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Navigation of autonomous vehicles for oil spill cleaning in dynamic and uncertain environments†
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In the context of oil spill cleaning by autonomous vehicles in dynamic and uncertain environments, this paper presents a
multi-resolution algorithm that seamlessly integrates the concepts of local navigation and global navigation based on the
sensory information; the objective here is to enable adaptive decision making and online replanning of vehicle paths. The
proposed algorithm provides a complete coverage of the search area for clean-up of the oil spills and does not suffer from
the problem of having local minima, which is commonly encountered in potential-field-based methods. The efficacy of the
algorithm is tested on a high-fidelity player/stage simulator for oil spill cleaning in a harbour, where the underlying oil
weathering process is modelled as 2D random-walk particle tracking.
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1. Introduction

The recent Deepwater Horizon oil spill in the Gulf of
Mexico has attracted the attention of the world commu-
nity due to its colossal ecological, economic and social
impacts. Over 210 million gallons of crude oil was re-
leased and the slicks and sheen of the surface oil directly
affected over 180,000 km2 of ocean surface. To clean this oil
spill, over 39,000 personnel, 5000 vessels and 110 aircraft
were involved, over 700 km of booms have been deployed,
275 controlled burns have been carried out, approximately
27 million gallons of oily liquid has been recovered by skim-
mers, and more than 1.5 million gallons of chemical disper-
sant has been used in these efforts (Zhong & You, 2011).

In view of the facts that the current oil spill cleaning
technology is labour-intensive and the toxic chemicals and
oil vapours are pernicious to the health of the cleaning
crews, there is a pressing need for the development and im-
plementation of new technologies for combating oil spills.
To mitigate the adverse environmental effects of an oil spill,
research efforts are being focused on development of tech-
nologies to remove the oil in situ, minimise operational
time, and protect the health and safety of the cleaning crew
(Kakalis & Ventikos, 2008). To this end, several novel meth-
ods have been developed to make use of autonomous vehi-
cles for effective oil spill confrontation, such as Seaswarm
(MIT Senseable City Lab, 2010) and Protei (Protei: Open
Source Sailing Drone, 2010) that are intended to work
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as a fleet or ‘swarm’ of vehicles to create an organised
system for autonomous ocean skimming and oil removal.
While the current trend emphasises hardware improvement,
advanced software-based navigation algorithms are yet to
be developed.

This paper develops a multi-resolution method for au-
tonomously cleaning oil spills in dynamic and uncertain
environments by alleviating the restriction of static environ-
ments (Acar & Choset, 2002; Cai & Ferrai, 2009; Choset,
2000; Garcia & de Santos, 2004; Jin, Gupta, Luff, & Ray,
2012; Oh, Choi, Park, & Zheng, 2004) that may forbid
adaptation to the changing weathering process of the oil
spill. In particular, dynamic adaptation after detection of
oil spills would allow the autonomous vehicle to replan its
actions online. Furthermore, the proposed method enables
navigation at different levels of resolution to achieve com-
plete coverage of the environment. The underlying algo-
rithm is validated on a Player/Stage platform that is capable
of high-fidelity simulation of autonomous vehicles and oil
weathering processes for comparison with the benchmark
algorithm of back and forth (i.e. zigzag) motion. In this
context, major features of the proposed multi-resolution
method are delineated as follows:

• The algorithm provides a complete coverage of the
unknown environment for oil spill cleaning.

• The algorithm enables effective cleaning of oil spills
via dynamic adaptation after their detection.

C© 2013 Taylor & Francis
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• The low computational complexity of the algorithm
is expected to enable real-time implementation on
commercial autonomous vehicles.

The paper is organised in six sections (including the
present section) and two appendices. Section 2 reviews the
related work and highlights the distinct features of the pro-
posed method. Section 3 presents the modelling of the oil
spill process and construction of the search space. Section
4 describes the multi-resolution navigation algorithm for
autonomous cleaning of oil spills in dynamic and uncertain
environments. Section 5 provides an illustrative example
of oil spill cleaning in a harbour environment by the pro-
posed algorithm. Section 6 summarises and concludes the
paper with a brief discussion on future work. Appendix 1
presents a brief background of oil weathering process, as
well as its modelling and simulation. Appendix 2 addresses
the important features of the multi-resolution navigation
algorithm.

2. Related work

Technical literature abounds with diverse path-planning al-
gorithms that address the above problem to various de-
grees of autonomy. Several algorithms have been proposed
based on the artificial potential functions (Kim & Khosla,
1992; Valavanis, Hebert, & Tsourveloudis, 2000), where the
local potentials generate a virtual force field to navigate the
autonomous vehicles. Potential-field-based methods have
been widely studied due to their simplicity and elegance;
however, these methods have inherent problems such as
trap situations (e.g. local minima and cyclic behaviour)
and no passage between closely spaced obstacles (Koren &
Borenstein, 1991). A variety of methods have been pro-
posed to circumvent these problems (Ge & Cui, 2000;
Mabrouk & Mclnnes, 2008). Recent path-planning algo-
rithms rely on sensor-based exploration (Lee & Choset,
2005), which focus on real-time planning to reach the goal
from a start point by avoiding obstacles based on sensor
readings. For example, Cowlagi and Tsiotras (2012) have
proposed a multi-resolution path-planning algorithm via
wavelet-based cellular decompositions.

The a priori information, as needed by autonomous ve-
hicles for oil spill cleaning in dynamic and uncertain envi-
ronments, is often either incorrect or incomplete. Therefore,
time-critical operations of these vehicles require real-time
decisionmaking to facilitate continuous adaptation of the
evolving information that is generated in situ by onboard
sensing and pattern analysis. The generated information
refers to the observed phenomena that relate to dynamic
unfolding of the search area (e.g. detection of unknown
obstacles and boundaries) and environmental changes (e.g.
spreading and drift of oil spills). Although such informa-
tion can be obtained through remote sensing Engelhardt
(1999), it may not be always available due to communi-

cation constraints and high operational cost. Under these
circumstances, the autonomous vehicle is required to scan
all points in the search area while dynamically discover-
ing new oil spills and avoiding obstacles at a priori un-
known locations. This is known as the complete cover-
age problem (Hert, Tiwari, & Lumelsky, 1996; Lumelsky,
Mukhopadhyay, & Sun, 1990). A variety of path-planning
algorithms exist in technical literature for coverage of the
search area using autonomous vehicles; a review of such
algorithms is reported in Choset (2001). Recent coverage
algorithms are based on cellular decompositions of the
search area at critical points of the Morse functions that
correspond to obstacle extremities (Acar & Choset, 2002;
Choset, 2000; Garcia & de Santos, 2004). An approximate
cell decomposition method is developed in Cai and Ferrai
(2009), where a connectivity graph is constructed to gener-
ate an optimal sensing strategy. In the authors’ recent work
(Jin et al., 2012), a multi-resolution navigation algorithm is
proposed to enable autonomous vehicles to explore the un-
known and static environment, and cover the entire search
area. A similar multi-resolution algorithm is proposed in
Cowlagi and Tsiotras (2012) using wavelet-based cellular
decompositions, but not in the context of complete cov-
erage. None of these completecoverage methods address
the issue of dynamic adaptation to the changes in the en-
vironment, which is essential for adaptive cleaning of oil
spills.

