault detection in gas turbine
engines.

2.2 Modeling via Probabilistic Finite State Automata. The
symbolic sequence is modeled as a PFSA that is constructed as a
tuple G ¼D ðQ;R; d;PÞ, where the alphabet R is a nonempty finite
set of symbols and the set of states Q is constrained to be
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nonempty and finite. To simplify the PFSA model construction,
this paper considers only a class of PFSA, known as D-Markov
machines [8], where the states are strings of the D past symbols;
the positive integer D is called the depth of the machine and the
number of states jQj � jRjD. Given the previous state and an
observed symbol, the state transition function d : Q� R! Q
yields the new state. In addition, the morph function p : Q� R
! ½0; 1� is an output mapping that satisfies the condition:P

r2R pðq; rÞ ¼ 1 for all q 2 Q. The morph function p has a ma-
trix representation P, called the (probability) morph matrix of
dimension ðjQj � jRjÞ. Each row sum of P is equal to 1 and each
matrix element Pij is strictly positive due to the finite-length con-
straint of time series from which PFSA models are constructed
[17,18].

Remark 2.1. The PFSA G ¼D ðQ;R; d;PÞ is not dependent on
the initial state q0 2 Q due to the assumption of quasi-stationarity
of the observed sensor data.

2.3 The Online Classification Problem. Let there be K sym-
bolic systems (i.e., classes) of interest, denoted by C1;C2;…;CK ,
over the same alphabet R. Each class Ci is modeled by an ergodic
(equivalently, irreducible) PFSA Gi ¼ ðQi;R; di;PiÞ, where i¼ 1,
2,…, K.

During the training phase, a symbol string Si ¼D si
1si

2…si
Ni

is
generated from each class Ci. The state transition function d and
the set of states Q of the D-Markov machine are fixed by choosing
an appropriate depth D. Thus, Pi’s become the only unknowns
and could be selected as the feature vectors for the purpose
of classification. The distribution of the morph matrix Pi is
computed in the training phase from the finite-length symbol
sequences for each class.

In the testing phase, let another symbol string ~S be obtained
from a sensor time-series data. Then, the task is to determine
which class this observed symbol string ~S belongs to. While the
previous work [8,16] has aimed at identification of a PFSA from a
given symbol string, the objective of this paper is to imbed the
uncertainties due to the finite length of the symbol string in the
identification algorithm that would influence the final classifica-
tion decision.

In the training phase, each row of Pi is treated as a random vec-

tor. Let the mth row of Pi be denoted as Pi
m and the nth element

of the mth row as Pi
mn > 0 and

PjRj
n¼1 Pi

mn ¼ 1. The a priori

probability density function fPi
m jSi of the random row-vector Pi

m,

conditioned on a symbol string Si, follows the Dirichlet distribu-
tion [19,20] as described below

fPi
m jSiðhi

mjSiÞ ¼ 1

Bðai
mÞ
YjRj
n¼1

ðhi
mnÞ

ai
mn�1

(1)

where hi
m is a realization of the random vector Pi

m, namely

hi
m ¼ hi

m1 hi
m2 … hi

mjRj

h i

and the normalizing constant is

Bðai
mÞ ¼

D

YjRj
n¼1

Cðai
mnÞ

C
XjRj
n¼1

ai
mn

 ! (2)

where ai
m ¼

D ½ai
m1a

i
m2 � � � ai

mjRj� with ai
mn ¼ Ni

mn þ 1 and Ni
mn is the

number of times the symbol rn in Si is emanated from the state
qm, i.e.,

Ni
mn ¼

D jfðsi
k; v

i
kÞ : si

k ¼ rn; v
i
k ¼ qmgj (3)

where si
k is the kth symbol in Si and vi

k is the kth state as derived
from the symbolic sequence Si. Recall that a state is defined as a
string of D past symbols. Then, the number of occurrence of the
state qm in the state sequence is given by Ni

m ¼
D PjRj

n¼1 Ni
mn. It fol-

lows from Eq. (2) that

Bðai
mÞ ¼

YjRj
n¼1

CðNi
mn þ 1Þ

C
XjRj
n¼1

Ni
mn þ jRj

 ! ¼
YjRj
n¼1

ðNi
mnÞ!

Ni
m þ jRj � 1

� �
!

