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This paper addresses the problem of target detection and classification, where the performance is often
limited due to high rates of false alarm and classification error, possibly because of inadequacies in the
underlying algorithms of feature extraction from sensory data and subsequent pattern classification. In
this paper, a recently reported feature extraction algorithm, symbolic dynamic filtering (SDF), is investi-
gated for target detection and classification by using unmanned ground sensors (UGS). In SDF, sensor
time series data are first symbolized to construct probabilistic finite state automata (PFSA) that, in turn,
generate low-dimensional feature vectors. In this paper, the performance of SDF is compared with that of
two commonly used feature extractors, namely Cepstrum and principal component analysis (PCA), for
target detection and classification. Three different pattern classifiers have been employed to compare
the performance of the three feature extractors for target detection and human/animal classification
by UGS systems based on two sets of field data that consist of passive infrared (PIR) and seismic sensors.
The results show consistently superior performance of SDF-based feature extraction over Cepstrum-
based and PCA-based feature extraction in terms of successful detection, false alarm, and misclassifi-
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cation rates.
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1. Introduction

Several feature extraction methods have been proposed to gen-
erate patterns from time series data for classification purposes. The
well-known kurtosis method (Altmann, 2004) provides a statistical
measure of the amplitude of the time series. In another method
(Tian and Qi, 2002), a feature vector is constructed using the spec-
trum, where the power spectral density and the wavelet coeffi-
cients are used along with principal component analysis for
feature extraction; similar time-frequency domain methods have
been proposed by other researchers Li et al. (2002) and Succi
et al. (2001). Recently, feature extraction from time series of robot
motion behavior has been proposed by Mallapragada et al. (2012),
based on symbolic dynamic filtering (SDF) (Ray, 2004; Rajagopalan
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and Ray, 2006), where the time series data were preprocessed by
Hilbert transform that requires conversion of the real-valued signal
into complex-valued analytic signal to extract the phase informa-
tion (Subbu and Ray, 2008). In the SDF-based feature extraction,
the time series data are first converted into symbol sequences,
and then probabilistic finite-state automata (PFSA) are constructed
from these symbol sequences to compress the pertinent informa-
tion into low-dimensional statistical patterns. More recently,
SDF-based feature extraction from (wavelet-transformed) time
series has been proposed by Jin et al. (2012) for target detection
and classification in border regions. The rationale for using wave-
let-based methods is time-frequency localization and denoising
of the underlying sensor time series. However, this method
requires selection and tuning of several parameters (e.g., wavelet
basis function and scales) for signal pre-processing in addition to
the size of the symbol alphabet that is needed for SDF.

Feature extraction based on the concept of Cepstrum (Childers
et al., 1977) has been reported as a conceptually simple and com-
putationally efficient tool for use in pattern classification (Nguyen
et al.,, 2011). The objective of the current paper is to make a com-
parative evaluation of Cepstrum-based, PCA-based, and SDF-based
feature extraction for target detection and classification in the bor-
der regions using unattended ground sensor (UGS) systems. How-
ever, unlike the previous work of Jin et al. (2012) and Mallapragada
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et al. (2012), this paper has used direct partitioning and symboliza-
tion on time series data for feature extraction without performing
the wavelet transform or Hilbert transform for signal pre-process-
ing. The rationale is to make SDF comparable to Cepstrum and PCA
for feature extraction, which do not usually preprocess the time
series. In this case (i.e., without wavelet-transform or Hilbert-
transform pre-processing of the signal), the SDF-based feature
extraction method has only a single parameter to tune, which is
the (finite) cardinality of the symbol alphabet; this is computation-
ally more efficient than if wavelet or Hilbert transformation is
used. For comparison of the Cepstrum-based, PCA-based, and
SDF-based feature extraction, the performance of the respective
feature extractors has been evaluated on the same sets of field data
in conjunction with the sparse representation (Wright et al., 2008),
support vector machines (SVM) (Bishop, 2006), and k-nearest
neighbor (k-NN) (Bishop, 2006) as the pattern classifiers. These
three pattern classifiers have been employed to compare the per-
formance of the feature extractors for target detection and hu-
man/animal classification by unattended ground sensor (UGS)
systems based on two sets of field data that consist of passive
infrared (PIR) and seismic sensors as explained below.

Tools of target detection and classification by unattended
ground sensor (UGS) systems have been extensively used to mon-
itor human activities for border security; typical examples of UGS
are seismic and Passive Infrared (PIR) sensors. Seismic sensors are
suitable for long-range target detection, because they are relatively
less dependent on exogenous disturbances (e.g., Doppler effects),
as compared to acoustic sensors (Tian and Qi, 2002) that are prone
to contamination by environmental noise. In contrast, PIR sensors
are well-suited for motion detection and has the advantage of
low power consumption (Zhang et al., 2007). Nevertheless discrim-
inating human footstep signals from other target types and noise
sources is a challenging problem, because of the rapidly decreasing
trend of signal to noise ratio (SNR) as the distance between the
sensor and the moving target increases. Furthermore, the footstep
signals have dissimilar signatures for different environments and
persons, which make the problem of target detection and classifi-
cation even more challenging (Gramann et al., 1999).