Yang and Luo (2004) have proposed a neural network-
based approach, where the robot is able to achieve complete
coverage in an environment with abrupt changes that are the
only dynamic phenomena in the environment, and the issue
of adaptation to the target is not addressed. Gupta, Ray,
and Phoha (2009) used the concept of a generalised Ising
model for dynamic adaptation to the lattice sites in the
presence of targets. However, the modelling of the environ-
ment in Gupta et al. (2009) is overly simplified in the sense
that no obstacles are considered. This issue is addressed
by the authors in their previous work (Jin, Luff, Gupta, &
Ray, 2010), where the concept of path potential is used
for obstacle avoidance. To achieve complete coverage of
the search space (i.e. when there is no unexplored lattice
site left in the current neighbourhood of the autonomous
vehicle), the neighbourhood size is expanded to find the
closest unexplored lattice site, and then a series of way-
points are created for the autonomous vehicle by using a
backtracking algorithm. However, the method proposed in
Jin et al. (2010) can be extremely computationally expen-
sive and time consuming, especially in a large and complex
environment. It is also noted that, in the work reported in
Jin et al. (2010), the target is static, and it may not be a good
representation of oil spills.

As an augmentation of the authors’ previous work (Jin
et al., 2010, 2012), the current paper addresses the issue of
oil spill cleaning as a tradeoff between complete coverage
and dynamic adaptation. The notions of local navigation
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and global navigation are adopted to enable navigation at
different levels of resolution, depending on the available
spatio-temporal information. During local navigation, the
autonomous vehicle operates at the level of finest resolu-
tion and can deviate from its original navigation plan upon
detection of oil spills and search the neighbouring areas
where spills are detected. The autonomous vehicle is able
to ‘zoom out’ on the grid map and navigates at a level of
coarser resolution when no unexplored cells are left nearby.
With the proposed method, the autonomous vehicle is able
to clean up the spills more efficiently than the existing meth-
ods that may not be able to adapt to the spreading and drift
of the spills.

3. Modelling of oil spill phenomena and cleaning

Although many prototypes of autonomous vehicles have
been developed for oil spill cleaning, navigation algo-
rithms for these prototypes are not adequately addressed
(MIT Senseable City Lab, 2010; Protei: Open Source
Sailing Drone, 2010). For example, several researchers (e.g.
Kakalis & Ventikos, 2008; Pereda, de Marina, Giron-Sierra,
& Jimenez, 2011; Zhang, Fricke, & Garg, 2011) have tested
the algorithms for control of autonomous vehicles with
relatively simple scenarios; however, in the real-world ap-
plications, the autonomous vehicles must carry out the
clean-up tasks in more complicated scenarios, such as
obstacle-rich environments that contain islands and other
cleaning vessels. This evinces the need for development of
navigation algorithms that will enable autonomous vehicles
to perform oil cleaning tasks in dynamic and uncertain en-
vironments, where the locations of obstacles and oil spills
are a priori unknown. From these perspectives, the opera-
tion of the oil spill process is modelled under the following
assumptions:

(1) After occurrence of an oil spill at a physical lo-
cation, the spillage stops before initiation of the
clean-up task.

(2) The location and volume of oil spill are unknown
to the autonomous vehicle but the exact location of
the vehicle is known through a localisation system.

(3) The autonomous vehicle uses mechanical clean-
up to remove the oil at its current position (see
Appendix 1.1)

(4) The dynamic behaviour of the oil weathering pro-
cess can be predicted by an oil transport and weath-
ering model.

The remaining part of this section presents the formula-
tion of oil weathering model, the autonomous vehicle, and
the search space. The spreading and drift process of the oil
spill is modelled by two-dimensional (2D) random walk.
The autonomous vehicle is equipped with localisation sys-
tem, navigation sensor, and oil detection sensor. The search

space is partitioned and a lattice structure is constructed for
autonomous exploration of the search space. Formulation
of the search space is then extended in the multi-resolution
sense to enable navigation in diverse and complex
environments.

3.1 Oil spill modelling

As stated in Appendix 1.1, over 50 oil weathering models
have been reported in the literature. The 2D random-walk
particle tracking model has been adopted in this paper be-
cause the model is computationally tractable when simu-
lating a large number of particles online, and it predicts
the time trajectories of the spill size and the probability
distribution of the oil spill.

In the random-walk particle tracking model, spilled oil
consists of a large number of particles, with each particle
representing a defined quantity of oil. Effectively, model
particles are treated as ‘mass points’, with their transport
determined by tidal currents, wind-driven current, turbulent
eddies, gravitational spreading, and buoyancy. The 2D up-
date equations (Arega & Sanders, 2004; Dimou & Adams,
1993) for particle positions are given by

Xn = Xn−1 + A(Xn−1)�t + B(Xn−1)Z
√

2K�t, (1)

where �t is the time interval, Xn is the position at time
n�t (i.e. at the step number n), A is a forcing vector that
models the drift process due to currents and wind, B is a de-
terministic scaling matrix, Z is a vector of two independent
random numbers taken from a uniform distribution in the
range [−1, 1] and K is a vector of the turbulent coefficients.
In this model, the motion of one particle is statistically in-
dependent of other particles. As seen in Equation (1), the
displacement of each particle is determined by its previous
position and the effects of drift and spreading. The effects
of other weathering processes (e.g. evaporation, natural dis-
persion and emulsification) are not included in this model.

The oil weathering process is simulated by following the
model in Equation (1), where the simulated scenario is an
oil spill incident in a harbour. The oil spillage is assumed
to stop before the clean-up process is initiated; however,
the spill starts to spread and drift and would eventually
hit the port if preventive actions are not taken. Figure 1
shows oil particle distribution in the top row and concen-
tration in the bottom row at different time instants, namely,
at the beginning of the clean-up (left column) and after
10,000 steps of simulation (i.e. after 3000 seconds for �t =
0.3 seconds). It is seen in Figure 1 that the size of the spill
increases due to spreading, and the spill moves toward the
port due to tidal current and wind. This scenario is also
used in Section 5 where autonomous vehicle is dispatched
to clean up the oil spill.

Unlike several previous studies in the complete cov-
erage problem (Acar & Choset, 2002; Choset, 2000; Hert
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790 X. Jin and A. Ray

Figure 1. Spreading and drift of the oil spill due to wind and
current. (a) Initial oil spill. (b) After 1 × 104 steps.

et al., 1996; Lumelsky et al., 1990), this paper assumes that
the autonomous vehicle occupies a finite area instead of
being a point mass. For example, the autonomous vehicle
could be considered to have a circular body or a rectangular
body. Thus, the opening space between any two obstacles
through which the vehicle can pass is lower bounded by its
size parameters (e.g. diameter or width). Furthermore, the
autonomous vehicle has the knowledge of its exact location
at all times (which is available from a Global Position-
ing System) and is equipped with navigation sensors (e.g.
ultrasonic, infrared or LIDAR) to detect obstacles within
an area of radius R around the vehicle body, as illustrated
in Figure 2, where three areas are defined in the current for-
mulation. The largest one is the navigation scan area, which
is covered by the navigation sensors. The medium one is the
local navigation area, where the locally optimal navigation

Figure 2. Autonomous vehicle and its sensing and computation
areas.

decisions are made. The smallest one is the task area within
which the autonomous vehicle carries out oil clean-up task.
The autonomous vehicle is also equipped with an oil sensor
that is able to detect oil and other hydrocarbons in water.