(4)

by use of the relation CðnÞ ¼ ðn� 1Þ! 8n 2N1.
By the Markov property of the PFSA Gi, the ð1� jRjÞ row-

vectors, fPi
mg;m ¼ 1;…jQj, are statistically independent of each

other. Therefore, it follows from Eqs. (1) and (4) that the a priori
joint density fPijSi of the probability morph matrix Pi, conditioned
on the symbol string Si, is given as

fPijSiðhijSiÞ ¼
YjQj
m¼1

fPi
m jSi hi

mjSi
� �

¼
YjQj
m¼1

Ni
m þ jRj � 1

� �
!
YjRj
n¼1

ðhi
mÞ

Ni
mn

ðNi
mnÞ!

(5)

where hi ¼ ½ðhi
1Þ

Tðhi
2Þ

T � � � ðhi
jqjÞ

T � 2 ½0; 1�jQj�jRj
In the testing phase, the probability of observing a symbol

string ~S belonging to a particular class of PFSA ðQ;R; d;PiÞ is a
product of independent multinomial distribution [21] given that
the exact morph matrix Pi is known.

Pr ~SjQ; d;Pi
� �

¼
YjQj
m¼1

ð ~NmÞ!
YjRj
n¼1

Pi
mn

� � ~Nmn

ð ~NmnÞ!
(6)

¼D Pr ~SjPi
� �

as Q and d are kept invariant (7)

Similar to Ni
mn defined earlier for Si; ~Nmn is the number of times

the symbol rn is emanated from the state qm 2 Q in the symbol
string ~S in the testing phase, i.e.,

~Nmn ¼D jfð~sk; ~vkÞ : ~sk ¼ rn; ~vk ¼ qmgj (8)

where ~sk is the kth symbol in the string ~S and ~vk is the kth state

derived from ~S. It is noted that ~Nm ¼
D PjRj

n¼1
~Nmn.

The results, derived in the training and testing phases, are now
combined. Given a symbol string Si in the training phase, the
probability of observing a symbol string ~S in the testing phase is
obtained as follows:

Prð~SjSiÞ ¼
ð
� � �
ð

Pr ~SjPi ¼ hi
� �

f i
PijSiðhijSiÞdhi

¼
ð
� � �
ð YjQj

m¼1

ð ~NmÞ!
YjRj
n¼1

hi
mn

� � ~Nmn

ð ~NmnÞ!

2
4

3
5

�
YjQj
m¼1

Ni
m þ jRj � 1

� �
!
YjRj
n¼1

ðhi
mnÞ

Ni
mn

ðNi
mnÞ!

dhi
mn

" #

¼
YjQj
m¼1

ð ~NmÞ! Ni
m þ jRj � 1

� �
!

�

ð
� � �
ðYjRj

n¼1

ðhi
mnÞ

~NmnþNi
mn dhi

mn

YjRj
n¼1

ð ~NmnÞ!ðNi
mnÞ!

(9)
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The integrand in Eq. (9) is the density function for the Dirichlet
distribution up to the multiplication of a constant. Hence, it
follows from Eq. (4) that

ð
� � �
ðYjRj

n¼1

ðhi
mnÞ

~NmnþNi
mn dðhi

mnÞ ¼

YjRj
n¼1

ð ~Nmn þ Ni
mnÞ!

~Nm þ Ni
m þ jRj � 1

� �
!

Then, it follows from Eq. (9) that

Prð~SjSiÞ ¼
YjQj
m¼1

ð ~NmÞ! Ni
m þ jRj � 1

� �
!

~Nm þ Ni
m þ jRj � 1

� �
!

YjRj
n¼1

ð ~Nmn þ Ni
mnÞ!

ð ~NmnÞ!ðNi
mnÞ!

(10)

It might be easier to compute the logarithm of Prð~SjSiÞ by using
Stirling’s approximation formula logðn!Þ � n logðnÞ � n [22]
because both Ni and ~N would be large numbers. The posterior
probability of a symbol string S belonging to the class Ci is
denoted as PrðCij~SÞ and is given as

PrðCij~SÞ ¼
Prð~SjSiÞPrðCiÞXK

j¼1

Prð~SjSjÞPrðCjÞ
; i ¼ 1; 2;…;K (11)

where PrðCiÞ is the known prior distribution of the class Ci. Then,
the classification decision is made as follows:

Dclass ¼ arg max
i

PrðCij~SÞ

¼ arg max
i
ðPrð~SjSiÞ PrðCiÞÞ (12)

Algorithms 1 and 2 respectively summarize the training and
testing phases for classification of time-series data.