In contrast to the Cepstrum-based and PCA-based feature
extraction, the advantage of the SDF-based algorithm is that it
takes into account the local information of the signal and it is capa-
ble of mitigating noise in the data even if the signal is not pre-pro-
cessed for denoising. It is shown in a later section of the paper that
the SDF-based feature extraction yields superior successful detec-
tion, false alarm, and overall correct classification rates compared
to Cepstrum-based and PCA-based feature extraction.

This paper is organized into five main sections including the
present section. Section 2 briefly describes the algorithms of Cep-
strum-based, PCA-based, and SDF-based feature extraction. Sec-
tion 3 succinctly discusses the three pattern classification
algorithms that have been used in this paper. Section 4 presents
the results of target detection and classification based on two sets
of field data of passive infrared (PIR) and seismic sensors. Section 5
summarizes and concludes this paper with recommendations for
future research.

2. Feature extractors

Feature extraction from sensor signals is an important step in
target detection and classification which is accomplished in this
paper by three alternative algorithms, namely Cepstrum (Nguyen
et al, 2011), PCA (Bishop, 2006), and SDF (Ray, 2004). While the
details of these algorithms have been reported in earlier publica-
tions, this section briefly reviews the underlying concepts of fea-
ture extraction from sensor time series for completeness of this

paper and lists the algorithms that have been used in this paper
for feature extraction.

2.1. Cepstrum for feature extraction

This subsection briefly describes the Cepstrum-based feature
extraction that has been widely used in speech recognition and
acoustic signal classification (Childers et al., 1977). Given a signal
f@®), t=1,...,N, Cepstra are usually computed in the following
form (Oppenheim and Shafer, 1975), which is used in the rceps

Matlab  function (http://www.mathworks.com/help/signal/ref/
rceps.html):
fe(t) = R(F(log | F(w) |) (1)

where F(w) is the Fourier transform of the signal f(t); the operator
F~! is the inverse Fourier transform; and %(z) indicates the real
part of a complex scalar z.

A slightly modified version of this algorithm is used here. After
obtaining the Fourier transform of the signal, frequency compo-
nents with small values are discarded before taking the inverse
Fourier transform to prevent high unimportant components from
gaining higher Cepstrum values. After finding the Cepstrum fea-
tures, the first N, components are used as Cepstrum features for
classification. Algorithm 1 for Cepstrum-based feature extraction
is presented below.

Algorithm 1. Cepstrum for feature extraction

Input: Time series data sets x € R"V; Cut-off sample Ny
(where Ny < N); and dimension of the Cepstrum feature N¢
(where N¢ < Ny).

Output: Extracted Cepstrum-based feature p € RN of the
time-series x

1: Compute the magnitude of FFT | F(w) | of the given time

series where w =1,...,N

2: Store the first Ny frequency components and discard the
rest

3

: Compute f(t) = R(F ' (log | F(®) ).t =1,...,N;
4: Compute the feature p = [f(1) f.(1)...fc(N¢)]

2.2. Principal component analysis for feature extraction

This subsection briefly describes the principal component anal-
ysis (PCA) for feature extraction, which has been widely used in di-
verse applications (Bishop, 2006). While the Cepstrum-based
feature extraction makes use of only the information imbedded
in a time series, PCA takes advantage of the information of the
ensemble of training data in addition to the local information to
extract the features (Bishop, 2006). Let the training data sets (i.e.,
the ensemble of time series) be organized as an (M x N)-dimen-
sional data matrix, where M is the number of training data sets
and N is the length of each data set (i.e., 1-D time series). For the
detection problem, the training data consists of both “No Target”
and “Target Present” classes while, in the human/animal classifica-
tion problem, the training data consists only of samples from the
“Target Present” class.

Let X be the centered version of the original (M x N) data ma-
trix, where each row of X is an individual data sample x with zero
mean. In the application of target detection and classification, M is
often smaller than N, i.e., the number of training samples are fewer
than the length of time-series. Therefore, it is numerically efficient
to analyze the (M x M) matrix (1/M)XX" that has the same non-
zero eigenvalues as the (N x N) computed covariance matrix
(1/M)X"X (Bishop, 2006).
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Let v; be the normalized eigenvectors of the real symmetric ma-
trix (1/M)XX" corresponding to the (real positive) eigenvalues /;
that are arranged in the decreasing order of magnitude, i.e.,
1=l =...>/y. Let m be the smallest integer such that
S 2> n>M 2 where 1 < m < M, where the threshold parame-
ter 17 is a real positive fraction close to one. The corresponding (nor-
malized) eigenvectors u; in the original data space are obtained in
terms of »; and 4; as follows (Bishop, 2006; Mallapragada et al.,
2012):

U = LXT Vi,
MJ;

The PCA projection matrix W € R¥™ is then obtained by grouping

the computed eigenvectors as follows:

W = [y . . . U] 3)

i=1,2,...,m. )

The PCA-based feature vector p € R"™™ for a given (train or test)
time-series x € R"", is then computed by projection as follows:

p =xW. (4)

Algorithm 2 for PCA-based feature extraction is presented
below.

