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This paper presents a methodology for classification of two-
phase flow patterns in fluid systems, which takes the measure-
ments of an in situ ultrasonic sensor as inputs. In contrast to
the common practice of having an array of ultrasonic detectors,
the underlying algorithm requires only a single sensor hard-
ware in combination with an integrated software of signal
conditioning, feature extraction, and pattern classification. The
proposed method is noninvasive and can be implemented in a
variety of industrial applications (e.g., petrochemical processes
and nuclear power plants). This concept of flow pattern
classification is experimentally validated on a laboratory test
apparatus. [DOI: 10.1115/1.4007555]
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1 Introduction

In a two-phase flow system, the distribution of vapor and liquid
parts follows a variety of patterns, where the diversity in flow pat-
terns may take place due to relative velocities at the interface
between the phases in addition to several other factors such as the
bulk flow rate, fluid properties, and flow boundary conditions [1].
Characterization of flow patterns and identification of the associ-
ated flow regimes are critical for design, analysis, and operation
in a variety of industries such as petrochemical processes and
nuclear steam power plants.

Two-phase flow patterns are characterized based on the extent
of their departure from the single-phase liquid as bubbly, capillary
(also called cap-bubbly), slug, churn, annular, and the single-
phase vapor, respectively. Three commonly occurring two-phase
flow patterns, namely, bubbly, cap-bubbly, and slug, as shown in
Fig. 1, are investigated in this paper.

A significant amount of research has been accomplished for
prediction of void fraction in two-phase flow systems. However,
comparatively much less work has been reported in open literature
for classification of different flow patterns in two-phase flow sys-
tems, and some of these reported methods require a large array of
sensors and associated instrumentation, both for void fraction
identification and flow pattern classification. High-speed photog-
raphy, X-ray, and similar imaging techniques allow flow patterns
to be discovered from direct observation. Although these methods
are not very expensive and, in most cases, are not difficult to
execute, their procedures and derived inferences are somewhat
subjective. The major difficulty in pattern classification solely
based on direct observations, even using high-speed photography,
is that the picture is often ambiguous and is therefore difficult to
interpret, specially when dealing with high flow velocities.
Among the currently available techniques, the computed tomogra-
phy (CT) method has gained prominence. For example, Bieberle
et al. [2] have investigated electron-beam CT for reconstructing
images of two-phase flows, and Schleicher et al. [3] have intro-
duced the design concept of an optical tomograph.

Several researchers have reported different types of flow pattern
detection schemes. For example, Mi et al. [4] used a neural net-
work for identification of two-phase flow patterns in a vertical
channel using signals from electrical capacitance probes. Warsito
and Fan [5] used a neural network-based multicriteria optimiza-
tion image reconstruction technique for imaging multiphase flow
systems by electrical capacitance tomography. Gao and Jin [6]
proposed a flow pattern complex network (FPCN) based on con-
ductivity data. However, all these techniques suffer from the dis-
advantage of using an invasive sensor.

Ultrasonic sensing offers an alternative method that has many
benefits compared to other available methods. For example, in
addition to its noninvasive nature, an ultrasonic measurement
system is portable, independent of its host, and can be conven-
iently implemented. However, a majority of the current ultrasonic
methods are limited by the fact that they also rely on prior signal
attenuation calibration.

Chakraborty et al. [7] proposed a noninvasive ultrasonic method
for flow pattern classification, where a one-to-one correspondence
was established between the flow measure obtained from symbolic
analysis of ultrasonic data and the void fraction measured from a
conductivity probe. The work reported in this paper is an extension
of the earlier work [7]. From this perspective, major contributions
and specific features of this paper are delineated below.

• Usage of ultrasonic wave reflections from the bubbles: This

is a significant improvement over the earlier work [7] that

used reflections from the wall of a flow channel. Wall reflec-

tions might not be very useful in practice, because they

are attenuated to a large extent and thus lose significant

information of the flow characteristics.

Fig. 1 Illustration of three different patterns of two-phase
gas–liquid flow. From left to right: bubbly, cap-bubbly, and slug
flow patterns.
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• Classification of multiple types of two-phase flow patterns:

While earlier work [7] established a one-to-one correspon-

dence between the void fraction and a flow measure by sym-

bolic analysis, it did not explicitly perform classification of

two-phase flow patterns. The classification algorithm,

reported in this paper, identifies the flow pattern with good

accuracy. Apparently, such a classification scheme using a

single ultrasonic sensor has not yet been reported in open

literature.
• Computational speed of the classification algorithm: The

average execution time of the algorithm for a flow pattern

classification on a typical onboard platform is � 1
8

s, which is

much less than the time interval between two consecutive

testings for identification of the flow regime in industrial

applications.