3.2 Search space: partitioning and
lattice formulation

The environment to be explored is considered to be a planar
area populated with a finite but unknown number of obsta-
cles. The obstacles may have arbitrary shapes and sizes,
and their exact locations are a priori unknown. The terrain
limits are defined either by a hard boundary (e.g. a wall) or
by a soft boundary (e.g. subarea of a larger field). To this
end, pertinent definitions are presented below.

Definition 3.1 (Partition): LetS ⊂R
2 be the search space.

A partition P of S is defined as P � {Pξ : ξ = 1, ), |P|},
such that S is divided into mutually exclusive and exhaus-
tive cells, i.e. Pξ

⋂
Pν = ∅ ∀ ξ �= ν and

⋃|P|
ξ=1 Pξ = S,

respectively.

Definition 3.2 (State of a lattice site): Let �: P × T →
� be a mapping that assigns each symbol in the alphabet �

to a cell of the partition P at each time epoch t ∈ T , where
T is the time span. Then, the state of a lattice site ξ at time
t ∈ T is defined as

γξ (t) � �(Pξ , t). (2)

Definition 3.3 (Lattice system): The lattice system is de-
fined as a set L � {P , �}, where P is a partition set of the
search space S and � is the collection of the state of the
lattice.
Remark 3.1: It follows from Definitions 3.1 and 3.2 that
the partition P forms a grid of the search space S. The
partition is constructed such that the dimensions of each
element (i.e. cell) of the grid structure fall within the task
area where the autonomous vehicle carries out its oil spill
cleaning task.

The search region is partitioned into a grid to form
a finite-dimensional lattice structure such that each grid
element (i.e. a cell) represents a lattice site. A generalised
Ising model (Gupta et al., 2009) is constructed over the
lattice, which involves an exogenous time-varying potential
function term to control the movement of the autonomous
vehicle in the search space. The construction of an energy
potential of this spin model is similar to the pheromone of
biological systems, which acts as a navigator to search for
critical targets.

Once the spatial partitioning is done to construct a
grid, the next step is to define a lattice, where each site
of the lattice is isomorphic to a grid cell and represents a
physical state of that cell. Therefore, the terms ‘grid cell’
and ‘lattice site’ are used interchangeably in this paper.
Let � � {σ j: j = 1, . . . , |�|} be a finite set of symbols,
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International Journal of Control 791

called the alphabet, which also determines all possible states
for each partition cell Pξ ∈ P . For a standard Ising model
Pathria (1996), such an alphabet denotes the up and down
states of the spin orientations. In this paper, the physical
description of the state of each partition cell is described by
an alphabet � that is constructed with four possible sym-
bols (i.e. |�| = 4). These symbols are defined as: σ 1 = T,
σ 2 = E, σ 3 = U and σ 4 = O, representing the following
possible states of each partition cell: (1) explored and target
present, (2) explored and target not present, (3) unexplored
and (4) explored and obstacle detected, respectively. The
term target refers to oil spill in this paper. In essence, these
states represent the four possible conditions of a partition
cell. The objective here is to facilitate adaptive decision
making based on the observed states of the neighbourhood.

The configuration space of the autonomous vehicle at
time t ∈ T is constructed as the Cartesian product,

�(t) =
|P|⊗
ξ=1

γξ (t), (3)

where � is the collective state of the lattice that can have
at most |�||P| possible state configurations and |P| is the
cardinality of the (finite) partition set P .

As the autonomous vehicle continuously searches dif-
ferent cells on the lattice, while moving from one cell to
another, the collective state � of the lattice unfolds in space
and time by exhibiting different configurations that repre-
sent an evolution of the checkerboard pattern in the search
space.

3.3 Multi-resolution formulation of the
search space

The local navigation area of an autonomous vehicle is usu-
ally the local neighbourhood of the current grid cell for
computational efficiency. However, when there are no un-
explored grid cells left in the local navigation area, the
autonomous vehicle has to increase the size of the neigh-
bourhood to find the possible unexplored grid cell further
away (Jin et al., 2010). This method is not efficient, espe-
cially when the unexplored grid cells are far away from the
vehicle, the local neighbourhood size needs to be increased
to as large as the entire search space to cover these cells. This
paper introduces the concept of multi-resolution navigation
that partitions the search space at various levels of resolu-
tions and uses the corresponding grid map for navigation
according to the available spatio-temporal information.

The search space is coarsely and uniquely partitioned
so that information can be consistently stored by the au-
tonomous vehicles. The entire search space is approxi-
mately divided into two halves in both dimensions, keeping
the fine grid cells intact, to form four cells. Then, the search
space is divided into two halves in each dimension, again

Figure 3. Illustration of the switch between local and global
navigation. (a) Local navigation (Level 0). (b) Global navigation
(Level 1). (c) Global navigation (Level 2).

keeping cells intact and forming 16 cells in total. The pro-
cedure continues until the size of the local navigation area is
reached. As the last step, the local navigation area is further
divided into finer grid cells such that these cells have the
same size or slightly smaller than the local neighbourhood
of the vehicle. This size requirement is that the entire cell
at the lowest level falls within the local neighbourhood of
an autonomous vehicle and can be completely scanned at
the local level. The level of the finest grid cells is denoted
as level 0 and the lowest level where each cell has about
the same size with the local neighbourhood is denoted as
level 1. This procedure continues until the coarsest level
that covers the entire search space.

Figure 3 shows the switch between the local and global
navigation. In Figure 3, the search space is partitioned at
three levels of resolution. The lattice system described in
Section 3.2 corresponds to the level 0 that is the level of the
finest resolution. The grid cell at level 1 defines the local
navigation area that consists of 5 × 5 finest grid cells at
level 0. Four grid cells of level 1 form a grid cell of level
2, which is the coarsest level. The autonomous vehicles
first operate in level 0 until no unexplored grid cell remains
in its local neighbourhood. Then global navigation with
level 1 is implemented to find unexplored cells, and the au-
tonomous vehicles moves toward the centroid of the cell that
has the most unexplored fine grid cells. If no unexplored
grid cells are found, then the autonomous vehicle contin-
ues to switch to the coarser level until unexplored cells are
found. If no unexplored cells are found at the coarsest level,
then the complete coverage task has been accomplished.
As shown in Figure 3, among the various levels, only the
coarsest level covers the entire search space and has the real
‘global’ view of the search space. This formulation avoids
unnecessary global calculations and reduces the compu-
tational complexity in real-time implementation. Integra-
tion of local to global navigation is described in the next
section.

4. Algorithms of multi-resolution navigation

This section presents the algorithms of multi-resolution
navigation with the capability of dynamic adaptation.
The multi-resolution framework seamlessly integrates the
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792 X. Jin and A. Ray

Figure 4. Flowchart of a multi-resolution navigation algorithm.

algorithms of local and global navigation. In this paper,
the generalised Ising model is used for local navigation,
and a probability vector is used for navigation when there
is no ideal or unexplored points within the local neigh-
bourhood. Generating the probability vector is an effective
way to circumvent the difficulties encountered in Jin et al.
(2010), where expansion of the neighbourhood size can be
computationally expensive in complex environments. The
flowchart of the multi-resolution navigation is shown in
Figure 4.