Algorithm 2. Principal component analysis for feature
extraction

Input: Training time series data sets x; ¢ RN j=1,...,M;
Tolerance # € (0, 1); and test time series data set x € RN

Output: Extracted feature vector p € R™™ for the time-series
x

1: Construct the “centered version” training data matrix
X € RMN, where each row x; has zero mean.

2: Compute the matrix S = (1/M)XX"

3: Compute the normalized eigenvectors {v;} of S with their
corresponding eigenvalues {4;} in the decreasing order of
magnitude

: Compute the normalized eigenvectors u; = —— (X)Tv;

: Find the smallest m < M such that > 2 > 1>V 4
: Construct (N x m) projection matrix W = [uj,uy, ..., Up]
: Generate (1 x m) reference patterns p = x W

No v N

2.3. Symbolic dynamic filtering for feature extraction

This subsection succinctly presents the underlying concept and
theory of symbolic dynamic filtering (SDF) (Ray, 2004) for extrac-
tion of (low-dimensional) features from time-series data. As stated
earlier in Section 1, the SDF algorithm reported in Ray (2004) and
Rajagopalan and Ray (2006) includes wavelet-transformed pre-
processing of signals to facilitate time-frequency localization and
denoising. However, inclusion of wavelet transform requires tun-
ing of additional design parameters, such as the wavelet basis
and a set of scales. Since multiplicity of selectable parameters de-
creases the ease of usage and may affect the performance of the
algorithms, this paper has applied SDF directly on the time-series
data (i.e., without wavelet preprocessing) to make a fair compari-
son of the three feature extraction methods based on the same sets
of data.

The pertinent steps of the SDF procedure for feature extraction
are delineated below.

2.3.1. Symbolization of time series

This step requires partitioning (also known as quantization) of
the time series data. The signal space, approximately represented
by the training data set, is partitioned into a finite number of cells

that are labeled as symbols, i.e., the number of cells is identically
equal to the cardinality |Z| of the (symbol) alphabet %. As an exam-
ple for the one-dimensional sensor time series data in Fig. 1, the
alphabet X~ = {«, ,7,4}, i.e.,, | £ |=4, and three partitioning lines
divide the ordinate (i.e., y-axis) of the time series profile into four
mutually exclusive and exhaustive regions. These disjoint regions
form a partition, where each region is labeled with one symbol
from the alphabet X. If the value of time series at a given instant
is located in a particular cell, then it is coded with the symbol asso-
ciated with that cell. As such, a symbol from the alphabet X is as-
signed to each (signal) value corresponding to the cell where it
belongs. (Details are reported in Rajagopalan and Ray (2006).)
Thus, a (finite) array of symbols, called a symbol string (or symbol
block), is generated from the (finite-length) time series data.

The ensemble of time series data are partitioned by using a par-
titioning tool (e.g., maximum entropy partitioning (MEP) or uni-
form partitioning (UP) methods Rajagopalan and Ray (2006)). In
UP, the partitioning lines are separated by equal-sized cells. On
the other hand, MEP maximizes the entropy of the generated sym-
bols and therefore, the information-rich cells of a data set are par-
titioned finer and those with sparse information are partitioned
coarser, i.e., each cell contains (approximately) equal number of
data points under MEP. In both UP and MEP, the choice of alphabet
size |X| largely depends on the specific data set and the allowable
error of detection and classification.

In this paper, MEP has been adopted as the partitioning tool to
accommodate sparsity of the time series data to be symbolized. For
the purpose of pattern classification, the training data set is parti-
tioned with a given alphabet size | £ | that is selected by trade-off
between information loss and computational complexity (Rajago-
palan and Ray, 2006) and the partitioning is subsequently kept
constant for the test data.

2.3.2. Construction of probabilistic finite state automata (PFSA)

The core assumption for construction of probabilistic finite state
automata (PFSA) is that the symbolic process for different classes
of targets can be approximated as a Markov chain of order D, called
the D-Markov machine, where D is a positive integer. While the de-
tails of the D-Markov machine are given in Ray (2004), the perti-
nent information on the construction of a D-Markov machine is
presented below.

