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a b s t r a c t

This short paper presents a recently reported dynamic data-driven method, Symbolic Dynamic Filtering
(SDF), for real-time estimation of the state-of-health (SOH) and state-of-charge (SOC) in lead-acid bat-
teries, as an alternative to model-based analysis techniques. In particular, SOC estimation relies on a k-NN
regression algorithm while SOH estimation is obtained from the divergence between extracted features.
The results show that the proposed data-driven method successfully distinguishes battery voltage re-
sponses under different SOC and SOH situations.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Lead-acid batteries provide low-cost energy storage with high
power density and operational safety. Consequently, large lead-acid
battery packs are increasingly being used in vehicles, renewable
energy applications, power backup systems, and the smart grid.
Applications requiring large and dynamic power demands (e.g.,
plug-in electric vehicles and hybrid locomotives) use real-time
estimates of the state of health (SOH) and the state of charge
(SOC) to efficiently allocate power and energy within battery packs
and between other prime movers such as internal combustion
engines. Accurate SOC estimates mitigate the risk of the battery
system being over-charged and over-discharged; similarly, reliable
SOH estimates enhance preventive maintenance and life cycle cost
through recharging or replacement of battery units.

The battery SOC and SOH can be estimated from the available
current and voltagemeasurements at reasonable sampling rates (e.g.,
psu.edu (Z. Shen), axr2@psu.
~1Hz forexperiments in thispaper) basedonasimplifiedmodelof the
cell electrochemistry. This approach results inestimates thatexplicitly
related to the geometric,material, andelectrochemical characteristics
of the underlyingmodel. A variety of parameter estimation tools (e.g.,
system identification, minimum variance, and linear least squares)
have been applied to lead-acid [1] and lithium-ion [2] batteries.

This paper proposes a dynamic data-driven approach for SOC
and SOH estimation of the lead-acid batteries as an alternative to a
model-based approach. The proposed estimation method is built
upon the concept of symbolic dynamic filtering (SDF) [3] that has
been successfully applied in a variety of physical processes for
anomaly detection [4] and pattern recognition [5]. The major ad-
vantages of the data-driven parameter estimation method, pre-
sented in this short paper, are delineated below.

� The proposed method of battery parameter estimation is
capable of real-time execution on in-situ computers (e.g., at
sensor nodes of individual batteries).

� There is no requirement for a detailed knowledge of the battery
electrochemistry and its internal dynamics.
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2. Battery state parameters

This section introduces standard definitions of pertinent battery
parameters, at a given ambient temperature [6].

Definition 2.1. (Battery capacity) The capacity C(t) of a battery at
time t is its maximum charge (in units of ampere-hours) that can be
drawn from its fully charged condition at a rate C(t)/30 (in units of
amperes).

Definition 2.2. (SOH) Let a new battery be put into service at time
t0. The state of health SOH(t) of the (possibly used) battery at the
current time t, where t � t0, is defined to be the ratio of the battery
capacities at time epochs t and t0, i.e.,

SOHðtÞ ¼ CðtÞ
Cðt0Þ

ct � t0 (1)

Definition 2.3. (DOD and SOC) Let a battery be fully charged at
time t and let I(t) be the applied current (in units of amperes) at
time t. Then, depth of discharge (DOD) and state of charge (SOC) at
time t þ Dt are respectively defined as

DODðt þ DtÞ ¼ 1
CðtÞ

ZtþDt

t

IðtÞdt;Dt � 0 (2)

SOCðt þ DtÞ ¼ 1� DODðt þ DtÞ; Dt � 0 (3)

Remark 2.1. It is noted that SOH 2 [0,1] and SOC 2 [0,1] for all
time t � t0, where t0 is the time of putting a new battery into
service.

The current practice of SOH estimation includes battery capacity
measurement, battery impedance measurement, and coup de fouet
methods [7]. Capacity measurement is a slow process as it requires
full discharge to SOC ¼ 0 followed by a full charge to SOC ¼ 1.
Impedance measurement employs dedicated hardware and/or
software to directly measure either DC or AC resistance of the
battery [8,9]. The battery impedance also increases as the battery
ages and the measured impedance can be correlated to SOH. Coup
de fouet [7], [10] is observed in Lead-Acid batteries that have been
fully charged, rested, and then pulse discharged. During the first
discharge pulse, the voltage dips and then increases and levels off at
a plateau voltage, followed by a steady rate of decrease. The voltage
dip or undershoot has been empirically shown to be proportional to
SOH of the cell [11], [12]. In this work, the capacity measurement
method has been used to calibrate the SOH at different stages of
battery life.