2 Review of Underlying Concepts

The classification scheme presented in this paper is built upon
partitioning of the observed time series to obtain a symbol block
that, in turn, is used to construct probabilistic finite state automata
(PFSA) [8,9]. In this paper, a suboptimal partitioning scheme has
been adopted [10] after selecting an appropriate alphabet size
[11]. While the details of these methods are reported in the
respective afore-cited references, a brief outline of the underlying
concept of symbolic dynamic filtering (SDF) [8] is presented for
completeness of the paper.

(1) Data acquisition: Time-series data, denoted as q, are
acquired by sampling of sensor data from a physical pro-
cess such that the data set lies within a prespecified range.
Let the space of time-series data be represented as
Q � RL, where the positive integer L is the length of the
collected data and L is chosen to be sufficiently large for
convergence of statistical properties within a specified
threshold.

(2) Construction of symbol blocks: The time series is symbol-
ized by introducing a partition B ¼D fB0;…;BðjRj�1Þg that
consists of jRj mutually exclusive, and exhaustive cells
over the range of the data set, where each cell is labeled by
a symbol rj 2 R and R ¼ fr0;…; rjRj�1g is called the
alphabet of symbols. This step enables transformation of
the time series q into a symbol block s of length L, consist-
ing of the symbols in the alphabet R, and is analogous to
coarse-graining or quantization.

(3) Construction of a PFSA: First, a PFSA structure is con-
structed, which is an r-state Markov machine. Then, a sym-
bol block fsg of length L is run through the PFSA to
generate an irreducible ðr � rÞ state transition matrix
P � ½pjk�, where pjk � 0 is the transition probability from
state j to state k of the PFSA. The resulting state probability
vector p ¼ ½p1 	 	 	 pr� is the left eigenvector corresponding
to the unique unity eigenvalue of P that could be treated as
the extracted feature vector.

2.1 Optimization of Partitioning. The process of partition-
ing is crucial for pattern classification of the time series. The
primary objective here is to effectively capture the change in
information contents in the time series belonging to different
classes. Sarkar et al. [10] have introduced a time-series partition-
ing scheme, called the wrapper method, that aims to minimize the
pattern classification error for statistically unstructured applica-
tions. In view of the (possibly) non-Gaussian distribution of the
two-phase flow problem, the wrapper method is adopted in this
paper.

A composite cost based on a confusion matrix C is minimized
for multi-objective optimization, where each element cij of C
denotes the frequency of data from the class Cli being identified

as data from the class Clj [12]. The composite cost consists of two
costs that are defined by using an additional penalty weighting
matrix, elements of which represent the relative penalty for differ-
ent confusions in the classification process.

Let there be n classes of data labeled Cl1;…;Cln, and let W be
the weighting matrix, where each of its elements wij denotes the
penalty incurred by classifying data from class Cli as data from
class Clj. With these definitions, the expected cost (CostE) due to
classification errors is defined as

CostE ¼
D 1

Ns

X
i

X
j

wijcij

 !
(1)

where Ns is the total number of training samples for all classes.
We also minimize the cost, CostW , of worst case classification
error, which depends on the partitioning B.

The cost CostW is defined as

CostW ¼D max
i

1

Ni

X
j

wijcij

 !
(2)

where Ni is the number of training samples in the class Cli.
A partitioning B generates the feature of each sample for pattern
classification, where the k-NN classifier has been adopted because
of its computational advantages [13].

A composite error cost CostO is constructed for multi-objective
optimization by a convex combination of CostE and CostW as

CostO ¼
D

a CostE þ ð1� aÞCostW (3)

where the scalar parameter a 2 ½0; 1� assigns relative importance
to the individual costs.

2.1 Optimization Procedure. The objective of the partition-
ing scheme is to obtain a (sub)optimal partitioning B
 that
minimizes the cost CostO for a given a that is usually user-
specified

B
 ¼ arg min
B

CostOðBÞ (4)

The above optimization procedure could be repeated for a range
of a to construct a Pareto front [14].

The compact range of the time series is determined from the
maximum and minimum values of the observed data and a suffi-
ciently fine set of grid points is overlaid on this range. Let the
number of grid points be G. Each of the grid points denotes a pos-
sible position of a partitioning cell boundary. In other words, a
partitioning that has jRj symbols would require ðjRj � 1Þ parti-
tioning boundaries that could be selected from G grid points. As a

notation, a R-cell partitioning B is expressed as KjRj ¼
D fk1; k2;

…; kjRj�1g, where ki denotes a partitioning boundary. Since the

number of possible partitionings grows rapidly with an increase in
G and jRj, a sequential search based algorithm [10] is adopted to
obtain a (sub)optimal solution. The underlying procedure is
described as follows:

• The first step is to search for the optimal grid point that

divides the range of the data into two cells. K2 ¼ fk1g,
where k1 is evaluated as

k
1 ¼ arg min
k1

CostOðK2Þ (5)

where the two-cell optimal partitioning is given by
K
2 ¼ fk
1g.

