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This brief paper proposes a dynamic data-driven method for stabil-
ity monitoring of rotorcraft systems, where the underlying concept
is built upon the principles of symbolic dynamics. The stability
monitoring algorithm involves wavelet-packet-based preprocessing
to remove spurious disturbances and to improve the signal-to-noise
ratio (SNR) of the sensor time series. A quantified measure, called
Instability Measure, is constructed from the processed time series
data to obtain an estimate of the relative instability of the dynamic
modes of interest on the rotorcraft system. The efficacy of the pro-
posed method has been established with numerical simulations
where correlations between the instability measure and the damp-
ing parameter(s) of selected dynamic mode(s) of the rotor blade
are established. [DOI: 10.1115/1.4025988]
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1 Introduction

Rotorcraft are complex dynamical systems involving many
degrees of freedom, strong couplings between structural dynamics
and aerodynamics (i.e., aeroelasticity), and a variety of linear and
nonlinear dynamics that are susceptible to instability. Ensuring
dynamic stability over the entire flight envelope is a challenging
task in the sense that rotorcraft dynamics are difficult to predict
over a wide range of operating conditions. For example, unstable
vibratory oscillations in the rotor system may lead to component
failures, while low-frequency instabilities due to the coupled pilot-
vehicle dynamics may cause loss of control. There are numerous

other examples of unstable dynamic behavior, which are prevalent
in rotorcraft systems. Some of the common sources of instability
that characterize rotorcraft dynamics are delineated below:

(1) Rotor system instability: The pitch and lag motions of a
rotorcraft may change from stable periodic to unstable limit
cycling as an equilibrium point becomes unstable at large-
torque flight conditions [1].

(2) Ground resonance instability: A rotorcraft may exhibit vio-
lent fuselage roll oscillations, while resting on the ground
with the rotor spinning [2].

(3) Hover flutter instability: This instability may occur due to
the coalescence of blade pitch and flap modes [3].

(4) Rotor stall flutter instability: This is another form of flutter,
where limit-cycle oscillations of pitch-flap may occur as
the rotor state progresses past the aerodynamic stall bound-
ary [4].

(5) Rotor-body coupling instability: This instability results
from undesired interactions between the fuselage dynamics,
rotor dynamics, and possibly the flight control system spe-
cifically due to the lightly damped lag mode [5].

(6) Pilot-induced oscillations: These oscillations may occur in
slung loads with a large load-to-mass ratio due to unstable
interactions between flight dynamics and pilot-induced
feedback compensation [6].

Stability characteristics for rotorcraft are dependent upon a vari-
ety of structural and aerodynamic properties, such as aircraft mass
distribution, flight or test condition as well as the pilot’s actions.
Developing accurate models of these complex dynamical phenom-
ena is extremely difficult, and such models are always subjected to
significant uncertainties, especially in the extreme regions of the
flight envelope. It is not always practical to apply model-based sta-
bility analyses (e.g., Lyapunov stability theory) to these complex
rotorcraft systems, which cannot be accurately represented by sim-
ple analytical models. At the same time, the rotorcraft control sys-
tem must ensure that the instabilities do not become symptomatic
within the flight envelope. Therefore, stability of rotorcraft dynam-
ics needs to be verified through different types of testing (e.g., rotor
whirl testing, wind tunnel testing, and flight testing). Such tests are
expensive and extraction of relevant data is nontrivial due to, for
example, rotating components and poor SNR of collected data.

Andrews and Wong [7] have reported a comprehensive review
of the popularly used methods to perform stability estimation in
rotorcraft systems. Prony’s method (that relies on multifrequency
curve-fitting) was extensively used for estimation of damping ratios
in the 1990’s. Although Prony’s method is suitable for design vali-
dation and offline testing, it has two major drawbacks, namely, low
computational efficiency and the requirement for a dwell input,
which make the implementation difficult for real-time stability
monitoring. Subspace identification methods have gained popular-
ity over the last decade [8], which are based on the assumption that
the dynamical system is linear time-invariant; however, in general,
rotorcraft dynamics are nonlinear in nature as explained earlier.