The autonomous vehicle is assumed to have access to
its current coordinate c(t) ∈ Pμ with the grid cell coordi-
nate μ and navigation sensor readings {si(t)} at all times.
It stores the environment information by building the grid
map M(t). As shown in Figure 4, the autonomous vehicles
first check if there is any unexplored grid cells in its local
neighbourhood. If so, it performs local navigation; other-
wise, it enters the global navigation mode. In both local
navigation and global navigation, the autonomous vehicle
computes the goal when it enters a new grid cell instead
of computing it at every step. This reduces the computa-
tion load while maintaining the adaptability to environment
changes. The switching between local navigation and global
navigation is unidirectional, i.e. the coarseness of the level
can only increase during the operation and is reset to the
level 0 when it enters a new grid cell (see Figure 3). It
is noted that the switch can be made bidirectional at the
expense of complexity and loss of robustness in real-time
implementation.

Several important features of the multi-resolution al-
gorithm are outlined in Appendix 2. The features include
complete coverage of the unknown environment, clean-up

of all oil spills, no local minima problem, and low compu-
tational complexity.

4.1 Generalised Ising model for local navigation

A four-state generalised Ising model is now constructed
over the lattice system L by extending the earlier work of
Gupta et al. (2009). A local (implicitly time-dependent)
energy term EL

ξ at a lattice site ξ is defined as

EL
ξ (t) =

∑
<ξ,ν>κ1

Jξν�(γξ (t), γν(t)) + �(Bξ (t), γξ (t)),

(4)
where < ξ, ν >κ1 implies summation over a κ1-
neighbourhood of ξ , for some κ1 ∈N. The κ-neighbourhood
of a lattice site ξ is defined as

Nκ (ξ ) = {ν : max(|ξx − νx |, |ξy − νy |) ≤ κ}, (5)

where ξx, ξy ∈ N and νx, νy ∈ N denote the x and y co-
ordinates of lattice sites ξ and ν, respectively. The com-
putation of Equation (4) is carried out in Nκ0 (μ), i.e. the
κ0-neighbourhood of μ, where μ is the grid cell occupied
the autonomous vehicle, and κ0 is the distance between μ

to the boundary of local navigation area.
Figure 5 illustrates different neighbourhoods in the

local navigation. The dashed-boundary box indicates κ1-
neighbourhood of ξ , where the summation in the first part
of Equation (4) is implemented. The solid-boundary box
shows κ0-neighbourhood of the grid cell μ occupied by
the autonomous vehicle. Nκ0 (μ) is equivalent to the local
navigation area that consists of 5 × 5 grid cells. Part of
the dashed-boundary box is out of bound, since ξ is on the
boundary of Nκ0 (μ). These out-of-bound cells are not con-
sidered in the summation of Equation (4). The energy term
shown in Equation (4) is calculated for each ξ ∈ Nκ0 (μ). In
the example shown in Figure 5, κ0 = 2 and κ1 = 1.

The first term in the right-hand side of Equation (4)
defines the total interaction potential due to the sum of the
effects of neighbours on the state at a lattice site ξ . This term

Figure 5. Illustration of different neighbourhoods in local
navigation.
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International Journal of Control 793

is called adaptation term because the effects of the observed
states in the neighbourhood cause changes in the resultant
energy potential at a lattice site ξ , which enables real-time
adaptation in the navigation path trajectory. The coefficient
Jξν denotes the interaction strength between two distinct
lattice sites ξ and ν. For η = max(|ξx − νx |, |ξy − νy |), i.e.
the distance between two neighbourhood sites, Jξν is given
as

Jξν =
{

η−α, ∀ξ �= ν and η ∈ {1, . . . , κ1},
0, otherwise

(6)

where α ∈ (0, ∞) is a control parameter. The (implicitly
time-dependent) interaction function � is defined as

�
(
γξ (t), γν(t)

) =
{ψT , for γξ (t) = U, γν(t) = T

ψE, for γξ (t) = U, γν(t) = E,

0, otherwise

(7)

which implies the following conditions:

(1) Any lattice site ξ , whose state is either γ ξ (t) = T (i.e.
an explored site where a target is present) or γ ξ (t) =
E (i.e. an explored site where no target is present)
or γ ξ (t) = O (i.e. an obstacle) is not influenced
by the state of the neighbourhood. Therefore, the
interaction potentials of sites that are in the above
states are zero.

(2) All neighbourhood sites with a state γ ν(t) = U
(i.e. unexplored site) exert no influence on any lat-
tice site because they provide no information to the
neighbourhood.

(3) ψT defines the influence of a site ν in the neighbour-
hood with γ ν(t) = T (i.e. an explored site where a
target is present) on a site ξ with γ ξ (t) = U (i.e. an
unexplored site).

(4) ψE defines the influence of a site ν in the neighbour-
hood with γ ν(t) = E (i.e. an explored site where no
target is present) on an unexplored site ξ .

The interaction function � has the following physical
interpretation. A target detection at a certain lattice site
causes distortion in the space-time potential field in the lo-
cal neighbourhood of the target resulting in an increase in
energy by ψT, scaled to the interaction strength, thereby cre-
ating a dome-like structure. Therefore, as the autonomous
vehicle scans the area, the collective state � of the lattice
(see Equation (3)) unfolds in the space-time coordinates and
a detected target’s neighbourhood with localised increase
in energy becomes a high priority area. In this neighbour-
hood, the unexplored sites (i.e. having a state γ ξ (t) = U)
with a high interaction potential tend to settle down to low
energy states (i.e. explored sites). Thus, the autonomous
vehicle follows the high potential sites and, by scanning,
turns them to low energy states by conversion to explored

sites that have no neighbourhood interactions. If another
target is detected in the neighbourhood, it generates its own
high interaction potential, which leads to constructive in-
terference with the potential of an earlier target, and so on.
Therefore, following high potential sites leads to an adap-
tation in the nominal trajectory of the autonomous vehicle
such that the high priority areas are scanned earlier, thereby
improving localised search performance. The interaction
function � shows that the explored sites, where no target is
detected, also exert relatively small influences on the neigh-
bouring unexplored sites, where the energy increases by a
factor ψE. Therefore, � tends to unfold in the neighbour-
hood of explored sites with a priority, thereby generating
a more uniform and orderly search. The construction of
energy functional for adaptation of an autonomous vehicle
is conceptually similar to that of the chemical pheromone
used for tracking by biological systems such as an ant.