A D-Markov chain is a statistically (quasi-) stationary stochastic
process S =---5_1Sq¢---S1 - - -, Where the probability of occurrence of
a new symbol depends only on the last D symbols, i.e.,

P[Sn‘sn—l ©+Sp-p-- } = P[Sn‘sn—l o 'Sn—D]

The construction of a D-Markov machine is based on: (i) state split-
ting that generates symbol blocks, also called words, of different
lengths according to their relative importance; and (ii) state merging
that assimilates histories from symbol blocks leading to the same
symbolic behavior (P. Adenis et al., 2011). Words of length D on a
symbol string are treated as the states of the D-Markov machine be-
fore any state-merging is executed. Thus, on a (finite) alphabet with
cardinality |X|, the total number of possible states is less than or
equal to |2|°; and operations of state merging may significantly re-
duce the number of states. As the value of D is increased, more
memory is imbedded in the Markov states of the PFSA. However,
the benefits of having additional memory associated with a larger
value of D could be offset by the increased computational load.
So, one must make a trade-off between the two competing require-
ments of:

e Capturing information from the time series, and

e Reduction of computational complexity in terms of memory
requirements and execution time in the construction of
D-Markov machine algorithms.
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Fig. 1. Concept of symbolic dynamic filtering (SDF) as a feature extractor.

The PFSA states represent different combinations of words on
the symbol sequence. In the graph of a PFSA, the directional edge
that interconnects a state (i.e. a node) to another state represents
the transition probability between these states. Therefore, the
“states” denote all possible words within a window of certain
length. In this paper, the word size D is taken to be 1 and hence
the number of possible states is equal to the number of symbols;
therefore, the results reported in this paper are limited to D = 1.
However, in general, larger values of the integer parameter D
(i.e.,, D> 1) might be necessary to capture the long time-scale
information about the process. It is noted that the operations of
state splitting and state merging might be necessary for PFSA con-
struction with D > 1, while these operations are not required for
D =1 (P. Adenis et al., 2011).

As a consequence of having D = 1, the number of states is equal
to the number of symbols, i.e., |Q| = |Z|, where the set of all possi-
ble states is denoted as Q =< q4,q5,-- -, q‘Q‘} and | Q | is the num-
ber of (finitely many) states. The (estimated) state transition
probabilities are defined as:

N(q;,qi)
Dicia, \Q\N(%q,')

where N(q,, q;) is the total count of events when g, occurs adjacent
to g, in the direction of motion. Having computed all these probabil-
ities p(q,|q,)Vqy, q; € Q, the (estimated) state transition probability
matrix of the PFSA is given as

p(alq) £ vqy,q € Q (5)

P(@:1g:) p(qla)
- |. L ~ ®
P(‘M%q) P(Q\QHQ\Q\)

By appropriate choice of partitioning, it is ensured that the
resulting Markov chain model satisfies the ergodicity conditions,
i.e,, the stochastic matrix IT is irreducible. The rationale is that,

under statistically stationary conditions, the probability of every
state being reachable from any other state within finitely many
transitions must be strictly positive (Berman and Plemmons,
1994). For a given time series, after the matrix IT is constructed,
its left eigenvector p corresponding to the (unique) unity eigen-
value is computed. Then, the vector p, which is the stationary state
probability vector, serves as the “feature” vector extracted from
the time series as seen in Fig. 1. This feature vector p is used for
pattern classification in the sequel.

2.3.3. Formulation of SDF-based feature extraction algorithms
The SDF-based feature extraction is executed as a combination
of two algorithms:

e Maximum entropy partitioning (MEP) of time series data.
e Symbolic dynamic filtering (SDF) for feature extraction,
which makes use of the MEP algorithm.

Algorithm 3 and Algorithm 4 for SDF-based feature extraction
are presented below.

Algorithm 3. Maximum entropy partitioning

Input: Finite-length string y of time-series data; and number
of symbols |X|

Output: Partition vector p € R/*/*1

1: Sort the time series data string x in the ascending order

2: Let K=length (y)

3: Assign p(1) = y(1), i.e., minimum element of y

4: fori=2 to |X| do

5

6

7

p(i) = y(ceil(“"‘]z)‘*'())
:end for
: Assign o(|Z] + 1) = y(K), i.e., maximum element of y
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Algorithm 4. Symbolic dynamic filtering for feature
extraction

Input: Training time series data sets x; e RN, j=1,....M, a
test time series data set x € R'*N, and number of symbols
[Z]

Output: Extracted SDF-based feature vector p € R'**! for the
time-series X
: Initialize y = 0
:forj=1toMdo
1y =y Ux
:end for
: Partition y using Algorithm 3 to obtain the (common)
partition vector p
: Use p on the test data set x to obtain the symbol string s
7: Construct the (irreducible) state transition probability
matrix IT by using Eqgs. (5) and (6)
8: Compute the (sum-normalized) left eigenvector p
corresponding to the (unique) unity eigenvalue of IT

U N WN =

)]

3. Target detection and classification

Two classification problems are addressed in this paper, both of
which are of binary type. In the first problem of target detection,
the output of the classifier is either “no target” or “target present”;
and the second problem is about classifying the target as “human”
or “animal” led by a human. In an earlier publication (Jin et al.,
2012) on this topic, these two classifiers are correlated, i.e., the
human\ animal classification is performed only after a target is de-
tected, regardless of whether this detection is correct or false.
However, the current paper treats these two classification prob-
lems separately, because the main objective here is to compare
the performance of Cepstrum, PCA and SDF as feature extractors
and thus treating the detection and classification problems sepa-
rately would yield unambiguous comparison. In this context, three
different classifiers that have been used in conjunction with each
of Cepstrum, PCA and SDF feature extractors are: (i) support vector
machines (SVM) (Bishop, 2006), (ii) k-nearest neighbor (k-NN)
(Bishop, 2006), and (iii) sparse representation classifier (SRC) (Ngu-
yen et al, 2011) that are briefly reviewed in the following
paragraphs.

