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This paper addresses the problem of goal-directed robot path
planning in the presence of uncertainties that are induced by
bounded environmental disturbances and actuation errors. The
offline infinite-horizon optimal plan is locally updated by online
finite-horizon adaptive replanning upon observation of unexpected
events (e.g., detection of unanticipated obstacles). The underlying
theory is developed as an extension of a grid-based path planning
algorithm, called m?, which was formulated in the framework of
probabilistic finite state automata (PFSA) and language measure
from a control-theoretic perspective. The proposed concept has
been validated on a simulation test bed that is constructed upon a
model of typical autonomous underwater vehicles (AUVs) in the
presence of uncertainties. [DOI: 10.1115/1.4027876]
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1 Motivation and Introduction

In general, path planning of robots (e.g., AUVs) and unmanned
aerial vehicles (UAVs)) aims to optimize either travel time,
energy usage, or safety of operations. Recently, much work has
been reported for path planning in the presence of environmental
uncertainties. A few examples follow.

Garau et al. [1] used the A? algorithm for path planning of
AUVs by taking the effects of ocean currents into consideration.

Pêtrès et al. [2] reported path planning of AUVs, in which a fast
marching algorithm was used to model the effects of ocean cur-
rents as an anisotropic cost function. Rhoads et al. [3] solved a
dynamic Hamilton Jacobi Bellman equation to obtain the optimal
“time-to-go” with a discontinuous and dynamic cost function for
path planning in the presence of ocean currents. Recently, Lolla
et al. [4] developed a methodology for AUV path planning, in
which the concept of flow advection was combined with nominal
vehicle motion until the desired goal was reached. Majumdar and
Tedrake [5] generated libraries in the offline precomputation stage
for online robust motion planning, where some of the library
members were regenerated for collision avoidance. Blackmore
et al. [6] designed a chance-constrained predictive stochastic con-
troller to ensure that the probability of failure (e.g., collision) is
less than a specified threshold even in the presence of randomly
varying uncertainties. Chakravorty and Kumar [7] used the con-
cepts of probabilistic roadmaps and rapidly exploring random trees
[8] to construct feedback controllers for robust planning in the pres-
ence of motion uncertainties. However, in many path planning
algorithms reported in literature, the offline computation does not
take into account potential runtime constraints (e.g., unanticipated
obstacles), and online adaptation is computationally infeasible.

Robots (e.g., AUVs) are expected to operate in environments with
external disturbances and hence, considering the effects of these dis-
turbances is critical for mission success. Consequently, the algo-
rithms of path planning must be capable of real-time execution on in
situ computational platforms. To meet these challenges, Chattopad-
hyay et al. [9] formulated the m? algorithm in the framework of
PFSA from a control-theoretic perspective. The m? algorithm per-
forms robot path planning for a specified goal by optimizing the lan-
guage measure of the PFSA model [10,11] that represents the
workspace for the robot. In this setting, optimal path planning is
equivalent to maximization of a PFSA’s performance, based on a
quantitative measure of probabilistic regular languages. This concept
of robot path planning jointly maximizes the probability of reaching
the target and the probability of staying clear of the obstacles. Such a
notion of goal-directed safe (e.g., Pareto optimization [12] of reach-
ing the goal and collision avoidance) navigation of autonomous
vehicles is particularly important in the context of planning in the
presence of disturbances, especially to ensure collision-free naviga-
tion. In this case, Markov decision process (MDP) tools may not be
suitable because of the requirement of robust adaptation in real time
[5]. The situation becomes worse for lack of observability, because
the formulation of a partially observable MDP would become com-
putationally intractable for a real-time solution.