There are several existing methods for SOC estimation, which
include ampere-hour counting, measurements of electrolyte's
physical properties, and open-circuit voltage testing. Ampere-hour
counting requires an accurate current measurement and the SOC
estimate is computed from Definition 2.3. The electrolyte in lead-
acid batteries plays an important role in the charge and discharge
reactions. The linear relationship between the acid concentration
and SOC can be used to determine the latter; similarly, the open
circuit voltage varies monotonically with SOC. In this paper,
ampere-hour counting has been used to compute the SOC for the
experimental work.
3. Symbolization of time series

This section briefly describes the underlying concept of symbolic
dynamic filtering (SDF) uponwhich the proposed data-driven tool of
battery parameter estimation is constructed. SDF encodes the
behaviorof (possiblynonlinear)dynamical systemsfromtheobserved
time series by symbolization and construction of state machines (i.e.,
probabilistic finite state automata (PFSA)) [3]. This is followed by
computation of the state probability vectors that are representatives
of the evolving statistical characteristics of the battery's dynamical
system.

Symbolization is achieved by partitioning the time series data
into a mutually exclusive and exhaustive set of finitely many
segments. In this paper, the maximum-entropy partitioning
(MEP) [13] has been adopted to construct the symbol alphabet S
and to generate symbol sequences, where the information-rich
regions of the data set are partitioned finer and those with
sparse information are partitioned coarser to maximize the
Shannon entropy of the generated symbol sequence from the
reference data set. As seen at the upper left hand corner plot of
Fig. 1, each segment is labeled by a unique symbol and let S

denote the alphabet of all these symbols. The segment, visited by
the time series plot takes a symbol value from the alphabet S.
For example, having S ¼ {a,b,g,d} in Fig. 1, a time-series x0x1x2…
generates a sequence of symbols in the symbol space as:
s0s1s2…, where each si, i ¼ 0,1,2,…, takes a symbol value from the
alphabet S. This mapping is called symbolic dynamics as it at-
tributes a (physically admissible) symbol sequence to the
dynamical system starting from an initial state. For example, see
the symbol sequence at the top right hand corner of Fig. 1.

The core assumption in the SDF analysis for construction of
probabilistic finite state automata (PFSA) from symbol sequences is
that the symbolic process under both nominal and off-nominal
conditions can be approximated as a Markov chain of order D,
called theD-Markovmachine,whereD is apositive integer.While the
details of the D-Markov machine construction are given in Refs. [3],
[13], the pertinent definitions and their implications are succinctly
presented below.

Definition 3.1. (DFSA) A deterministic finite state automaton
(DFSA) is a 3-tuple G ¼ (S,Q,d) where:

1) S is a non-empty finite set, called the symbol alphabet, with
cardinality jSj<∞;

2) Q is a non-empty finite set, called the set of states, with cardi-
nality jQj < ∞;

3) d:Q � S / Q is the state transition map;

and S+ is the collection of all finite-length strings with symbols
from S including the (zero-length) empty string 3, i.e., jεj ¼ 0.

Remark 3.1. It is noted that Definition 3.1 does not make use of an
initial state, because the purpose here is to work in a statistically
stationary setting, where no initial state is required as explained by
Adenis et al. [14].

Definition 3.2. (PFSA) A probabilistic finite state automaton
(PFSA) is constructed upon a DFSA G ¼ (S,Q,d) as a pair K ¼ (G,p),
i.e., the PFSA K is a 4-tuple K ¼ (S, Q,d,p), where:

1) S,Q, and d are the same as in Definition 3.1;
2) p:Q � S / [0,1] is the probability morph function that sat-

isfies the condition ss2Spðq; sÞ ¼ 1 cq2Q . Denoting pij as
the probability of occurrence of a symbol sj2S at the state
qi2Q, the (jQj � Sj) probability morph matrix is obtained as
P ¼ [pij].