3.1. Support vector machine (SVM) and k-nearest neighbor (k-NN)
algorithms

The SVM and k-NN algorithms are among the most frequently
used tools of pattern classification (Bishop, 2006). For k-NN, the
neighborhood size k is kept is not too small to avoid the over-
fitting problem. Similar to the earlier work of Jin et al. (2012),
the SVM method has also been used in the current paper to
regenerate the results and compare the performance with other
classification algorithms. A Gaussian kernel has been used for
SVM, similar to what was done in Nguyen et al. (2011) for target
classification with UGS systems.

3.2. Sparse representation classification (SRC) algorithm

The SRC algorithm was first used for solving the problem of face
recognition (Wright et al, 2008), where a large matrix
A2 [A1A; - Ac], consisting of the training data, is constructed
where A;,i € {1,---,C} is a (n x N;) training matrix consisting of
the training samples belonging to the ith class, n is the dimension
of the feature vector, and N;,i € {1,---,C} is the number of training
samples in the class i, and C is the total number of class labels. It is

assumed that a test sample from the i" class lies approximately
within the subspace formed by the training data of the ith class.
For a given test vector y in the sparse classification algorithm,
the following ¢;-optimization problem (Donoho, 2006) needs to
be solved as:

min ||x||,, such that |ly — Ax|, <€

In the above optimization problem, the user-selected parameter € is
a representative of the upper bound of the noise spectrum in the
data (Candes and Tao, 2006), where the optimal solution x of the
above ¢; optimization is shown to be a sparse vector. For x € RY,
where M is the total number of training samples, let §;(x) € R be
a new vector whose only non-zero elements are the entries in x that
are associated with class i in A. In the noiseless scenario, if the test
data y belongs to the ith class, then §;(x) should be a zero vector for
all possible j # i. However, since noisy data are encountered in real-
life applications, the residuals ||y — Ad;(x)||, needs to be computed
for classification of the test sample y and the label of the test vector
y is predicted as the argument i* that is the minimizer of the
residuals.

One of the main advantages of the SRC algorithm is that a care-
ful selection of the features is not necessary. What is critical, how-
ever, is whether the number of features is sufficiently large and
whether the sparse representation is correctly computed. The
SRC algorithm is also robust in dealing with noisy data (Candes
and Tao, 2006).

4. Results and discussion

This section presents the results of target detection and classi-
fication, which were generated from two sets of field data, each
consisting of time series generated from passive infrared (PIR)
and seismic sensors in different sensor sites. Each of the test sce-
narios consists either of the two classes of targets: (i) human walk-
ing alone, and (ii) animal led by a walking human. These targets
moved along an approximately 150 m long trail and returned along
the same trail to the starting point; all targets passed by the sensor
sites at a distance of approximately 5 m. Signals from both PIR and
seismic sensors were acquired at a sampling frequency of 10 kHz
and each test was conducted over a period of approximately 50 s.

The field data set #1 was collected on three different days,
Day#1, Day#2 and Day#3, from test fields on a wash (i.e., the
dry bed of an intermittent creek) and at a choke point (i.e., a place
where the targets are forced to go due to terrain difficulties). In
contrast, the field data set #2 was collected on four different days,
Day#1, Day#2, Day#3 and Day#4, from test fields on different
types of terrains such as wash, trail and watering stations. Table 1
lists the numbers of different labeled scenarios for each day for
both data sets #1 and #2.

The data sets #1 and #2 have been analyzed for performance
comparison of the feature extractors, Cepstrum, PCA, and SDF in
conjunction with the (binary) classifiers, SVM, k-NN, and SRC that
have the following respective design parameters:

e SVM: Variance of the Gaussian kernel and regularization
parameter (Scholkpf and Smola, 2002; Bishop, 2006);

e k-NN: Neighborhood size k (Bishop, 2006);

e SRC: Error upper bound € (Nguyen et al., 2011).

Fig. 2 presents typical time series and extracted features from
PIR and seismic sensor signals, where individual rows represent
different scenarios and the individual columns represent the fol-
lowing: sensor signals in Column 1 along with the extracted fea-
tures generated by Cepstrum in Column 2, PCA in Column 3, and
SDF in Column 4.
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Table 1
Number of different scenarios in each day for the data sets #1 and #2.
Target Data set #1 Data set #2
Day1 Day2 Day3 Total Day1 Day?2 Day3 Day4 Total
No target 32 28 50 110 6 56 82 66 210
Human 14 22 30 66 6 21 47 32 106
Animal 18 6 20 44 0 35 35 34 104
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(a) Typical PIR sensor signals: “No target” (top row) and “Presence of a target: human and/or animal” (bottom row)
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(b) Typical seismic sensor signals: “Human target” (top row) and “Animal target led by a human” (bottom row)

Fig. 2. Sensor signals (Column 1) along with the extracted features generated by Cepstrum (column 2), PCA (column 3) and SDF (column 4).