Language-measure-theoretic path planning offers an inherent
advantage of global monotonicity [9] in the sense that the solution
iterations are finite and that a sequence of final waypoints is gen-
erated. The PFSA, constructed out of the robot’s workspace, is
optimized via an iterative sequence of combinatorial operations to
maximize the language measure vector elementwise. Neverthe-
less, the m? algorithm is different from a conventional search algo-
rithm in the sense that it automatically generates a measure
gradient (e.g., no potential function required), which is maximized
at the goal. Furthermore, the time complexity of each iteration
step is linear relative to the problem size (e.g., the dimension of
the discretized state space), and computation of the measure vec-
tor in a distributed fashion makes the algorithm especially suitable
for high-dimensional planning. These advantages render the pre-
sented method potentially suitable for (offline) planning and
(online) adaptation in the presence of uncertainties.

As an extension of the m? algorithm [9], this paper formulates
an algorithm of grid-based robot path planning, which has been
validated on a simulation test bed of AUVs in the presence of
uncertain ocean currents and actuation errors. Major contributions
of the paper beyond the work on the m? algorithm, reported by
Chattopadhyay et al. [9], are outlined below:

• The notion of uncertainty is associated with the uncontrol-

lable transitions in a controlled autonomous system. This
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concept is different from the common practice of superim-

posing the effects of disturbances on the planned trajectory

of a robotic system.
• The offline infinite-horizon optimal plan is locally updated

by online finite-horizon adaptive replanning upon observa-

tion of unexpected events (e.g., detection of unanticipated

obstacles).

2 Brief Review of Language Measure Theory

This section summarizes the concept of (signed real) language
measure [10] of PFSA [13] and the role of language measure for
optimal control [11] of PFSA. While the theories of language
measure and the associated optimal control are developed in Refs.
[10] and [11], this section introduces pertinent definitions and
summarizes the essential concepts that are used in the sequel.

DEFINITION 2.1. (Alphabet and Word) An alphabet R is a non-
empty finite set of symbols. A finite-length string of symbols from
R is called a word and the empty word (i.e., a string of no sym-
bols) is denoted as �. A word w of ‘ symbols has length jwj ¼ ‘
and j�j ¼ 0. The set of all words (including �) is denoted as R?;
the set of all words of length ‘ is denoted as R‘; and the set of all
infinite strings of symbols is denoted as Rx.

Referring to Definition 2.1, the cardinalities of the following
sets are noted below:

• jRj 2N, where N is the set of positive integers.
• jR‘j ¼ jRj‘ for any positive integer ‘.
• jR?j ¼ jNj, i.e., R? is countably infinite (@0).
• jRxj ¼ jRj, i.e., Rx is uncountably infinite (continuum).

DEFINITION 2.2 (Prefix and Suffix) Let R be an alphabet. The
operation of concatenation of two words is closed on R?, i.e., if
w¼ xy, then w � R? 8x,y � R?; and � is the identity element of
the concatenation monoid [14]. In that case, x is called a prefix of
w, and y is called a suffix of w.

DEFINITION 2.3. A PFSA over an alphabet R is a quintuple

G ¼D ðQ;R; d;p; vÞ;where

• Q is the nonempty finite set of states, i.e., jQj 2N;
• d: Q�R?! Q is the transition map that satisfies the follow-

ing conditions: 8q � Q 8s � R 8w � R?

d(q, �)¼ q; and d(q, ws)¼ d(d(q, w), s).
• p: Q�R? ! [0, 1] is the morph function of state-specific

symbol generation probabilities, which satisfies the follow-
ing conditions: 8q � Q 8s � R 8w � R?

p(q, s)� 0;
P

s2R pðq; sÞ ¼ 1; and

p(q, �)¼ 1; p(q, ws)¼ p(q, w)� p(d(q, w), s).
• v : Q! ½�1; 1�jQj is the vector-valued characteristic func-

tion that assigns a signed (normalized) real weight to each
state.