Algorithm 1 Training

Input: Time-series data, one for each of the K classes.
User defined Input: Symbol alphabet R, depth D of PFSA,

where the symbols are defined r1; r2;…; rjRj and the
states are defined as q1; q2;…; qjQj with jQj � jRjD.

Output: Ni
mn, where i¼ 1,…, K, n ¼ 1;…; jRj

and m ¼ 1;…; jQj.
Initialize: All Ni

mn ¼ 0.
for all i 2 f1; 2;…;Kg do

Symbolize time-series data for class i to obtain a symbol
sequence Si.

Obtain Ni
mn, the number of times the symbol rn in Si is

observed immediately after the state qm.
end for
return Ni

mn, where i¼ 1,…, K, n ¼ 1;…; jRj
and m ¼ 1;…; jQj.

Algorithm 2 Testing

Input: Test time-series data, and output of training Ni
mn.

User defined Input: Prior probability of each class PrðCiÞ,
symbol alphabet R, and depth D of PFSA, the symbols
are defined as r1; r2;…;rjRj, and states are defined as
q1; q2;…; qjQj, where jQj � jRjD.

Output: Posterior probability of each class.
Initialize: All ~Ni

mn ¼ 0
Symbolize test time-series to generate symbol sequence ~Si.
Obtain ~Ni

mn, the number of times the symbol rn in ~S is
observed immediately after the state qm is reached.

for all i 2 f1; 2;…;Kg do
Evaluate Pr(~SjSi) using Eq. (10).

end for
for all i 2 1; 2;…;K do

Evaluate Pr(Cij~S) using Eq. (11)
end for
return Pr(Cij~S), i 2 f1; 2;…;Kg.

3 Fault Injection in C-MAPSS Test Bed

The NASA C-MAPSS simulation test bed [15] has been devel-
oped for a typical commercial-scale two-spool turbofan engine
and its control system. The engine under consideration produces a
thrust of approximately 400,000 N and is designed for operation at
altitude (A) from the sea level (i.e., 0 m) up to 12,200 m, Mach
number (M) from 0 to 0.90, and temperatures from approximately
�50 �C to 50 �C. The throttle resolving angle (TRA) can be set to
any value in the range between 0 deg at the minimum power level
and 100 deg at the maximum power level. The gas turbine engine
system consists of five major rotating components, namely, fan
(F), low pressure compressor (LPC), high pressure compressor
(HPC), high pressure turbine (HPT), and low pressure turbine
(LPT).

Given the inputs of TRA, A and M, the interactively controlled
component models compute nonlinear dynamics of real-time
turbofan engine operation. A gain-scheduled control system is
incorporated in the engine system, which consists of speed con-
trollers and limit regulators for engine components.

Out of the different types of sensors (e.g., pressure, tempera-
ture, and shaft speed) used in the C-MAPSS simulation test bed,
Table 1 lists those sensors that are commonly adopted in the
instrumentation and control system of commercial aircraft
engines, as seen in Fig. 1.

In the current configuration of the C-MAPSS simulation test
bed, there are 13 component-level health parameter inputs,
namely, efficiency parameters (w), flow parameters (f), and
pressure ratio modifiers that simulate the effects of faults and/or
degradation in the engine components. Ten, out of the 13 health
parameters [23], are selected to modify efficiency (g) and flow (/)
that are defined as

• g ¼D ratio of actual enthalpy and ideal enthalpy changes
• / ¼D ratio of rotor tip and axial fluid flow velocities

For each of the engine’s five rotating components X, where X
represents F, LPC, HPC, LPT, or HPT, there are two health
parameters, namely, efficiency parameter (wX) and flow parameter
(fX). If an engine component X is in the nominal condition, then
both wX and fX are set to 1, and a fault can be injected in a compo-
nent X by independently reducing the values of the parameters wX
and/or fX. For example, wF ¼ 0:98 signifies a 2% relative loss in
the fan efficiency.