A major challenge in feedback control of rotorcraft system dy-
namics is extraction of meaningful information from the acquired
sensor data, which suffers from low SNR of the acquired data.
This is so because the meaningful dynamical information,
imbedded in the small-amplitude signals, could be intermittent. In
addition, there are dominant disturbances at rotor speed harmonics
that often provide only limited information on stability character-
istics. For example, in the forward flight of a rotorcraft, a series of
harmonics occur at integer multiples of the rotor speed and these
harmonics dominate the signals generated from sensors [7]. This
problem was recognized early in the development of rotorcraft
control systems; previous attempts to remove the harmonics from
sensor data, which have included the usage of fast Fourier trans-
form, Kalman filtering, notch filters, and averaging over revolu-
tions [9], have not been very successful. Thus, filtering methods
based upon time-frequency transforms have become a critical
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aspect of signal pre-processing and one such method, namely,
wavelet packet (WP) decomposition [10] is adopted in this paper.

With the objective of detecting and quantifying instabilities in
rotorcraft dynamics, this paper proposes a dynamic data-driven
approach as an extension of the authors’ recently reported work
[11]. The underlying theory is built upon the concept of symbolic
dynamic filtering (SDF) [12] that circumvents some of the difficul-
ties and shortcomings in model-based analysis. In previous publica-
tions [13–16], SDF has been demonstrated to be an effective tool to
detect anomalies in a variety of nonlinear systems. In essence, the
expected role of the proposed dynamic data-driven method is to
detect and estimate changes in rotorcraft system stability relative to
a nominal baseline that serves as a reference. The dynamic data-
driven method is developed to predict relative stability from a sam-
ple data set with known stability properties, and is tested to deter-
mine whether it can generalize the predictions across unknown data
sets; it does not require a computation-intensive analytical represen-
tation of the system dynamics. The stability monitoring algorithm,
developed in this paper, is potentially capable of real-time monitor-
ing and identification of incipient instabilities (e.g., those due to
lightly damped modes) in rotorcraft systems.

The paper is organized in four sections including the present
section. The core concept of the proposed method is outlined in
Sec. 2, while the details of the theoretical background are reported
in the cited references. Section 3 presents the results based on nu-
merical simulations of on a multi-degree-of-freedom model that is
a simplified representation of the aeroelastic dynamics of a heli-
copter rotor. Section 4 concludes the paper along with recommen-
dations for future research.

2 SDF

Symbolic time series analysis [17] is a data-driven tool that is
built upon the principle of symbolic dynamics, and it has been
used for signal characterization in dynamical systems. SDF [12,13]
is an extension of symbolic time series analysis, where the time se-
ries data are preprocessed by transformation in the time-frequency
domain. The processed data are symbolized for construction of
probabilistic finite state automaton (PFSA) from the symbol
sequences. Diverse applications of SDF for anomaly detection and
pattern recognition have been reported in the scientific literature
(e.g., Ref. [16]). The concept of SDF has been used in this paper
for construction of an instability measure in rotorcraft dynamics.
While the details of SDF have been presented in previous publica-
tions (e.g., Refs. [12,13]), this section succinctly outlines the perti-
nent concepts of SDF in the following two subsections.

2.1 Wavelet Packet Preprocessing. The sensor time series
data are preprocessed by WP decomposition [10] that is a general-
ization of multiresolution approximation (MRA) in wavelet analy-
sis [18]. The tree structure of WP is constructed conceptually
similar to that of MRA, which produces an orthonormal time-
frequency decomposition of the analyzed signal. While the fre-
quency bands of MRA bear dyadic (i.e., powers of 2) relationships
with each other, WP may not retain the orthogonality property of
the wavelet bases in order to achieve finer frequency granularity
and flexibility in the mode of signal decomposition. For example,
a part of the signal can be left unchanged if it is not desired to be
decomposed; similarly, a part of the frequency spectrum can be
filtered out by setting the associated coefficients to zero.