Algorithm 1 Local Navigation Algorithm.
Input: current position c(t) ∈ Pμ, grid map M
Output: updated grid map M

1: calculate the local energy term EL
ξi

, ∀ cell ξi ∈ Nκ0 (μ)
2: set the centroid of grid cell ξ ∗ = argmaxiE

L
ξi

as the
navigationgoal

3: if front distance to obstacle ≤ threshold d then
4: use Bug2 algorithm for obstacle avoidance
5: else
6: move toward the navigation goal
7: get current coordinate c(t) and sensor readings {si}
8: update grid map M using c(t) and {si}
9: end if

The second term on the right-hand side of Equation (4)
defines the navigation control function � that depends on an
exogenous time-varying potential field Bξ (t) and the state
γ ξ (t) at a lattice site ξ . The (implicitly time-dependent)
function � is defined as

�
(
Bξ (t), γξ (t)

) =

⎧⎪⎪⎨
⎪⎪⎩

φT , for γξ (t) = T

φE, for γξ (t) = E

φO, for γξ (t) = O

Bξ (t), for γξ (t) = U,

(8)

where the constants φT ≤ 0, φE ≤ 0 and φO < 0 correspond
to low energy states of the explored sites in the presence
(i.e. γ ξ (t) = T) and absence (i.e. γ ξ (t) = E) of a target, and
the presence of obstacle (i.e. γ ξ (t) = O), respectively. As
described earlier, the explored sites have zero neighbour-
hood interaction potential; and therefore, they settle down
to these low energy states. On the other hand, the exoge-
nous potential field Bξ (t) defines the time-varying potential
at unexplored sites (i.e. γ ξ (t) = U) and is given as

Bξ (t) = B�
ξ − Cξ,μ(t), (9)
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where B�
ξ represents the constant potential field that is con-

structed to navigate the autonomous vehicle with no in situ
adaptation. The relative cost potential function Cξ , μ(t) de-
fines the total decrease in potential at a grid cell ξ due to
travel and turn costs that are incurred to reach the grid cell
ξ from a current position c(t) ∈ Pμ with the grid cell co-
ordinate μ at time t ∈ T . The cost function is constructed
as

Cξ,μ(t) � χtrTtr + χtuTtu, (10)

where Ttr is the cost of traveling across a single grid cell; Ttu

is the cost of turning; and χtr and χtu define the total number
of grid cells and the total number of turns, respectively,
that are required to reach ξ from μ(t) along the shortest
path. Equation (9) implies that the potential of a lattice site
depends on the position and orientation of the autonomous
vehicle. For example, a far away site on the lattice with
respect to the current position of the autonomous vehicle
will have less potential as compared to a nearby site, because
of high travelling and turning costs, unless the far away site
has a neighbourhood target.
Therefore, Equation (4) describes the total energy potential
at a lattice site ξ , which is the sum of: (1) neighbourhood
interaction potential due to nearby target locations and (2) a
time-varying field that depends on an externally applied po-
tential and the travelling and turning costs. The autonomous
vehicle computes the values of the energy potentials EL

ξ (t)
for all ξ ∈ Nκ0 (μ), and sets the centroid of the grid cell
ξ ∗(t) that has the highest potential as the goal for local
navigation,

ξ ∗(t) = argmax
ξ∈Nκ0 (μ)

EL
ξ (t). (11)

The local navigation algorithm is summarised in
Algorithm 1 using a pseudo code. The Bug2 algorithm
(Ng & Bränl, 2007) is used as a subroutine for obstacle
avoidance. Many other obstacle avoidance algorithms are
available, such as Bug 1 and TangentBug. The Bug2 algo-
rithm is chosen over its counterparts for its simplicity in
implementation and execution.

4.2 Probability vectors for global navigation

Global navigation is usually operated over large search
space that involves a large number of the finest level grid
cells. Calculation of the energy for all the grid cells requires
high computation power, especially when the search space
is large. This may undermine the real-time implementa-
tion capability of the algorithm and its further application
in the multi-agent cooperation. To resolve this problem, a
lightweight probability vector is used to store the environ-
ment information of each cell at the coarse levels. This
vector mirrors the spins associated in an area of the envi-
ronment in a probabilistic manner.

Algorithm 2 Global Navigation Algorithm.
Input: current position c(t) ∈ Pμ, grid map M, level �

Output: updated grid map M
1: generate grid map M� of level � from grid map M
2: compute probability vectors p�

i for all cells at level �

3: set the centroid of cell i∗ = argmaxip
�
i as the naviga-

tion goal
4: if front distance to obstacle ≤ threshold d then
5: use Bug2 algorithm for obstacle avoidance
6: else
7: move toward the navigation goal
8: get current coordinate c(t) and sensor readings {si}
9: update grid map M using c(t) and {si}

10: end if

Each coarse-cell partition is assigned a probability vector
that records the spins of the fine cells located in it,

p�
i = [|γξ (t) = σ1|, |γξ (t) = σ2|, |γξ (t)

= σ3|, |γξ (t) = σ4|]T , (12)

where |γ ξ (t) = σ j| with j = 1, 2, 3, 4 signifies the number
of fine cells in that region with spin σ j, and p�

i refers to
the ith cell of the �th level. Evidently, the sum of the four
elements of the vector is the number of cells in the region.
Then, the probability of finding a cell with given spin w in
region i in level l is given by

p�
i (γξ (t) = w) = |γξ (t) = w|∑4

j=1 |γξ (t) = σj |
. (13)

This probability vector is very lightweight and extremely
easy to store. In global navigation, the probability vectors
of all the grid cells at the current coarse level are calculated,
and the one with highest probability of unexplored cells is
set as the goal. The details of global navigation algorithm
are summarised in Algorithm 2, where the Bug2 algorithm
(Ng & Bränl, 2007) is also used as a subroutine for obstacle
avoidance.

5. Validation on a simulation test bed

This section presents validation of the multi-resolution al-
gorithm for oil spill cleaning on a simulation test bed. The
test bed is built upon the player/stage platform that is a high-
fidelity open source robotic simulator. The multi-resolution
algorithm, together with the 2D-random-walk oil weather-
ing model, is implemented on the simulator. Several per-
formance metrics are used to comparatively evaluate the
performance of the proposed algorithm and the benchmark
algorithm in oil spill cleaning. The simulation results of
both algorithms are given at the end of the section.
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5.1 Player/stage simulator

The player/stage project is one of the most widely used
robotics software packages, which consists of libraries
that provide access to communication and interface func-
tionality. The robot server Player provides an architec-
ture where many modules can be independently written
and connected through a custom middleware relying on
transmission control protocol communication. Stage is a
lightweight, highly configurable robot simulator that sup-
ports large populations. All sensor and actuator models
are available through Player’s standard interfaces (Gerkey,
Vaughan, & Howard, 2003).

A Pioneer 2AT robot is modelled in the simulator. The
Pioneer robot is equipped with sonar sensors for naviga-
tion. The range of the sonar sensors is 5 m, and in total 16
sonar sensors are installed around the Pioneer robot. The
robot has access to its position information in real time.
The robot is also equipped with oil detection sensor that is
implicitly modelled. It is assumed the oil detection sensor
has limited range and is only able to detect oil spill that
is within the same grid cell occupied by the robot. Kine-
matic constraints were modelled in the Pioneer robot, such
as minimum turn radius, top speed, and maximum accel-
eration. Although we use Pioneer robot for validation, the
navigation algorithm presented in the paper is meant to be
generic and not platform dependent.