An experimental-data-based stochastic damage model, called
C-MAPSS transient test-case generator [14], has been developed
at NASA for simulating natural deterioration and fault injection in
the engine components. For all five rotating components, an
injected fault exhibits a random magnitude Fm and a random
health parameter ratio HPR. While Fm and HPR directly deter-
mine perturbations dwX in the efficiency health parameter wX of a
component X, perturbations dfX in the flow health parameter fX

are determined by HPR for given perturbations dfX based on the
following relations.

dwX ¼
D � Fmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ HPR2
p and dfX ¼

D
dwX � HPR (13)

Table 1 Sensor suite for the engine system

Sensors Description

T24 LPC exit/HPC inlet temperature
Ps30 HPC exit static pressure
T48 HPT exit temperature
P50 LPT exit pressure
Nf Fan spool speed
Nc Core spool speed
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In the case studies that follow in Sec. 4, (random) fault magni-
tudes Fm are uniformly distributed between 1.0 and 7.0. HPR for
fan, LPC, and HPC are uniformly distributed between 1.0 and 2.0,
whereas HPRs for HPT and LPT are uniformly distributed
between 0.5 and 1.0. Perturbations in the efficiency (wX) and flow
(fX) health parameters occur from their respective base values.
The relative losses in the health parameters are expressed as
follows: nominal health is represented by 100% of wX and fX; for
faulty fan, LPC and HPC, wX is varied between 95% and 99.5%
and fX is varied between 90% and 99.5%; for faulty HPT and
LPT, wX is varied between 94% and 99% and fX is varied between
93.5% and 99.5%.

4 Results and Discussion

This section presents the simulation results of symbolic analysis
of transient time series and incipient fault detection on the
C-MAPSS test bed. The goal here is to demonstrate how the
binary faults (i.e., K¼ 2 in Algorithms 1 and 2) are detected
and identified at an early stage in time-critical operations like
engine health management. To establish the relationship between
detection time and detection accuracy, numerous simulation
experiments have been performed during the “takeoff” operation,
where the Mach number is varied from 0 to 0.24 in 60 s keeping
the altitude at zero (i.e., sea level) and TRA at 80%. Faulty opera-
tions in three different components, fan, LPC and HPT, are simu-
lated along with the ideal engine condition. The HPT exit
temperature (T48) sensor (that captures the above failure signa-
tures in the gas path) is chosen to provide the transient response.
The rationale behind choosing the T48 sensor is attributed to the
following physical facts: (i) T48 is placed between HPT and LPT,
and (ii) LPT is mechanically connected to the fan and LPC via the
outer shaft. The sampling frequency of the T48 sensor data is
66.7 Hz. For the purpose of training, the duration for each simula-
tion run is chosen to be 60 s (i.e., a time series of length 	4000)
and the transient data set for each fault class is constructed by con-
catenating 50 such blocks of time-series data that were individu-
ally generated on the simulation test bed under similar transient
operating conditions. It is noted that these blocks of data are stat-
istically similar but they are not identical.

The next step is to partition the data sets to generate respective
symbol strings. The range of the time series is partitioned into five
intervals (i.e., the alphabet size jRj ¼ 5), where each segment of
the partitioning corresponds to a distinct symbol in the alphabet
R. The training phase commences after the symbol strings are
obtained for each of the four classes, i.e., one nominal and three
faulty conditions. In this application, it suffices to choose the
depth D¼ 1 [8], which implies that the probability of generation
of a future symbol depends only on the last symbol, and hence the
set of states is isomorphic to the symbol alphabet (i.e., Q 
 R).
For each class C1 and C2, the parameters Ni

mn are obtained

by counting the number of times the symbol rn is emitted from
state qm.

The testing phase starts with a new time series from one of the
classes, where the symbol sequence is generated by using the
same alphabet and partitioning as in the training phase. Following
Eq. (11), the posterior probability of each class is calculated as a
function of the length of the testing data set. Figure 2 shows the
posterior probability of each class as a function of the length of
the observed test data. It is seen that the observed sequence is
correctly identified to belong to the class of LPC faults as the pos-
terior probability of the corresponding class approaches one, while
it approaches zero for each of the remaining classes (i.e., the other
two component faults and nominal condition). By repeating the
same classification technique on 50 new test runs of LPC fault, it
is observed that a data length of 500 is sufficient to detect the fault
with a reasonable confidence. For other two component faults, the
posterior probability for the correct fault class approaches unity
within the data length of 50, as seen in Fig. 3. The rationale is that
the fault signatures for fan and HPT in T48 response are dominant,
even if they are incipient.