The discrete wavelet basis function of Meyer (i.e., “dmey” in
the MATLAB toolbox [19]) has been adopted in the MRA; the ra-
tionale for adopting the Meyer wavelet basis function is similarity
of the shapes of its wavelet (w) and scaling ð/Þ functions (see
Fig. 1) with those of the approximately sinusoidal waveforms of
sensor time series. The results of WP decomposition show that the
harmonics generated at the sampling frequency of 2J appear as
constant coefficients at level J of MRA. Therefore, removing the
wavelet coefficients at level J would significantly eliminate the
spurious harmonics, and nonsynchronous signals that have energy

at the harmonic frequencies would not be removed [20]. Figure 2
illustrates how the undesirable harmonics are largely filtered out
when the signal is acquired at 1024 samples/revolution (i.e., at
level J ¼ log2ð1024Þ ¼ 10). It is also seen that the asynchronous
signals are retained even at the harmonic frequencies. However,
removal of the synchronous harmonics may still leave behind
undesirable signals with nonnegligible energy in the vicinity of
the harmonic frequencies due to sampling at a nonzero phase.
Since the resulting near-harmonic energy may cause very low
frequency oscillations in the WP coefficients, a low-order high-
pass filter was constructed to serve the purpose of dc-blocking.

2.2 Symbolization of the Filtered Time Series. SDF enco-
des the behavior of (possibly nonlinear) dynamical systems from
the filtered time series by symbolization and state machine con-
struction. This is followed by computation of the state probability
vectors (or morph matrices) that are representatives of the evolv-
ing statistical characteristics of the dynamical system. Symboliza-
tion is achieved by partitioning the filtered time series data into a
mutually exclusive and exhaustive set of finitely many cells. In
this paper, maximum-entropy partitioning [13] has been adopted
to construct the symbol alphabet R and to generate symbol
sequences, where the information-rich regions of the data set are
partitioned finer and those with sparse information are partitioned
coarser to maximize the Shannon entropy of the generated symbol
sequence from the reference data set. As seen at the upper left
hand corner plot of Fig. 3, each cell is labeled by a unique symbol
and let R denote the alphabet of all these symbols. The cell, vis-
ited by the time response plot takes a symbol value from R. For
example, having R ¼ fa;b; c; dg in Fig. 3, a filtered time-series

Fig. 1 Typical wavelet and scaling functions of Meyer basis

Fig. 2 Effects of wavelet packet preprocessing

024505-2 / Vol. 136, MARCH 2014 Transactions of the ASME

Downloaded From: http://dynamicsystems.asmedigitalcollection.asme.org/ on 03/11/2014 Terms of Use: http://asme.org/terms



x0x1x2… generates a sequence of symbols in the symbol space as:
s0s1s2…, where each si; i ¼ 0; 1; 2;…, takes a symbol value from
the alphabet R. This mapping is called symbolic dynamics as it
attributes a (physically admissible) symbol sequence to the dy-
namical system starting from an initial state. For example, see the
symbol sequence at the top right hand corner of Fig. 3.

The core assumption in the SDF analysis for construction of
PFSA from symbol sequences is that the symbolic process under
both nominal and off-nominal conditions can be approximated as
a Markov chain of order D, called the D-Markov machine, where
D is a positive integer. While the details of the D-Markov
machine construction are given in Refs. [12,13,21], the pertinent
definitions and their implications are presented below.

DEFINITION 2.1: (DFSA) A deterministic finite state automaton
(DFSA) is a 3-tuple G ¼ ðR;Q; dÞ where:

(1) R is a nonempty finite set, called the symbol alphabet, with
cardinality jRj <1;

(2) Q is a nonempty finite set, called the set of states, with car-
dinality jQj <1;

(3) d : Q� R! Q is the state transition map;

and R? is the collection of all finite-length strings with symbols
from R including the (zero-length) empty string �, i.e., j�j ¼ 0.

Remark 2.1. It is noted that Definition 2.1 does not make use of
an initial state, because the purpose here is to work in a statisti-
cally stationary setting, where no initial state is required as
explained by Adenis et al. [21].

DEFINITION 2.2. A PFSA is constructed upon a DFSA
G ¼ ðR;Q; dÞ as a pair K ¼ ðG;pÞ, i.e., the PFSA K is a 4-tuple
K ¼ ðR;Q; d;pÞ, where:

(1) R;Q, and d are the same as in Definition 2.1;
(2) p : Q� R! ½0; 1� is the probability morph function that

satisfies the condition
P

r2R pðq; rÞ ¼ 18 q 2 Q. Denoting
pij as the probability of occurrence of a symbol rj 2 R at
the state qi 2 Q, the ðjQj � RjÞ probability morph matrix is
obtained as P ¼ ½pij�.