The oil spill is modelled as a 2D random walk process.
The number of oil particles and their initial locations are
specified in the program. The weathering processing of
the oil spill is modelled by using a large number of oil
particles at every step in the simulation. The navigation
algorithm and the oil spill simulation are implemented in
separate subroutines in Player such that the autonomous
vehicle has no access to the distribution of the oil spill
until it enters the grid cell that is occupied by oil particles.
A vector is used to keep track of the status of every oil
particle. At the beginning of the simulation, the oil particles
are at their initial locations and all of them being in the
‘active’ status. The location of each oil particle is updated
every step until the autonomous vehicle enters the same
grid cell. The oil particles that are in the same grid cell with
the autonomous vehicle are labelled to be ‘inactive’. The
‘inactive’ oil particles are considered to have been removed
from the water and thus their locations are no longer updated
in the following simulation. This process continues until all
oil particles are in the status ‘inactive’, i.e. the oil spill
clean-up task is completed.

In the oil spill simulation, N = 5000 oil particles,
forcing vector A = [2 × 10−5, 5 × 10−5]

T
, scaling matrix

B = [2 × 10−2, 0; 0, 5 × 10−2]
T

, and vector of turbulent
coefficients K = [0.5, 0.5]T are used. The vector Z of two
independent random numbers is obtained from a uniform
distribution with range [−1, 1]. Each time step approx-
imately corresponds to �t = 0.3 seconds in real time.
Figure 1 shows the results of oil spill simulation without

any cleaning action. Figure 1(a) shows the distribution and
concentration of oil spill at the beginning of simulation
(n = 1) and Figure 1(b) shows the same after n = 10,000
steps of simulation.

A 30 × 30 m simulated harbour map has been used to
test the performance of the proposed algorithms. The size
of the grid cell at the finest level is 1 × 1 m, which is
slightly larger than the size of the Pioneer 2AT robot. The
selection of the starting point of the operation depends on
the direction of tidal current and wind. In this simulation
exercise, the starting point is the bottom left corner because
the wind and tidal current make the oil spill drifts toward
the harbour.

Since the initial location of the oil spill is unknown to
the autonomous vehicle and both the size and the location
of the oil spill change with time due to spreading and drift,
the autonomous vehicle needs to cover the entire search
area to assure complete clean-up of the oil particles. The
typical back and forth motion is optimal for searching
an area in terms of minimum number of turns when no
adaptation to target and obstacle avoidance is needed.
Therefore, for area coverage planning, the exogenous
potential field B�

ξ in Equation (9) is designed for back and
forth motion such that the potential field has a decreasing
magnitude from column to column, starting from a
maximum value of magnitude 10,000 at the start point,
while having equipotential sites on each column. The other
parameters in Equations (4)–(10) have been selected to be
κ0 = 3, κ1 = 2, φT = 0, φU = 0, φO = −40, 000, ψT =
2000, ψE = 0, Ttr = 600, Ttu = 1000, and α = 0.8 in
the simulation exercises; however, the specific values of
these parameters do not have very significant effects on
the algorithm performance since the behaviour of the
autonomous vehicle depends on the ratio of the parameters
(φ, ψ , and T) instead of the magnitude.

To comparatively evaluate the performance of the pro-
posed multi-resolution navigation algorithm, a benchmark
algorithm (Jin et al., 2012) is also tested in the same
scenario. In the benchmark algorithm, the autonomous
vehicle implements back and forth motion and avoids
obstacles as needed. When no unexplored grid cells
are in its local neighbourhood, the vehicle moves to-
ward the direction of the most unexplored grid cells. In
essence, the benchmark algorithm is a simplified version
of the multi-resolution navigation algorithm without the
adaptation term

∑
<ξ,ν>κ

Jξν�
(
γξ (t), γν(t)

)
as shown in

Equation (4). Without the adaptation term, the benchmark
algorithm is not affected by the detection of the oil spill
in the current grid cell and thus does not deviate from the
back and forth motion to search the neighbourhood of cur-
rent grid cell for oil spills.

5.2 Performance metrics

Four different performance metrics are used to compare
the effectiveness of the proposed algorithm with that of the
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benchmark algorithm in oil spill cleaning:

• Ttotal: total time to cover the entire search area.
• Tclean: time to clean up all the oil spills.
• AUC: area under the curve in the oil spill cleaning

profile.
• EIM: environmental impact measure.

The most intuitive performance metric is the completion
time. Since the location of the oil spill is unknown and
varying with time, the autonomous vehicle needs to cover
the entire search area to guarantee removal of all the oil
spills. Therefore, two performance metrics regarding the
completion time are used in this paper, namely, the total time
in covering the entire search area Ttotal and the time taken to
clean up all oil spills in the search area Tclean. It is obvious
that, in most cases, Ttotal > Tclean. The performance metric
Tclean is more important than the metric Ttotal, as it reflects
the ability of the system to remove the environmental risk.
Thus, in the case where one algorithm has a lower Ttotal, but
the other has a lower Tclean, the latter is considered more
effective.

To keep track of the history of oil spill cleaning, a pro-
file is generated to record the remaining oil spill at each
time step. The profiles of the proposed algorithm and the
benchmark algorithm are visualised in Figure 8. The metric
Area Under the Curve (AUC) has been used to quantita-
tively compare these two profiles. The formal definition of
AUC is given as follows:

Definition 5.1 (AUC): Let H be the profile that records the
remaining oil spill at each time step, then the metric AUC
is defined as

AUC =
T∑

n=1

H(n), (14)

where T is the time taken to complete the task. This met-
ric also emphasises the efficiency of cleaning the oil spill.
The algorithm with smaller AUC is considered to be more
effective.

Oil spill has significant ecological impacts to the en-
vironment. The longer the oil spill remains in the water,
the more damage it will incur. The environmental impact
measure (EIM) is defined to quantify the impact.

Definition 5.2 (EIM): Let H be the profile that records the
remaining oil spill at each time step, then the metric EIM
is defined as

EIM =
T∑

n=1

nH(n) (15)

The performance metrics Tclean, AUC and EIM are re-
lated to each other. The clean-up time Tclean shows how fast

the algorithm is able to finish the cleaning of all oil spills,
the AUC takes the remaining oil spill at each time step into
consideration, and the EIM emphasises the impact to the
environment due to the cumulative effect of the oil spill.

5.3 Simulation results

This simulation exercise aims to validate the proposed algo-
rithms for a real-life oil spill cleaning scenario, and compare
their performance with the benchmark algorithm. A map
with the layout of a typical harbour is designed. The harbour
consists of several ports and has one entrance that connects
to the open sea, as shown in the top row of Figure 1. The ini-
tial oil spill is located at the entrance, probably due to a mar-
itime accident outside the harbour or drifting of the oil spill
from the site of an offshore platform accident. As shown in
Figure 1, the oil spill will hit the port in a certain amount
of time due to drift and spreading if no proper response is
taken.1

The multi-resolution algorithm is used to navigate an
autonomous vehicle to clean up the oil spill. Four snapshots
are taken and shown in Figure 6(a)–(d). The top row shows
the layout of the harbour, the oil spill, and the trajectory
of the autonomous vehicle, while the bottom row shows
the environment map in the vehicle’s onboard memory.
Figure 6(a) shows the vehicle follows the offline plan and
implements back and forth motion to explore the search
area. Figure 6(b) shows the vehicle deviates from the offline
plan once it detects the oil spill and explores the neighbour-
hood of the grid cells where the oil spill is detected. Fig-
ure 6(c) shows the moment when the vehicle successfully
cleans-up all the oil spills in the search area, and Figure 6(d)
shows the vehicle explores the remaining search area using
back and forth motion and avoids obstacles.