Let N; be the total number of test samples for the Class 1 target
and let n; (where 0 < n; < N;) be the number of misclassifications
of the Class 1 target as belonging to Class 2; similarly, let N, and n,
(where 0 < n; < N;) be the corresponding parameters for the Class
2 target. The goal is to select the design parameter of a classifier by
making a trade-off between two conflicting objectives of minimiz-
ing misclassifications of Class 1 and Class 2 targets, i.e., classifying
a target to one class when it truly belongs to the other class. Let
P & y-and P, e § be the estimated probabilities of misclassifying
Class 1 and Class 2 targets, respectively. In this context, the com-
posite objective function is selected to be a weighted linear combi-
nation of the misclassification rates.

J(o) = oPy + (1 — )Py (7)

where o € (0,1) is the (user-selected) trade-off parameter; and j(x)
is the cost functional to be minimized with respect to the classifier
design parameter. Depending on how the parameter o is selected,
minimization of J(«) may lead to different optimal solutions for P;

and P,. Given N; and N, and selecting o = (ﬁ) the cost func-
tional J in Eq. (7) becomes (%) that is the total misclassification
rate of combined Class 1 and Class 2 targets.

For each field data set, parameters of the feature extraction
algorithms are chosen by numerical experiments and are kept
invariant for all tests. For Cepstrum method (see Algorithm 1 in
Section 2), N. and Ny are set to 100 and 150, respectively. Thus,
the number of Cepstrum features is 100 for both detection and
classification. For the PCA method (see Algorithm 2 in Section 2),
96% of the total variance is used as the cumulative proportion to
select the number of principal components which, in turn, is the
number of PCA features used for both target detection and classifi-
cation. For SDF-based feature extraction (see Algorithm 3 and Algo-
rithm 4 in Section 2), alphabet size |X| = 20 has been used for
detection and |X| = 30 for classification. In the training phase, for
a finite set of test samples in each class, the design parameter of
each of the three (binary) classifiers, SVM, k-NN and SRC, is deter-
mined by minimizing the total misclassification rate as explained
above.

A three-way cross-validation, based on the data collected on
three days for the data set #1, has been used to assess the perfor-
mance of the three feature extractors, Cepstrum, PCA and SDF, for
target detection and classification by using time series data from
PIR and seismic sensors. The data sets are divided into three sets
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by date, i.e., first data from Day 1 and Day 2 are used for training
and the classifiers are tested on Day 3. This process is repeated
for two other combinations: (a) Day 3 and Day 1 data as training
data and Day 2 as test data, and (b) Day 2 and Day 3 data as train-
ing data and Day 1 as test data. Thus, three different combinations
of training and testing have been performed for the field data set
#1. Similarly, for the data set #2, a four-way cross-validation has
been used based on the data collected on four days to assess the
performance of the three feature extractors, Cepstrum, PCA, and
SDF, for target detection and classification from both PIR and seis-
mic sensor data. Thus, four different combinations of training and
testing have been performed for the field data set #2.

4.1. Target detection

Table 2 shows averaged confusion matrices for the target
detection problem for each of the three feature extractors, where
the upper part pertains to data set #1 and the lower part to data
set #2. These confusion matrices are obtained by applying the
SRC classifier individually on PIR and seismic sensor data when,
in the cross validation process, the respective data on each of
the single days are used for testing and the remaining data for
training; the results of each test scenario are then summed up
to form the respective confusion matrix in Table 2. Each column
of the twelve confusion matrices (i.e., six confusion matrices for
each data set) represents the instances in a predicted class of
“No Target” or ‘Target present,” and each row represents the in-
stances in an actual class (i.e.,, the ground truth). For data set
#1, out of a total of 220 scenarios for PIR sensors, Cepstrum
and PCA yield 196 and 179 correct decisions, respectively, while
SDF makes 215 correct decisions; the corresponding number for
data set #2 are: out of a total of 420 scenarios for PIR sensors,
Cepstrum and PCA yield 340 and 328 correct decisions, respec-
tively, while SDF makes 415 correct decisions. The results are
similar for seismic sensors.

Table 3 summarizes the average rates of successful target detec-
tion, false alarm, and wrong detection by cross-validation for both
data sets #1 and #2, when either Cepstrum, PCA or SDF is used as
the feature extractor for target detection along with the three dif-
ferent classifiers: SVM, k-NN and SRC. In terms of wrong detection,
the performance of SDF is significantly superior to that of both Cep-
strum and PCA for all three classifiers. It is seen that, for data set
#1, SDF has yielded higher successful target detection rates than
Cepstrum and PCA with consistently small false alarm rates. It is
also seen that, on the average, SDF yields better results than Cep-
strum and PCA for data set #2.