DEFINITION 2.3. (D-Markov) A D-Markov machine [12] is a
PFSA in which each state is represented by a finite history of D
symbols as defined by:

• D is the depth of the Markov machine;
• Q is the finite set of states with cardinality jQj � jRjD, i.e.,

the states are represented by equivalence classes of symbol

strings of maximum length D where each symbol belongs to

the alphabet R;

• d : Q� R! Q is the state transition map that satisfies the

following condition if jQj ¼ jRjD: There exist a; b 2 R and

s 2 R? such that dðas;bÞ ¼ sb and as; sb 2 Q.

Remark 2.2. It follows from Definition 2.3 that a D-Markov
chain is a statistically (quasi-)stationary stochastic process
S ¼…s�1s0s1…, where the probability of occurrence of a new
symbol depends only on the last D symbols, i.e.,
P½snjsn�1…sn�D…s0� ¼ P½snjsn�1…sn�D�.

The construction of a D-Markov machine is based on: (i) state
splitting that generates symbol blocks of different lengths accord-
ing to their relative importance; and (ii) state merging that assimi-
lates histories from symbol blocks leading to the same symbolic
behavior. Words of length D on a symbol sequence are treated as
the states of the D-Markov machine before any state-merging is
executed. Thus, on an alphabet R, the total number of possible
states becomes less than or equal to jRjD; and operations of state
merging may significantly reduce the number of states [22].

Following Fig. 3, the filtered time series at a given epoch tk

may now be used to compute the quasi-stationary probability

morph matrix Pk (see Definition 2.2) that, in conjunction with the
state transition map d (see Definition 2.1), is used to construct the
ðjQj � jQj) stochastic quasi-stationary irreducible state-transition

matrix as: Pk ¼D ½Pk
ij�, where Pk

ij is the probability of transition

from state qi to state qj based on time series at epoch tk. The corre-

sponding state probability vector is obtained as: pk ¼D ½pk
1;…; pk

jQj�,
where pk

j is the quasi-stationary probability of occupying the state

qj 2 Q at epoch tk, as the (sum-normalized) left eigenvector of P
k

corresponding to its (unique) unity eigenvalue.
Let the quasi-stationary statistics of the time series at the epoch tk,

represented by the state transition probability matrix Pk, change to

P‘ at another epoch t‘. Accordingly, the state probability vector pk

changes to p‘; thus, p
k can be treated as a pattern vector that is postu-

lated to have the imbedded information on stability of the dynamical
system at the epoch tk. Another viable candidate for the pattern at an

epoch tk is the probability morph matrix Pk (see Definition 2.2). It is

noted that Pk carries more information than the respective p
k at the

expense of higher dimensionality. Two histograms at the bottom of
Fig. 3 exemplify the pattern vectors p

0 and p
k.

Now, we introduce the concept of instability measure of a dy-
namical system at an epoch tk relative to its nominal condition at
an epoch t0 as a (scalar non-negative) distance between the patterns
generated from the respective quasi-stationary time series data.

DEFINITION 2.4. (Instability Measure) The instability measure of
a dynamical system at an epoch tk is obtained relative to its nomi-
nal condition at an epoch t0 as the distance dðpk; p0Þ [resp.,
dðPk;P0Þ] of the current pattern vector pk [resp., Pk] from the
reference pattern vector p0 [resp., P0] at the nominal condition
denoted by the superscript’0’. In this paper, instability measure of
rotorcraft dynamics at an epoch tk is defined to be the Euclidean
distance between pk and p0.

lk ¼D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pk � p0ð ÞT pk � p0ð Þ

q
(1)

3 Algorithm Validation on a Simulation Test Bed

This section presents validation of the proposed algorithm on
a simulation test bed for detection and identification of instabil-
ities associated with the aeroelastic modes of helicopter rotor
blades. The simulation test bed is constructed on a multi-degree-
of-freedom model that is a simplified representation of the
aeroelastic dynamics of a helicopter rotor. In its nominal linear
configuration, the simulation model consists of multiple
decoupled second-order systems (i.e., modes) with each mode
having its respective damping parameter and natural frequency.
Each mode is simultaneously excited by a combination of addi-
tive noise and sinusoidal inputs with frequencies at integer

Fig. 3 Concept of SDF
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multiples of a notional blade passing frequency P (e.g.,
P¼ 4.3 Hz in a typical helicopter rotor). The simulation model
generates sensor outputs with a frequency spectrum that is simi-
lar to that of signals obtained from sensors on an instrumented
rotor blade and also to those produced by comprehensive aeroe-
lastic simulation of typical rotor systems [23]. The structure of
the governing equations of the displacements xi for the
(decoupled) modes, i ¼ 1;…;Nm, of the nominal linear model is
presented below.