In the environment maps, the yellow box around the
search area in Figure 6(a) is the buffer specified at the
beginning of the task to prevent the vehicle from leaving the
search area. As the exploration goes on, the vehicle detects
the jetty and the port, which are marked in dark green in the
environment map. Upon detection of the jetty and the port,
the buffer is automatically labelled around them in order to
force the vehicle to keep a safe distance and avoid collision.
The grid cells where oil spill is discovered are labelled in a
different colour, and the vehicle spends more time to search
the neighbouring area of the cells. As seen in Figure 6(d),
the complete perimeter of the harbour is mapped in dark
green.

The benchmark algorithm is also implemented in the
same map to compare with the proposed algorithm, and the
results are shown in Figure 7. The only difference between
Figures 6 and 7 is that the autonomous vehicle does not
adapt to the neighbourhood of the grid cells with oil spill
detected. Instead, it follows the offline plan and implements
the back and forth motion until it covers the entire search
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Figure 6. Example of oil spill cleaning in a harbour using the proposed multi-resolution navigation algorithm. (a) Discover the oil spill
(n = 600). (b) Clean-up all oil spills (n = 2830). (c) Complete coverage (n = 10865). (d) Complete coverage (n = 10865).

Figure 7. Example of oil spill cleaning in a harbour using the benchmark algorithm (Jin et al., 2012) that has no adaptation to the
oil spill. (a) Start exploring unknown area (n = 600). (b) No adaptation to oil spill (n = 2300). (c) Clean-up all oil spills (n = 3325).
(d) Complete coverage (n = 9783).

area. As a result, the trajectory recorded in Figure 7 is neater
than the one in Figure 6.

The profiles of oil spill cleaning using the proposed and
benchmark methods are shown in Figure 8. The y axis in
Figure 8 indicates the normalised number of the remaining
oil particles, and the x axis is the time steps in the simula-
tion. It is seen in Figure 8 that the proposed method takes

much less time in cleaning up all the oil spills, although it
takes slightly more time to finish scanning the entire search
area. This is understandable since in the proposed method
the autonomous vehicle deviates from the offline plan and
exploits the neighbouring areas when it detects oil spills.

The proposed method and the benchmark method are
comparatively evaluated using the performance metrics
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Table 1. Comparative evaluation of the proposed and benchmark
methods in oil spill cleaning in a harbour environment.

Method Ttotal Tclean AUC EIM

Benchmark 9783 3387 2578 3.51 × 106

Proposed 10865 2826 1618 1.45 × 106

Improvement −11.1% 16.6% 37.2% 58.7%

Figure 8. Oil spill cleaning profiles of the proposed and bench-
mark methods.

defined in Section 5.2, and the results are shown in
Table 1. Although it takes 11.1% more time to finish scan-
ning the entire search area, the proposed method is much
more efficient in oil spill cleaning and takes 16.6% less
time to clean up all the oil spills. As indicated by EIM, the
proposed method significantly reduces the impact of the oil
spill to the environment by dynamically adapting to the oil
spill and replanning online.

6. Summary, conclusions and future work

This paper presents a multi-resolution navigation algorithm
for oil spill cleaning in dynamic and uncertain environ-
ments using autonomous vehicles as a single agent. The
concepts of local and global navigation are integrated in
the algorithm for adaptive decision making according to the
available spatio-temporal information. The local navigation
provides a reduced computational complexity in local deci-
sion making, while the global navigation is organised in a
hierarchical manner to prevent the robot from being stuck
into a local minimum. Dynamic adaptation significantly
improves the cleaning efficiency and reduces the impact of
the oil spill to the environments. The proposed algorithm,
while motivated by the oil spill application, can also be
applied to other problems that require coverage guarantees
with mapping of a dynamic field as a goal, such as plume
detection.

The proposed algorithm has been validated in a harbour
example. With the multi-resolution navigation algorithm,
the autonomous vehicle manages to explore the complex
and unknown environment, and cleans up all the oil spills

in a timely manner. Compared to the benchmark algorithm
that uses back and forth motion and obstacle avoidance
algorithm, the proposed multi-resolution algorithm is more
efficient in oil spill cleaning and significantly reduces the
impact of the oil spill to the environment.

While there are many research issues that need to re-
solved before exploring commercial applications of the
proposed algorithms, the following topics are under active
research.

• Inference of oil spill distribution to facilitate adapta-
tion: The autonomous vehicle under consideration in
this paper is able to detect an oil spill only if the spill
is present within a grid cell. If additional sensors are
available to measure the information on oil concen-
tration, then the oil spill distribution could be inferred
to facilitate adaptation. In that case, the autonomous
vehicle would be able to move in the steepest ascen-
dent direction to clean up the high-concentration area
first.

• Experimental validation of the algorithm on hard-
ware platform(s): The proposed algorithm has not
been experimentally validated primarily due to the
difficulties in creating oil spills in a laboratory envi-
ronment and also due to high costs of constructing
a prototype of the oil spill cleaning robot. The cur-
rent plan is to implement the proposed algorithm on
existing land robots in a laboratory environment and
perform co-simulation on a computer that is dedi-
cated to simulate the oil spill process.

• Extension of the algorithm for multi-agent coopera-
tion: Multi-agent cooperation is critical for reducing
the time required to clean up oil spills. The proposed
algorithm could be extended to investigate the multi-
agent case by dividing the entire search space into
several regions, where an agent is assigned to each re-
gion. In this way, the cleaning efficiency could be fur-
ther improved if communications among the agents
are available such that the idle agents, who have al-
ready finished their assigned tasks, are allowed to
assist their neighbours to clean up the remaining oil
spills.
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Note
1. A video of this simulation exercise is available at

http://goo.gl/R0SXw for downloading or viewing online.
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Appendix 1. Background of oil spill

This appendix briefly reviews the background of oil spill. The
relevant information regarding the oil weathering process and the
oil spill cleaning methods are discussed.

1.1 Oil weathering processes
The spilled oil is normally a mixture of hydrocarbon compounds
whose chemical and physical properties vary among oil types.
When an oil spill occurs, the nature of the oil undergoes a series
of changes in chemical and physical properties over time, that
in combination, is termed ‘weathering’. The oil weathering pro-
cesses include short-term processes such as spreading, drift, evap-
oration, emulsification, dispersion, and dissolution, and long-term
processes such as photo-oxidation, biodegradation, and sedimen-
tation (Brebbia, 2001; Zhong & You, 2011).

In the event of a massive oil spill on water, the oil begins
to spread by gravity, wind, and current, with the process resisted
by inertia, viscosity, and surface tension, until the slick reaches
a thickness of 0.1 mm or less. The process, known as spread-
ing, can affect other weathering processes such as evaporation,
dispersion, and emulsification. The environmental impact of oil
spills largely depends on the spreading area. The clean-up oper-
ations also require information on the spill size. Because of the
influence of the winds and wind-induced surface currents, the oil
slick may move downward with respect to the wind direction. This
movement, called drift, results in a displacement of the centre of
the oil slick and contributes to the non-symmetrical spreading
(Zhong & You, 2011). This paper considers both spreading and
drift in the oil weathering process. Other weathering processes in-
clude evaporation, natural dispersion, emulsification, dissolution,
photo-oxidation, sedimentation, and biodegradation.