Table 2

4.2. Target classification

Table 4 shows averaged confusion matrices with the SRC classi-
fier for classification of human versus animal led by human, using
PIR and seismic sensors, respectively, for each of the three feature
extractors, where the upper part pertains to data set #1 and the
lower part to data set #2. The results are obtained by applying
SRC individually on PIR and seismic sensor data when, in the cross
validation process, the respective data on each of the single days
are used for testing and the remaining data for training. Each col-
umn of the twelve confusion matrices (i.e., six confusion matrices
for each data set) represents the instances in a predicted class of
“Human” or “Animal,” and each row represents the instances in
an actual class (i.e., the ground truth). For the data set #1, out of
a total of 110 scenarios for seismic sensors, Cepstrum and PCA
yield 76 and 62 correct classifications, respectively, while SDF
makes 84 correct classifications; the corresponding number for
data set #2 are: out of a total of 220 scenarios for seismic sensors,
Cepstrum and PCA yield 119 and 109 correct classifications,
respectively, while SDF makes 158 correct classifications. The re-
sults are qualitatively similar for PIR sensors.

Table 5 summarizes the average rates of successful human clas-
sification, false alarm, and misclassification by cross-validation for
both data sets #1 and #2, when either Cepstrum, PCA or SDF is
used as the feature extractor for target detection along with the
three different classifiers: SVM, k-NN and SRC. In terms of mis-
classification in each of the data sets #1 and #2, the performance
of SDF is significantly superior to that of both Cepstrum and PCA
for all three classifiers.

It is also observed that, in most of the scenarios, usage of PIR
sensors resulted in better classification performance compared to
that of seismic sensors for both detection and classification. Better
results are expected if fusion techniques are employed to take
advantage of the cross-correlated information of the sensors,
which is a topic for future research.

4.3. Computational costs

This section presents a comparison of the computational costs
(i.e., execution time) of the three feature extraction algorithms un-
der consideration. To this end, typical simulation costs have been
generated based on a data set consisting of 156 sets of time series
as training samples and 64 different sets of time series as test sam-
ples. The results have been generated on a single core of a 2.13 Ghz
CPU with 6 GB memory. It is noted that each of PCA and SDF has a

Confusion matrices obtained by the SRC classifier using PIR and seismic sensors of data sets #1 and #2 for target detection. Each confusion matrix is obtained by summing up the

confusion matrices that are generated by cross validation.

PIR Seismic
No Target Target Present No Target Target Present
Data set #1
Cepstrum No Target 91 19 104 6
Target Present 5 105 11 99
PCA No Target 95 15 70 40
Target Present 26 84 39 71
SDF No Target 108 2 107 3
Target Present 3 107 9 101
Data set #2
Cepstrum No Target 199 11 179 31
Target Present 69 141 54 156
PCA No Target 153 57 43 167
Target Present 35 175 28 182
SDF No Target 207 3 198 12
Target Present 2 208 28 182
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Table 3
Results of three-way and four-way cross-validation for target detection of data set #1 and #2, respectively.
Successful target detection False alarm Wrong decision
Cepstrum PCA SDF Cepstrum PCA SDF Cepstrum (%) PCA (%) SDF (%)
Data set #1
PIR SVM 0.97 0.95 0.97 0.05 0.00 0.00 3.64 227 1.36
k-NN 0.95 0.90 0.97 0.00 0.00 0.00 2.72 5.00 1.36
SRC 0.95 0.76 0.97 0.17 0.14 0.02 10.91 18.64 2.27
Seismic SVM 0.87 0.60 0.94 0.14 0.14 0.09 13.18 27.27 7.73
k-NN 0.78 0.15 0.94 0.25 0.05 0.08 23.64 45.00 7.27
SRC 0.90 0.65 0.92 0.05 0.36 0.03 7.72 35.91 5.45
Data set #2
PIR SVM 1.00 1.00 0.99 0.02 0.00 0.01 1.43 0.23 143
k-NN 1.00 0.88 1.00 0.01 0.01 0.01 0.24 6.43 0.71
SRC 0.67 0.83 0.99 0.05 0.27 0.01 19.05 21.90 1.19
Seismic SVM 0.88 0.91 0.90 0.16 0.08 0.07 14.05 8.33 8.57
k-NN 0.89 0.59 0.88 0.10 0.01 0.08 10.71 20.95 10.00
SRC 0.74 0.83 0.87 0.15 0.73 0.05 20.24 45.00 9.29
Table 4
Confusion matrices obtained by SRC classifier for PIR and seismic sensors of data sets #1 and #2 for human/animal classification.
PIR Seismic
Human Animal Human Animal
Data set #1
Cepstrum Human 51 15 56 10
Animal 25 19 24 20
PCA Human 61 5 49 17
Animal 21 23 31 13
SDF Human 57 9 55 11
Animal 16 28 15 29
Data set #2
Cepstrum Human 64 42 71 35
Animal 52 52 56 48
PCA Human 59 47 16 90
Animal 33 71 11 93
SDF Human 83 23 91 15
Animal 54 50 37 67
Table 5
Results of three-way and four-way cross-validation for human/animal classification of data set #1 and #2, respectively.
Successful Human Classification Human False Alarm Wrong Decision
Cepstrum PCA SDF Cepstrum PCA SDF Cepstrum (%) PCA (%) SDF (%)
Data set #1
PIR SVM 0.73 0.92 0.88 0.45 0.43 0.20 34.55 21.82 15.45
k-NN 0.88 0.91 0.89 0.41 0.52 0.34 23.64 26.36 20.00
SRC 0.77 0.92 0.86 0.57 0.48 0.36 36.36 23.64 22.73
Seismic SVM 0.68 0.24 0.85 0.59 0.45 0.41 41.82 63.64 25.45
k-NN 0.70 0.55 0.86 0.86 0.68 0.50 52.73 54.55 28.18
SRC 0.85 0.74 0.83 0.55 0.70 0.34 30.91 43.64 23.64
Data set #2
PIR SVM 0.76 0.61 0.89 0.42 0.58 0.38 32.86 48.09 24.76
k-NN 0.73 0.59 0.76 0.72 0.46 0.52 49.05 43.33 37.62
SRC 0.60 0.56 0.78 0.50 0.32 0.52 44.76 38.10 36.67
Seismic SVM 0.63 0.92 0.91 0.38 0.53 0.38 37.62 30.48 23.81
k-NN 0.56 0.97 0.77 0.36 0.69 0.41 40.00 35.71 31.90
SRC 0.67 0.15 0.86 0.54 0.10 0.36 43.33 48.10 24.76