€xiðtÞ þ 2fixi _xiðtÞ þ x2
i xiðtÞ ¼

XNmþ1

j¼1

aj sinðXjtÞ þWt (2)

where fi and xi are, respectively, the damping parameter and nat-
ural frequency of the mode i ¼ 1;…;Nm; the excitation frequen-
cies are Xj ¼ 2pjP; j ¼ 1;…;Nm þ 1; individual excitation
amplitudes aj 2 ½0; 1�; and the additive noise Wt. The time series
data are generated from the sensor output that is modeled as:

yðtÞ ¼
PNm

j¼1 wjxjðtÞ with weights wj 2 ½0; 1�.
For the nominal model in the simulation test bed, the parameters

are selected as: blade passing frequency P¼ 4.3 Hz; the number of
modes Nm¼ 6; excitation amplitude aj ¼ 18j; white Gaussian noise
Wt � Nð0; 1Þ; and output weights wj ¼ 18j. Table 1 presents a

description of the six modes (Nm¼ 6) and lists numerical values of
the modal parameters fi and xi that are generated based on the
results reported in a recent publication [7].

Validation tests have been conducted on sensor outputs, gener-
ated from the simulation test bed, that include measurements of
the blade angles (i.e., pitch, lag, flap), the lag damper force, and
structural forces and moments at locations along the length of the
blade [7]. The sensor signals, under rotorcraft motion with for-
ward velocity, are dominated by (input excitation) harmonics
located at integer multiples of the rotor angular frequency, i.e., at
ð1P; 2P; 3P;…Þ. However, since these signals represent harmonic
forces on the rotor system due to unsteady loading on the blades
in the forward flight, they do not provide any significant informa-
tion on relative stability of the dynamic modes of the rotor system.
Nevertheless, it is a challenging task to analyze the embedded in-
formation on the dynamic modes, due to the presence of strong
harmonics in the sensor data.

For stability analysis, the signal contents of the harmonics cen-
tered around the modal frequency are filtered out by the WP prepro-
cessing. For example, the signal pertaining to the rigid torsion (T1)
mode at 15 Hz is extracted from the time series, as seen in Fig. 2;
the modal frequency is located between the three per rev harmonic
at 3P¼ 12.9 Hz and the four per rev harmonic at 4P¼ 17.2 Hz.

Now, the task at hand is to validate the SDF-based algorithm to
detect and estimate the degradation of stability phenomena as the
damping parameter is monotonically decreased. This is accom-
plished first by generating blocks of time series data for a number
of different test samples on the simulation test bed by using the
linear model (see Eq. (2)). In the (simulated) statistical tests, each
test sample signifies a (hypothetical) helicopter rotor that is repre-
sented by a fixed seed number in the random number generator.
For each seed number, a single profile of instability measure l is
constructed as the damping parameter f (see Eq. (2)) is varied
from 10 to 0.5 percent of the critical damping parameter (see
Table 1); the reference condition is at f ¼ 10 at which l¼ 0 (see
Eq. (1)). An envelope of statistical confidence interval is

Table 1 Details of linear multidegree of freedom model

Description of modes
i ¼ 1;…;Nm ¼ 6

Frequency
xi

2p (Hz)
Damping parameter

100fi (percent critical)

Rigid chordwise (C1) 2 16
Rigid edgewise (F1) 7 26
Rigid torsion (T1) 15 10–0.5
1st Elastic flatwise (F2) 20 17
2nd Elastic flatwise (F3) 31 5
2nd Elastic chordwise (C2) 33 13

Fig. 4 Profile of Instability Measure for the T1 mode at 15 Hz (a) ensemble of plots
with f in. % and (b) confidence interval with f in. %