The ðjQj � jQjÞ state transition probability matrix P is defined as

P ¼ ½Pjk�; where Pjk ¼D
X

s2R: dðqj;sÞ¼qk

pðqj; sÞ8qj; qk 2 Q

Note: P is a non-negative stochastic matrix [15].
Remark 2.1. The restrictions djQ�R ! Q and pjQ�R ! ½0; 1� of

the functions d and p in Definition 2.3 can be directly obtained
from the local structure of the PFSA. The unrestricted functions d
and p can then be computed over the entire domain by using the
recursive relations listed in Definition 2.3. Physical interpretations

of v are briefly provided in Subsection 2.1, while the details are
reported in Definition 5 of Ref. [10].

DEFINITION 2.4. (Language) Let ðQ;R; d; p; vÞ be a PFSA.
The language generated by all words, which terminates at a state
qk � Q after starting from qj � Q, is defined as

Lðqj; qkÞ ¼D fw 2 R� : dðqj;wÞ ¼ qkg (1)

The language generated by all words, which may terminate at any
state q � Q after starting from qj � Q, is defined as

LðqjÞ ¼
D [

q2Q

Lðqj; qÞ (2)

Given a PFSA ðQ;R; d;p; vÞ, the following facts are considered
before the notion of a measure is introduced on the language L
(see Definition 2.4).

• The language L is an at most countable (i.e., finite or count-

ably infinite) set because L � R?. Therefore, the power set

2L is either finite or uncountable; if uncountable, the cardin-

ality of 2L is the same as that of R or that of the standard

Borel algebra BðRÞ [16].
• A measurable space (L, Rx2L) can be constructed where ev-

ery singleton set of a semi-infinite string of symbols, whose

suffix is a word in L, is a measurable set [10,16]. For brevity,

the r-algebra Rx2L is denoted as 2L, because every word

w � L is prefixed by a semi-infinite string of symbols. That

is, w represents xw and {w} � 2L implies {xw} � Rx2L,

where x �Rx is arbitrary.

DEFINITION 2.5. (Language Measure) Let L(qj, qk) and L(qj) be
languages on a PFSA ðQ;R; d; p; vÞ and let h � (0, 1) be a param-

eter. A signed real measure ljk
h : 2Lðqj;qkÞ ! R (that satisfies the

requisite axioms of measure [16]) is defined as

ljk
h ðLðqj; qkÞÞ ¼D

X
w2Lðqj;qkÞ

hð1� hÞjwjpðqj;wÞvðqkÞ (3)

The measure of the language L(qj) is defined as

�j
hðLðqjÞÞ ¼D

X
qk2Q

ljk
h ðLðqj; qkÞÞ (4)

Following Definition 2.5, the set of language measures for a
PFSA is interpreted as a real-valued vector of dimension jQj and
is denoted as mh whose jth component is �j

h 2 R corresponding to
the state qj � Q. Following Theorem 1 in Ref. [10], the language
measure of the PFSA ðQ;R; d;p; vÞ in Eq. (2.5) is expressed
vectorially as

mh ¼ h½I� ð1� hÞP��1
v (5)

where P is the state transition matrix (see Definition 2.3) and the
inverse on the right side exists for all h � (0, 1). Furthermore, as

h ! 0þ, the matrix h½I� ð1� hÞP��1
converges to the Cesaro

matrix P ¼D limk!1
1
k

Pk�1
j¼0 Pj. Then, the limiting measure vector

m0 is obtained as [11]

m0 ¼D lim
h!0þ

mh ¼ lim
h!0þ

h½I� ð1� hÞP��1
v ¼ Pv (6)

where I is the ðjQj � jQjÞ identity matrix.
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2.1 Control Perspectives. From the perspectives of discrete-
event optimal control [11], the limiting language measure vector
m0 in Eq. (6) is physically interpreted as follows. The language
measure of a symbol string starting at a state qj � Q is interpreted
to be the product of the morph probability (conditioned on the
state qj) and the characteristic weight vk of the terminating state
qk. For example, if qk is a desirable state (e.g., goal) to terminate,
then vk should be assigned to be positive; similarly, vk should be
negative for an undesirable terminating state (e.g., obstacle) qk.
Thus, the characteristic weights are assigned to represent the con-
trol specifications (i.e., larger positive weights to more desirable
states) and the language measure represents the goodness of the
particular string relative to the given specification and the PFSA
model [10]. In the sense of Definition 2.5, the limiting language

measure �j
0 sums up to the limiting measures of each string start-

ing from state qj. Thus, �j
0 captures the goodness of qj based on

not only its own characteristic weight but also on how good are
the strings that will be generated from qj in the future. In essence,
the language measure provides a quantitative comparison of via-
ble control policies [11].