Fig. 1. Concept of symbolic dynamic filtering (SDF).
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Definition 3.3. (D-Markov) A D-Markov machine [3] is a PFSA in
which each state is represented by a finite history of D symbols as
defined by:

� D is the depth of the Markov machine;
� Q is the finite set of states with cardinality

���Q ��� � ���S���D, i.e., the
states are represented by equivalence classes of symbol strings
of maximum length D where each symbol belongs to the al-
phabet S;

� d:Q � S / Q is the state transition map that satisfies the
following condition if

���Q ��� ¼ ���S���D: There exist a,b2S and s2S+

such that d(as,b) ¼ sb and as,sb2Q.
Remark 3.2. It follows from Definition 3.3 that a D-Markov chain
is treated as a statistically stationary stochastic process
S ¼ /s�1s0s1…, where the probability of occurrence of a new
symbol depends only on the last D symbols, i.e.,
P½snjsn�1/sn�D/s0� ¼ P½snjsn�1/sn�D�.

The construction of a D-Markov machine is based on: (i) state
splitting that generates symbol blocks of different lengths accord-
ing to their relative importance; and (ii) state merging that as-
similates histories from symbol blocks leading to the same
symbolic behavior. Words of length D on a symbol sequence are
treated as the states of the D-Markov machine before any state-
merging is executed. Thus, on an alphabet S, the total number of
possible states becomes less than or equal to

���S���D; and operations of
state merging may significantly reduce the number of states [15].

Following Fig. 1 where The parameter D of the D-Markov ma-
chine is chosen to be 1, the time series at a given epoch tk may now
be used to compute the quasi-stationary probability morph matrix
Pk (see Definition 3.2). Then, Pk is used in conjunction with the
state transition map d (see Definition 3.1), to construct the
ðjQ j � jQ j) quasi-stationary stochastic irreducible state-transition
matrix as: Pkb½Pkij�, where Pkij is the probability of transition from
state qi to state qj based on time series at epoch tk. The corre-
sponding state probability vector is obtained as: pkb½pk1;/; pkjQ j�,
where pkj is the quasi-stationary probability of occupying the state
qj2Q at epoch tk, as the (sum-normalized) left eigenvector of Pk

corresponding to its (unique) unity eigenvalue.
The statistics of the time series at the epoch tk, represented by

the state transition probability matrix Pk, change to P[ at another
epoch t[. Accordingly, the state probability vector pk changes to p[;
thus, pk and p[ are treated as feature vectors that are postulated to
have the imbedded information on the dynamical system at the
epochs tk and t[, respectively. The evolution of the battery dynamics
is captured as the divergence of the feature vector as defined below.

Definition 3.4. (Feature Divergence) Let p0 be the feature vector
at the epoch t0, which is treated as a reference (e.g., full charge or
healthy) condition of the battery, and let pk be the feature vector at
the current time epoch tk. Then, the (scalar) feature divergence at
an epoch tk is expressed as:

mkbd
�
pk; p0

�
(4)

where d(,,,) is an appropriate metric, while there are several
choices for this metric (for example, see [3]).

The range of linearity between the feature divergence and a
battery condition (e.g., SOH) is obtained as a statistical model in
terms of the coefficient of determination as defined below.

Definition 3.5. (Coefficient of Determination [16]) As ameasure of
how well the linear least squares fit, bqk ¼ aþ b mk, performs as a
predictor of an output q in terms of the input m, where the scalars a
and b are the intercept and slope of the linear fit, the coefficient of
determination (R2) is defined as:

R2 ¼ 1�
Pn

i¼1

�
qi � bqi�2Pn

i¼1
�
qi � q

�2 (5)

where qb1=nsn
i¼1qi is the average of the output data. In this paper,

{mk} represents a sequence of the feature divergence and {qk} is the
corresponding sequence of (1 � SOH).
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4. Results and discussion

This section presents the results of SOC and SOH estimation
based on an ensemble of time series data sets of current inputs and
voltage outputs. These data sets were acquired from three lead-acid
batteries with similar characteristics. All batteries are of the same
type: 12 V AGM VRLA with 85 Ah capacity. Battery #1 and Battery
#2 are from the same manufacturer while Battery #3 is from a
different manufacturer. Experiments were conducted on these
batteries under two long-term (i.e., over 100 days) tests at room
temperature. Two different current input cycle patterns, denoted as
“Pattern I” and “Pattern II”, have been used to charge/discharge the
batteries; each of these patterns simulates a real-time working
condition for an electric locomotive. Fig. 2 shows a current profile
consisting of a constant “hotel” load and a discharge pulse followed
by a constant charge (i.e., regeneration) pulse.

The configuration of an experiment depends on the type of
current input pattern, as depicted in Fig. 3. During each test, an
input pattern is repeated for 8 h, which is called one working cycle.
The SOH is calibrated after every 15 (or more) working cycles. Two
slow, full charge/discharge cycles have been used to measure the
battery current capacity.