training phase which is usually performed off-line, while Cepstrum
treats training and test samples uniformly.

In the experiments, the Cepstrum features were extracted in
~ 16 ms for each time series. The training phase for PCA, which in-
cludes finding the projection matrix and extracting the features for

the training samples, took ~ 1.8 s while the feature for each test
sample was generated in less than 10 microseconds. Finally, The
training phase for SDF, which includes partitioning of the data
set and extraction of features for the training samples, took
~ 2.4s while the feature of a test sample was generated in
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~ 37 ms. Therefore, for real-time applications, the operations of
both SDF and Cepstrum are performed in the order of milliseconds
to extract features from test time series with a slight advantage to-
ward Cepstrum, and PCA is the fastest because it only accounts for
a linear projection for extracting the features.

5. Summary, conclusions, and future work

This paper presents a comparative evaluation of Cepstrum,
principal component analysis (PCA) and symbolic dynamic filtering
(SDF) as feature extractors for target detection and classification.
All three methods have been tested on two data sets, consisting
of passive infrared (PIR) and seismic sensors, collected from differ-
ent fields. The underlying algorithms of feature extraction have
been executed in conjunction with three different classification
algorithms, namely, support vector machines (SVM), k-nearest
neighbor (k-NN), and sparse representation classifier (SRC).
Cross-validation has been used to assess the performance of Cep-
strum, PCA and SDF as feature extractors for both PIR and seismic
sensor data sets. The results show consistently superior perfor-
mance of SDF-based feature extraction over both Cepstrum-based
and PCA-based feature extraction in terms of successful detection,
false alarm, and wrong detection and classification decisions. The
rationale for superior performance of SDF over Cepstrum and
PCA as a feature extractor is presented below.

Cepstrum features are extracted using only the local informa-
tion of a given time series without making use of the training data.
In contrast, PCA utilizes the training data to find the linear trans-
formation and approximates the subspace in which most of the
variance of the training data lies. Although this is an advantage
of PCA over Cepstrum, a linear transformation is not necessarily
a good method of feature extraction from the data; this might in-
deed be a possible reason of degraded classification performance
of PCA. On the other hand, SDF is a nonlinear feature extraction
algorithm that extracts the pertinent information as a feature vec-
tor and makes use of the full training data to find the appropriate
partitioning of the test time series.

Topics for future research in this area include further theoretical
study on refinement of the SDF algorithms and field testing under
different environments. In this regard, a few key topics are delin-
eated below.

1. Investigation of the impact of finite length of training and test
data sets on classification performance (Wen et al., 2013;
Wright et al., 2008).

2. Comparison with additional methods of feature extraction (i.e.,
besides Cepstrum and PCA) in conjunction with other classifica-
tion algorithms (i.e., besides SVM, k-NN and SRC).

3. Development of a rigorous field test procedure for validating
robustness of SDF-based feature extraction under different
environmental conditions and data types.

4. Performance evaluation of SDF as a feature extractor for classi-
fication of different types of human motion, such as walking
and running.

5. Fusion of different types of sensors to extract cross-correlated
information between the informational sources to improve
the classification performance.
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