DEFINITION 2.6. (Control philosophy) Let qj �!
s

qk be the state
transition under occurrence of the event s. If the event s is dis-
abled at qj by a supervisory action, then this state transition from
qj to qk will be prevented by forcing the plant to stay at the origi-
nal state qj. Thus, disabling an event s at a given state q results in
deletion of the original transition and appearance of the self-loop
d(q, s)¼ q with the probability of occurrence of s at state q
remaining unchanged in the supervised plant and also in the unsu-
pervised plant.

DEFINITION 2.7. (Controllable transitions) For a given plant,
transitions that can be disabled in the sense of Definition 2.6 are
defined to be controllable; a transition that is not controllable is
called uncontrollable. The set of controllable transitions in a
plant is denoted as C.

If the supervisor is allowed to disable all subsets (including the
empty set ; and the set C itself) of the set C of controllable transi-
tions, then there exists a bijection between the set of all possible
supervision policies and the power set 2C; in other words, there
are 2jCj possible supervisors and each supervisor is uniquely iden-
tifiable with a subset of C. Thus, the language measure m allows a
quantitative comparison of different policies.

DEFINITION 2.8. (Controlled PFSA and optimal measure m?) An

optimally controlled (or supervised) PFSA S ¼D ðQ;R; d; p; v;CÞ
is a sextuple that maximizes its language measure m0 by disabling
a selected subset of C. The optimized measure m0 is denoted as m?.

3 Description of the Simulation Test Bed

This section describes the simulation test bed that is built upon
a rigid-body dynamic model of the planar motion of a generic
AUV [17]. The rationale for adopting such a simple model is that
the usage of the proposed language-measure-theoretic concepts
can be unambiguously presented to explain how to control the
AUV motion in the presence of environmental disturbances and
actuation errors. Nevertheless, the theory is applicable on a
dynamically feasible graph with any degree of details.

The model takes into account the effects of yaw (w) and the ve-
locity vector of surge rate (u), sway rate (v), and yaw rate (r), i.e.,

v ¼D u v r½ �T; but the effects of heave (z), roll (/) and pitch (h)
are assumed to be negligible [17]. The resulting equations of
motion are obtained as

M _vþ CðvÞvþ DðvÞv ¼ s and _w ¼ r (7)

where M¼MT is the inertia matrix; CðvÞ ¼ �CðvÞT is the Corio-
lis centripetal matrix; D(v) is the damping matrix; and
s ¼D su sv sr½ �T is the vector of the system inputs that represent
the forces generated by the on-board actuators as well as those
produced by environmental disturbances (e.g., ocean current). In

this model, control actions are generated as functions of the surge
rate (u) and yaw rate (r) only, i.e., the vehicle control input is re-
stricted to be scon ¼ su 0 sr½ �T. Surge and sway components
of the ocean current vector vc are modeled in terms of its direction
b and yaw angle w as

uc ¼ jvcj cosðb� wÞ and vc ¼ jvcj sinðb� wÞ (8)

Assuming that the vehicle’s on-board controller maintains the
desired yaw angle w during its course of motion (i.e., letting
_w ¼ r � 0), the dynamic motion model is further simplified to

obtain the travel distance F and G along the surge and sway direc-
tions [17], respectively, as

Fðsu; ucÞ ¼
D
ðtf

t0

uðtÞdt and GðvcÞ ¼
D
ðtf

t0

vðtÞdt (9)

4 Problem Formulation

This section formulates the problem of path planning for planar
motion of robots in the presence of uncertainties induced by envi-
ronmental disturbances, where the workspace is partitioned as a fi-
nite number of cells. Major assumptions in the problem
formulation are listed below:

(1) Partial knowledge of the static obstacles.
(2) No moving obstacles.
(3) Partitioning of the workspace into cells as a regular grid.
(4) Bounded disturbances and actuation errors with the errors

of PFSA states being limited to neighboring cells of the ori-
gin cell.