The parameters for SDF analysis (see Section 3) of time series
data have been chosen as follows.

� The size of the symbol alphabet is chosen to be jSj ¼ 20.
� The depth in the D-Markov machine is set at D ¼ 1.
Fig. 2. Two patterns of battery input current and output voltage patterns in the
experiment: (a) Pattern I e Cycle length ¼ 360 s starting with steady discharge current
of �1.6 A(C/53 A); (b) Pattern II e Cycle length ¼ 120 s starting with steady discharge
current of �5.5 A(C/15 A). Both patterns include 14 s of �16 A(C/5.3 A) discharge pulse
and 6 s of 12 A(C/7 A) charge pulse.
� The distance function d(,,,) for computation of the feature
divergence in Eq. (4) is chosen to be the standard Euclidean
distance, i.e., mk ¼

������pk � p0
������b ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sjðpkj � p0j Þ2
q

;

4.1. SOC estimation by SDF-based kNN regression

This subsection performs SOC estimation based on the SDF
features, extracted from voltage responses during working cycles,
where a k-nearest-neighbor (kNN) regression algorithm [17] is
trained by the SDF features. The results, reported in this subsection,
focus on experimental data with the input pattern II (see Fig. 2(b)),
where the battery is charged back to full SOC during the interval
between two consecutive working cycles. At different SOC levels,
lead-acid battery voltage responses can be different for identical
current inputs as seen in Fig. 4, where the normalized voltage
outputs (with zero mean and unit variance) have different textures
for inputs of the same pattern. SDF capture these subtle differences
in the voltage responses and represent them as low-dimensional
feature vectors. It is noted that the kNN method is among the
most frequently used and simplest tools of pattern classification
and regression. This algorithm recognizes the contributions of
nearest neighbors, which means only local data density is taken
into consideration, which is especially efficient for high data den-
sity and large data sets.

Algorithm 1. kNN regression algorithm for SOC estimation
Input: Normalized training time series data xij2ℝ1�n;

j ¼ 1;…;M; i ¼ 1;…;N;
SOC labels for training data sets Ci

j2½0;1�;
j ¼ 1;…;M; i ¼ 1;…;N;

And test time series data set x2ℝ1�n

(where n is the length of analysis time window, M depends on
analysis window, N is the total number of training data sets.)

Output: Estimated SOC value for the time-series x

1 Generate features pij from the time series fxijg for each training
data using SDF.

2 Compute the normalized test time series
x ¼ x�meanðxÞ=varðxÞ.

3 Generate features p from the test time series fxg using SDF.
4 Find the SOC values from each training set such that Ci

chosenbCi
j ,

where j ¼ argmin
j

������pij � p
������ for each i ¼ 1,…,N.

5 Estimate the SOC of test time series dSOC ¼ sN
i¼1C

i
chosen=N.

As the physical condition of a battery deteriorates with aging,
the SOC estimator is adapted to different SOH values by choosing
different training sets. In this experiment, three working cycles
have been randomly chosen from 15 working cycles between two
consecutive SOH calibration operations, which leaves 12 remaining
working cycles as the test set. In the training phase, SDF features are
extracted from the training data for a certain analysis window. The
analysis window consists of single or multiple successive voltage
responses to input patterns. Each SDF feature is labeled with a SOC
value that corresponds to the end time of the training data in the
analysis window. In the testing phase, SDF features are extracted
from real-time voltage outputs of the same length as the analysis
window. Next, one SDF feature with the minimum Euclidean dis-
tance from the test feature is chosen from each training data set.
The SOC of the test data is estimated as the average of SOC for 3 SDF
features.

Fig. 5 shows the results of cross validation to assess the per-
formance of SOC estimation based on SDF feature extraction and
kNN regression. By choosing different 3 training sets from every 15
working cycles between SOH calibrations, there are 455 different
training data combinations. For different choice of analysis time
window at each SOH level, we compute the average estimation



Fig. 3. Configuration of working cycles in two patterns: (a) Pattern I e 5 working
cycles grouped together with a 1.5-h interval between consecutive working cycles and
a 17-h interval between two consecutive groups; (b) Pattern II e single working cycles
with a 13-h interval between consecutive working cycles.
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errors for all training data combinations and take themean value as
the error of SOC estimation in that case. The results suggest that the
SOC estimation error increases as the battery ages, and more ac-
curate estimations can be made if the analysis window length is
increased.
Fig. 4. Voltage responses to input Pattern II at SOH ¼ 0.8179. The voltage response is
different for charging and discharging as battery SOC drops.
4.2. SOH estimation by feature divergence

This subsection presents SOH estimation in lead-acid batteries
based on the SDF features extracted from single or multiple suc-
cessive voltage outputs in a working cycle (voltage responses dur-
ing charging between working cycles are removed). The estimated
SOH for real-time data is measured by feature divergence (see Eq.
(4) in Definition 3.4) between the reference feature, extracted from
the time series of the new battery (i.e., voltage outputs for first few
working cycles) and the feature vector, extracted from the current
time series, which has the same length as the reference pattern.