In a hierarchical fault detection and isolation strategy, at a low
resolution level, the goal is to identify the faulty component (e.g.,
fan, LPC, or HPT). Once the fault is located, the next step is to
quantify the severity of the located fault. The symbolic transient
fault detection technique can be extended to classify different
levels of fault in single components of a gas turbine engine. For
verification, samples of nominal data are injected with a low-level
fan fault, where the fault magnitude (Fm) follows a random uni-
form distribution ranging from 1 to 3. The remaining samples of
nominal data are injected with a high-level fan fault of magnitude
(Fm) within the range of 5–7. In this case, the alphabet size is cho-
sen to be jRj ¼ 6 to obtain better class separability. Figure 3
shows that the posterior probability for a high fan fault saturates

Fig. 1 Schematic diagram of the C-MAPSS engine model with sensors

Fig. 2 Detection in a multifault framework (ground truth: a
faulty LPC)
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to the value of 1 within a data length of 70, which is equivalent to
	1s. (Note: The oscillations in posterior probabilities in Fig. 3 are
due to randomness of the estimated parameters for data lengths
smaller than 50. But when the test case is a low-fan fault (see
Fig. 4), the posterior probability of a high-level fan fault remains
dominant until the data length reaches 	400. This would result in
a false classification as the posterior probability for the true class
reaches 1 monotonically at around the data length of 1000 at,
about 15 s, as seen in Fig. 4.) This result agrees well with the intu-
ition that the detection time increases with smaller the fault levels.

To examine the performance of symbolic transient fault
detection, a family of receiver operating characteristics (ROC) is
constructed for different lengths of test data. A binary classifica-
tion scenario is constructed, which consists of two classes: the
nominal engine condition belonging to the class C1, and a faulty
fan condition belonging to the class C2. The training data length is
the same as described in the previous simulation runs. The general
classification rule [24] in a symbol string ~S is given by

Prð~SjC1Þ
Prð~SjC2Þ

><
C1

C2

k (14)

where the threshold parameter k is varied to generate the ROC
curves. For the binary classification problem at hand, an ROC
curve provides the trade-off between the probability of detection
PD ¼ Prfdecide C2jC2 is trueg and the probability of false alarms
PF ¼ Prfdecide C2jC1 is trueg. Figure 5 exhibits a family of
ROC curves for the proposed fault detection technique with vary-
ing lengths of test data. For each ROC curve, k is varied between
0.01 and 2 with steps of 0.01. It is observed that the ROC curves
yield improved performance (i.e., movement toward the top left
corner) progressively as the test data length is increased from

Ntest ¼ 20 to Ntest ¼ 200. Thus, based on a family of such
ROC curves, a good combination of PD and Ntest is obtained for a
given PF.

5 Summary, Conclusions, and Future Work

This paper addresses detection of incipient faults in gas turbine
engines by analysis of pertinent transient time series. PFSA models
of the engine’s behavior have been constructed for fault identification
in the context of SDF [8,16]. The proposed fault detection and classi-
fication method has been validated on the NASA C-MAPSS simula-
tion test bed [15] for various operating conditions, and dependence
of detection accuracy on the data length is reported. The major
conclusions of the paper are as follows.

(1) Extension of SDF’s capability to handle (short-length) tran-
sient data, beyond what has been done for quasi-stationary
data sets of sufficient length.

(2) Usage of Dirichlet distribution and multinomial distribution
for a priori and a posteriori models, respectively, to repre-
sent the uncertainties resulting from the finite length of
symbol strings in both training and testing phases.

The next step is validation of the underlying algorithms with
actual engine operation data, followed by on-board testing. Some
of the topics of future research are listed below:

• Sensor fusion in the SDF framework: A single sensor

may not capture small faults in components or actuators.

Consequently, the sensor data may have to be observed for a

longer period of time to assure accuracy of fault detection

and classification. Sensor fusion using codependence among

sensors in the SDF framework [25] is likely to increase

accuracy and reduce delay.
• Comparison with other model-based and data-driven meth-

ods of fault detection and classification.
• Extension of the fault detection and classification method to

accommodate different types of sensor degradation.
• Testing and validation of the fault detection and classifica-

tion method on a variety of test facilities.
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Fig. 4 Low-level fan fault detection (ground truth: a low-level
fan fault)

Fig. 5 ROC curves for fan fault identification with different test
data lengths (k varying between 0.01 and 2 with steps of 0.01)

Fig. 3 High-level fan fault detection (ground truth: a high-level
fan fault)
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