In the oil weathering process, a variety of complex physical,
chemical and biological phenomena take place simultaneously.
The weathering process depends on the initial oil properties, the
spilled amount, hydrodynamics, and weather conditions (Zhong
& You, 2011). It is estimated that over 50 oil weathering models
have been developed. The transport of oil can be modelled either
by solving the advection–diffusion equation on the node of a grid
(Eulerian models) (Carmo, Pinho, & Vieira, 2005; Pinho, Antunes
do Carmo, & Vieira, 2002), or by tracking particles, which rep-
resent individual portions of the spill (Lagrangian models) Lonin
(1999). Random walk models (Arega & Sanders, 2004; Dimou &
Adams, 1993; Grisolı́a-Santos & Spaudlding, 2000; Korotenko,
Mamedov, Kontar, & Korotenko, 2004), which solve the nonlin-
ear Langevin equation, belong to the latter category. For the 2D
random walk models, initial conditions including the number of
particles and time interval need to be specified. For random-walk
spill models involving the vertical direction, the oil particle size
distribution must also be specified, since oil buoyancy influences
oil spill movement and spreading (Grisolı́a-Santos & Spaudlding,
2000). In this paper, we use the 2D random-walk particle tracking
technique (Arega & Sanders, 2004; Dimou & Adams, 1993) to
follow the motion of individual particles (oil droplets), the total
amount of which constitutes the oil spill.

1.2 Oil spill clean-up methods
When a massive oil spill occurs, quick and effective response is
critical in order to minimise the economic impact and the damage
to both the ecology and the quality of human life. Five meth-
ods are commonly used to contain and clean up a spill: mechan-
ical methods, chemical methods, use of absorbents, oil burning
and bioremediation (Ventikos, Vergetis, Psaraftis, & Triantafyllou,
2004).

The current state of the art in spill countermeasures varies
from mechanical and chemical methods, to the usage of ab-
sorbents, oil burning and bioremediation (Ventikos et al., 2004).
Mechanical methods, referring to the use of booms and skim-
mers, are the most widely used combat means. Booms are used to
confine the oil to a specific area, hence controlling its spreading,
and/or stop the oil from entering a given area, while skimmers
are used to recover the oil from the water surface (Fingas, 1995).
Other clean-up methods may be effective under certain circum-
stances, but they also suffer from many limitations and are not
as cost effective as the mechanical methods (Kakalis & Ventikos,
2008).

The chemical methods are more efficient than mechanical
method when properly applied, but the dispersed oil droplets in
high concentrations could have an acute lethal toxicity for many
species. Despite burning of the spilled oil is an efficient, versatile
and lower cost method, there could be possibility of sinking ex-
tremely viscous and dense residues. The idea of bioremediation is
attractive; however, its practical use is restricted.

Mechanical clean-up refers to the use of booms and skimmers,
and are the most widely used combatting means. Mechanical re-
covery operations for large spills are in general considered to be
expensive, complex and labour-intensive, with their recovery ef-
ficiency not to usually exceed 20% (Mullin & Champ, 2003). The
chemical methods are based on the transformation of the physico-
chemical properties of the oil, and the most common method is the
use of dispersants. Although dispersants, when properly applied,
are more efficient than skimmers, for large spills can also be expen-
sive, complex and labour-intensive. In situ burning corresponds
to controlled ignition and burning of the oil at or near the spill
site, on the surface of the water or in a marsh (Mullin & Champ,
2003). Bioremediation refers to the addition of microorganisms
that are able to degrade hydrocarbons, or the addition of fertilizers
to the hydrocarbon-degrading bacteria and fungi that naturally ex-
ist in marine environments. Although the idea of bioremediation
is attractive, its practical use is restricted.

Current technology to skim oil spill harms the health of clean-
ers, cannot operate at night safely, is not in operation far from shore
because it is too costly, and cannot operate in rough weather.

Appendix 2. Important features of the algorithm

This appendix outlines important features of the multi-resolution
algorithm, which includes complete coverage of the unknown
environment, clean-up of all oil spills, no local minima problem,
and low computational complexity.

2.1 Complete coverage
The multi-resolution algorithm provides complete coverage of the
unknown search space, as explained below.

Let there be an unexplored grid cell ξ that is far away from
the autonomous vehicle. Then the autonomous vehicle may switch
to global navigation because no unexplored grid cells are within
its κ0-neighbourhood. The coarse-level � increases until a coarse-
level cell ς with ξ ∈ ς and p�

ς > 0 is found, and the vehicle
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navigates toward the centroid of the cell ς . As the vehicle ap-
proaches the fine-level grid cell ξ , the coarse-level � gradually
decreases because a lower level global view is large enough to
cover the unexplored cell ξ . Eventually, the grid cell ξ falls within
the κ0-neighbourhood of the vehicle, and the vehicle finishes the
complete coverage task by moving into the grid cell ξ .

2.2 Clean-up capability
The multi-resolution algorithm is capable of cleaning oil spills
whose locations may not be known, as explained below.

The autonomous vehicle carries out back and forth motion
until it detects oil spill. Upon detection of the oil spill, the au-
tonomous vehicle explores the κ0-neighbourhood of the current
grid cell where oil is discovered. Due to the fact that oil distribution
is continuous, the autonomous vehicle discovers and cleans-up the
entire oil spill before exploring the remaining areas. The starting
point of the operation is chosen at the windward side such that
remaining oil spill does not enter the area that has been cleaned.
Following Appendix 2.1, the autonomous vehicle eventually fin-
ishes covering the entire search area and cleans-up all the oil
spills.

2.3 Local minima problem
The multi-resolution algorithm does not suffer from the local
minima problem, as explained below.

Local minima problem occurs when there is no unexplored
grid cell left in the local navigation area. In this case, the au-
tonomous vehicle switches from local navigation to global navi-
gation and increases the coarse level until it finds unexplored grid
cells. The vehicle then moves toward the centroid of the coarse-
level cell and resolves the local minima problem.

2.4 Computational complexity
The multi-resolution algorithm has very low computational com-
plexity that enables the real-time implementation of the algorithm,
as explained below.

The computational complexities of the local and global nav-
igation are evaluated separately. In the local navigation, the au-
tonomous vehicle searches for the grid cell with highest energy
within a square area of length 2κ0 + 1, which has (2κ0 +
1)2 − 1 grid cells excluding the grid cell occupied by the au-
tonomous vehicle. Therefore, the local navigation algorithm has
a computational complexity of O(κ0

2). In the global naviga-
tion, as illustrated in Figure 3, the autonomous vehicle only
needs to search a 2 × 2 area, no matter which coarse level
it is at. Overall, the proposed algorithm has a computational
complexity of O(κ0

2). Usually κ0 
 1
10 L suffices full cover-

age of a local neighbourhood, where L is the length of the
search area; so the proposed algorithm has a low computational
complexity.
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