The six plates in Fig. 6 present the results of SOH estimation for
three batteries, where the time series for each battery was acquired
over a testing period of 40 h (i.e., 5 working cycles). It is observed in
the top three plates of Fig. 6 that there exists an approximately
linear relationship between feature divergence and SOH, which is
determined by linear regression. In Fig. 7, this linearity is measured
by the coefficient of determination (see Eq. (5) in Definition 3.5),
which indicates how well data points fits a line model constructed
in least squares sense. The inverse of this relationship is used to
obtain the estimated SOH from the computed feature divergence of
the test feature from the training reference feature. The choice of
the testing time period depends on the relationship between the
feature divergence and the estimated SOH. As the testing period is
increased, the range of linearity between change of true SOH value
and feature distance is increased.
The results show that the SDF features from all three experi-
mental data sets are capable of capturing the characteristics of
battery aging. Furthermore, the feature divergence remains within
the same range of scale across all data sets from three batteries. It
can be concluded from this observation that the feature divergence
remains independent of the type of discharge pattern applied, as
seen in Fig. 8.
4.3. Computational costs

This subsection presents a statement of the computational
costs (i.e., execution time and memory requirement) of the SDF
algorithm for battery parameter estimation. In this paper, all re-
sults have been generated on a single core 3.6 Ghz CPU with 12 GB
memory. At the SOC estimation stage, the execution time for SDF
feature extraction is ~0.6 ms for time series data that were
collected over 2 min at a sampling frequency of 1 hz with an
increment of 0.4 ms for every additional data over next 2 min. As
for SOH estimation, the cost of SDF feature extraction is also
proportional to the time series length; it takes ~0.1 s for every



Fig. 6. Results of SOH estima

Fig. 5. Results of cross validation for SOC estimation: (a) SOH ¼ 0.8853 and analysis
window ¼ 20 min; (b) Estimation errors for different analysis window lengths at
different SOH.
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working cycle (i.e., 8 h of output voltage response). Since 5
working cycles of analysis window have been chosen for feature
vector generation, the corresponding execution time is ~0.5 s. In
summary, the execution time of SDF feature extraction for SOC
estimation is in the order of milliseconds, and it is in the order of
deciseconds for SOH estimation because of longer observation
period. In real applications, such as hybrid electric vehicles, the
sampling frequency of current/voltage is much higher than that
used in this paper (1 Hz). As discussed in the last subsection, the
performance of the proposed algorithm depends on the length of
data in analysis. An appropriate choice of the data length depends
on the battery system dynamics that also determine the sampling
frequency of data acquisition.
tion for three batteries.
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5. Summary, conclusions, and future work

This paper presents a dynamic data-drivenmethod for real-time
estimation of SOC and SOH in lead-acid batteries, as an alternative
to model-based methods. The proposed estimation method is built
upon the concepts of symbolic dynamic filtering (SDF) [3] and kNN
regression [17]. The power of the proposed method is its capability
of real-time execution on in-situ computers (e.g., at sensor nodes of
individual battery systems), and its efficacy has been validated with
experimental time series data from three lead-acid batteries. Future
research to accelerate the acceptance of the proposed method of
battery SOC and SOH estimation in practice includes the following:

� Extension of the proposed method for SOC and SOH estimation
with time series of synchronized input/output pairs under both
periodic oscillatory and transient operating conditions.

� Extension of the SDF analysis with D > 1 in D-Markov machines
to accommodate longer memory of the voltage response.
� Compensation for battery temperature effects on SOC and SOH
estimation and battery performance prediction.

� Validation of the proposed method on other types of batteries
(e.g., lithium-ion and Ni-MH) and different discharge or charge
cycle patterns.

� Usage of the proposed dynamic data-driven method for esti-
mation of “reversibility of capacity loss” in aged lead-acid
batteries.
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