• The next step is to partition the range of the data into three

cells by dividing either of the two existing cells of K
2 with
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the placement of a new partition boundary at k2. k2 is given

by

k
2 ¼ arg min
k2

CostOðK3Þ (6)

where the three cell partition K3 ¼ fk
1; k2g. The (sub)opti-
mal three-cell partitioning is obtained as K
3 ¼ fk
1; k
2g. In
this (local) optimization procedure, the cell that provides the
largest decrement in CostO upon further segmentation ends
up being partitioned.

• Iteratively, this procedure is extended to obtain the m-cell

partitioning as follows:

k
jRj�1 ¼ arg min
kjRj�1

CostOðKjRjÞ (7)

where KjRj ¼ K
jRj�1 [ fkjRj�1g and the optimal jRj cell par-
titioning is given by K
jRj ¼ K
jRj�1 [ fk
jRj�1g.

• The optimization procedure is monotonically decreasing

[10] in the cost function with every additional sequential

operation, i.e., CostOðK
jRj�1Þ � CostOðK
jRjÞ. The process of

creating additional partitioning cells is stopped if the cost

decrease falls below a specified positive scalar threshold

gstop and the stopping rule is: K
jRj�1 is the optimal partition-

ing if

CostOðK
jRj�1Þ � CostOðK
jRjÞ
� �

� gstop (8)

where the user-defined scalar parameter gstop is chosen for
making trade-offs between computational load and error
reduction (e.g., loss of information). While a large gstop may
create a coarse partitioning of a data set leading to unaccept-
able loss of information, a fine partitioning due to a small
gstop may decrease robustness to spurious noise and increase
the computational load without any significant improvement
in the results [11]. In essence, the choice of an appropriate
gstop depends on the behavior of the data set to be
partitioned.

3 Experimental Validation on a Test Apparatus

This section experimentally validates the concept of pattern
classification in a two-phase flow process by ultrasonic sensing
in a laboratory environment. Different components of the test
apparatus are briefly described below:

• Ultrasonic probe: The ultrasonic transducer is placed on an

acrylic block which conforms to the shape of the pipe in the

test section. A Matec PR5000 sine wave pulser/receiver is

used to inject a pulsed sine wave ultrasonic wave into the

pipe. The signal is captured at the rate of 100 megasamples

per second by a National Instruments PCI-5122 oscilloscope

card installed on a desktop computer. The oscilloscope is

triggered using the digital trigger pulse generated by the

pulser/receiver. An ultrasonic transducer (3.5 MHz, 12.5 mm

diameter Panametrics A415S) is placed on the acrylic block

of thickness 13.5 mm that conforms to the outside diameter

of the acrylic pipe; this makes a total thickness of 20 mm

when added to a pipe wall of 6.5 mm thickness. The pulser/

receiver is used in the pulse-echo mode to produce a

3.5 MHz pulsed sine wave of �5:0 ls during a repetition

rate of 400 pulses per second. Only a portion of the resulting

signal is used for analysis. There are two types of echoes

that one should expect in the present settings.
(1) The reflections from the bubbles in the flow.
(2) The back wall reflections, i.e., the reflections from the

wall of the pipe.

The reflections from the back wall are attenuated to a great
extent and, in some cases, contain no information at all. However,
the reflections from the bubbles exist for a small period of time
and hence may not be able to capture the characteristics of
the flow. Reflections of individual ultrasonic pulses contain
information corresponding to a time-localized snap-shot of the
two-phase flow. However, relevant statistical information, which
is a representative of time-averaged flow condition, can only be
extracted by compiling a large ensemble of pulses. Working with
such a data set ensures that the effects of spatial distribution of
voids are incorporated in the analysis. Typical wave forms of ul-
trasonic refections are displayed in Figs. 2(a)–2(c) for bubbly
flow, cap-bubbly flow, and slug flow, respectively. These figures
show the temporal variations of reflections and justify the fact that
a single pulse may not be able to capture the true characteristics
of the flow pattern. Therefore, it is necessary to stack several of
these reflections together for capturing the actual dynamics of
flow. Upon compilation of 50 such reflections at the rate of �400
per second, i.e., � 1

8
s for 50 reflections, a single data point is

generated for pattern classification.

4 Results and Discussion

This section presents the following experimental results that
were generated by analyzing the ultrasonic data:

(1) 1060 data points for bubbly flow.
(2) 485 data points for cap-bubbly flow.
(3) 260 data points for the slug flow.