Fig. 5 Profile of Instability Measure for the T1 mode at 17 Hz (a) ensemble of plots
with f in. % and (b) confidence interval with f in. %

024505-4 / Vol. 136, MARCH 2014 Transactions of the ASME

Downloaded From: http://dynamicsystems.asmedigitalcollection.asme.org/ on 03/11/2014 Terms of Use: http://asme.org/terms



constructed from the ensemble of f� l profiles. Figure 4(a)
shows an ensemble of f� l profiles for the T1-mode at 15 Hz in
the linear model of Eq. (2), where each profile (i.e., each simu-
lated rotor represented by a seed of the random number generator)
exhibits a monotonically decreasing correlation between the
damping parameter f and the instability measure l. Figure 4(b)
exhibits the mean value and the envelope of 95% confidence of
the f� l profiles, which also show a smooth monotonic trend.

Next the effects of moving a dynamic mode close to a harmonic
forcing frequency are investigated. The simulated T1 mode was
originally placed at 15 Hz; it is now moved to 17 Hz, which is
very close to the fourth blade passing frequency 4P¼ 17.2 Hz.
Figure 5(a) shows the resulting profiles of Instability Measure l
as the damping parameter f is varied. Similar to what is seen in
Fig. 4(a), a monotonic decrease of Instability Measure l is
observed with increase in the damping parameter f, although the
envelope of confidence interval in Fig. 5(a) is significantly wider
than that in Fig. 4(a) and the range of the Instability Measure l in
Figs. 5(a) and 5(b) is approximately half of that in Figs. 4(a) and
4(b). As reported by Andrews and Wong [7], it is difficult to esti-
mate, solely based on sensor outputs, the damping parameter of a
mode that is close to a blade passing frequency. Although l is not
as sensitive to f in Fig. 5(b) as it is in Fig. 4(b), there still exists a
strong monotonic correlation between f and l.

Investigation of system nonlinearity effects is a challenge in
rotorcraft system stability analysis was the system nonlinearity.
Since the model used in the above case studies is linear, efficacy
of the stability monitoring algorithm is further tested on nonlinear
models. To this end, the linear structure of the rotor dynamic
model in Eq. (2) is reconfigured to have a nonlinearity by modify-
ing the damping parameters in one or more modes. In the nonlin-
ear model, the damping parameter fi in the ith mode (see Eq. (2))
is replaced as follows:

Dij _xiðtÞj� ! fi (3)

where the nonlinear damping parameter Di 2 ½0:5; 10� � 10�2 and
the exponent � 2 ½0; 1�.

Similar to the above two cases dealing with the linear model,
simulated sensor data have been generated from the nonlinear
model by introducing velocity dependence in the damping param-
eter D (see Eq. (3)) associated with the T1 mode at 15 Hz. Figures
6(a) and 6(b) show the performance of the stability monitoring
algorithm for a nonlinear model with the exponent � ¼ 0:5 in Eq.
(3), where relatively large spreads in the instability measure are
observed for low damping. A possible reason for this behavior is
rapidly varying dissipation in the system model due to fluctuations
in the velocity term.

4 Conclusions

This paper presents the development of a dynamic data-driven
method for quantification of instability measure in different oper-

ating modes of rotorcraft systems. The core concept is built upon
SDF [12] of sensor time series data that are filtered by wavelet-
packet-based preprocessing [10,20]. The proposed method has the
potential to serve as a critical safety tool for stability monitoring
of rotorcraft flight dynamics and possibly could be used as an
input to the rotorcraft control system for vehicle stability enhance-
ment. However, the work reported in this paper is a preliminary
analysis and would require significant analytical and experimental
research before its real-life application. Some of the key research
issues are delineated as topics of future research:

• Investigation of appropriate wavelet basis for signal prepro-

cessing [18].
• Enhancement of the SDF algorithm by using the tools of

state splitting and state merging [22].
• Statistical estimation of the instability measure l by taking

advantage of the data history [24].
• Comparison of the proposed method of instability estimation

with standard tools used in the dynamics and control

literature.
• Validation of the proposed method on a high-fidelity simula-

tion test bed (e.g., rotorcraft comprehensive analysis system

(RCAS) [23]) for different operational scenarios.
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