From each class 250 data points were divided equally into train-
ing and test data sets. The data points were shuffled randomly 100
times so as to obtain the statistical behavior of error in the classifi-
cation scheme. As discussed earlier, for partitioning the data, a
weighting matrix W needs to be defined to calculate the costs
CostE and CostW from the confusion matrix for the training data
set. The weighting matrix W is chosen as shown in Table 1.

There is no penalty for correct classification, i.e., each diagonal
element of the weighting matrix W is zero. For the off-diagonal
elements, a weight wij represents the penalty assigned for incor-
rectly identifying a class Cli data as a Clj, where i 6¼ j. In this
problem, an incorrect classification of a flow pattern, having a
larger departure from the single-phase liquid, as a flow pattern,
having a smaller departure from the single-phase liquid, is consid-
ered to be more risky than the corresponding reverse decision.
For example, the penalty for classifying a slug flow as a bubbly
flow is larger than that for classifying a bubbly flow as a
slug flow. That is, the weighting matrix W has to follow two rules:
(i) wii ¼ 0 and (ii) wij > wji if i > j 8i; j 2 f1; 2; 3g.

The data space region X is divided into 40 grid cells, i.e., 39
grid boundaries excluding the boundaries of X. The sequential
partitioning optimization procedure described in Sec. 2.1 is then
employed to identify the optimal partitioning.

The parameter a in Eq. (3) is set to 0.5 to put equal weights on
CostE and CostW in construction of the composite cost CostO. The
threshold gstop in Eq. (8) is chosen to be 10�3, i.e., the suboptimal
search for partitioning the data is recursively continued until the
error in Eq. (8) is less than 10�3. For this case, the partitioning
creates seven cells, i.e., the alphabet size becomes jRj ¼ 7 based
on an entropy-rate criterion [11]. For symbolic dynamic analysis,
the depth of the D-Markov machine for PFSA construction [8] is
taken to be D¼ 1 because a higher value (i.e., D � 2) does not
yield any significant increase in (entropy-rate-based) performance
in this specific case. The features are classified by a k-NN classi-
fier (with k¼ 5) using the Euclidean distance metric [13].

The probability distribution of the classification error was gen-
erated by running the algorithm for 100 times. Using the v2 good-
ness of fit, the error statistics were approximated as a Gaussian
distribution with a significance level of 10%. The mean error is
�11:40% and the standard deviation is �2:20%, which is
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considered to be a satisfactory performance [15]. Apart from
diminishing the error rates, the goal is to reduce the classification
errors (e.g., identifying a slug flow as a bubbly flow). As an exam-
ple, a typical confusion matrix C is obtained by execution of the
pattern classification algorithm as shown in Table 2, where the
rows indicate the truth of pattern identification in the order of bub-
bly, cap-bubbly, and slug flows from left to right, and the columns
indicate the results of pattern identification in the order of bubbly,
cap-bubbly, and slug flows from top to bottom.

For the current choice of the weighting matrix W, an examina-
tion of the above confusion matrix C reveals that the chances
of correct decision are very high compared to those of incorrect
decisions. Furthermore, the chances of slug flow samples being
classified as bubbly or cap-bubbly flow are relatively low com-
pared to the reverse decisions. Similarly, the chances of cap-
bubbly flow being classified as bubbly flow are lower than the
reverse decision. The results of pattern classification, obtained as
the confusion matrix C, are strongly dependent on the choice of
the weighting matrix W that puts more penalty on misclassifying
a flow pattern (e.g., slug) as a less severe flow pattern (e.g., bub-
bly) than that for the reverse decision. The results are in agree-
ment with what is expected, because the partitioning costs are
minimized if the number of severe misclassifications is fewer than
that of benign misclassifications.

5 Conclusions and Future Work

This paper develops and experimentally validates the concept
of a method for classification of two-phase flow patterns using
noninvasive measurements from a single ultrasonic sensor. The
proposed method allows for online classification of two-phase
flow patterns using relatively inexpensive hardware at a low com-
putational cost. These advantages are particularly relevant for
both local and remote sensing applications.

This method of flow pattern classification and the associated
flow regime identification is applicable to a wide range of flow
channels at high void fractions and can be implemented in a vari-
ety of industry (e.g., petrochemical processes and nuclear power
plants). From these perspectives, future research is recommended
in the following areas.

(1) Multisensor information fusion: While multisensor ultra-
sonic techniques would provide a more complete picture of
the flow field, extensive data processing is required to
reduce the ensemble of data for classification of a flow pat-
tern. Future research should focus on efficient methods for
capturing codependence among different sensors for infor-
mation fusion.

(2) Testing with different channel geometry: Additional testing
should be conducted with larger flow channel sizes with
different shapes and orientation to allow for variations in
flow patterns.
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