Depending on the resolution of planning, a cell may represent a
single location or a subregion in the planning environment. The
neighborhood of a cell is defined by taking into account feasible
dynamics of transitions to that cell.

The robot motion is modeled as controllable transitions among
the cells as the robot chooses to execute its moves; such moves
may depend on the fidelity of motion discretization and the
robot’s intrinsic dynamics. Based on the specifications of intercell
transitions, each cell in the partitioned workspace is modeled as a
PFSA state, where controllable transitions are defined by the cor-
responding state transition map.

Let a PFSA GNAV ¼ ðQ;R; d;p; vÞ (see Definition 2.3) repre-
sent the navigation model of a robot, where the states in Q are cell
locations in the original workspace and the alphabet size jRj is
determined from the number of events that may cause controllable
transitions. For simplicity of exposition, this paper considers a
planar robot that is allowed to freely rotate about its geometric
center, implying that jRj ¼ 9. As an example, let the robot be in
the state q (see Fig. 1) and then let the robot make a choice to
move to one of the states labeled 1 through 8 or it may stay at q.
While the state transition map d (restricted to Q�R) is con-
structed in the neighborhood of a PFSA state and the morph func-
tion p (restricted to Q�R) are constructed under the condition
that, with negligible state estimation error, the robot can choose
any controllable transition to execute at a cell. Hence, all control-
lable transitions at a cell are assumed to be equally likely for the
unsupervised automaton GNAV. The vector-valued characteristic
function v (see Definition 2.3) is chosen based on a priori known
goodness of individual states, explained in Subsection 2.1. Since
the environment map could be only partially known, the robot
must adapt to the unforeseen obstacles in real time.

Uncertain (e.g., fault-induced and environmental) disturbances
may cause uncontrollable transitions in the robot motion as seen
in the example of Fig. 1, where the robot may erroneously move
to an unplanned state, thus interfering with control actions of
robot path planning (see Assumption (4) at the beginning of this
section). Therefore, probabilistic decisions of path planning need
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to be made based on the set of the available controllable actions
of the robot to mitigate the effects of these disturbances. In this
model, the state transition probabilities serve as a discretized rep-
resentation of the effects of disturbances on the robot dynamics,
where the transition probability Pðqjjqi; sÞ represents the proba-
bility of reaching state qj after executing an action s from state qi.
Using the simplified model developed in the last section, the
vehicle’s relative position in the next time step (from the previous
position after it makes a move s � R in the global Cartesian coor-
dinate frame) is expressed as

Dx ¼ F cosðwÞ �G sinðwÞ (10)

Dy ¼ F sinðwÞ þG cosðwÞ (11)

The corresponding transition probabilities P under the specified
simplifying assumptions are then computed in terms of the proba-
bilities P as

Pðqjjqi; sÞ ¼ Pð½Dx;Dy� 2 qjjqi; sÞ (12)

In the absence of disturbances, Pðqjjqi; sÞ is either 0 or 1 such that
Pðdðqi; sÞjqi; sÞ ¼ 1 and Pðqjjqi; sÞ ¼ 0 8qj 2 Qndðqi; sÞ.

While the PFSA GNAV specifies the discretized motion of the
planar robot, the matrix P contains information about the effects
of the disturbances on its motion. With the knowledge of GNAV

and P, the path planning problem is reduced to the optimal super-
vision problem of GNAV (in the sense of Definition 2.8) in the
presence of disturbances specified by P. Detection of unforeseen
obstacles during the robot operation may result in a change of the
characteristic weight vector v. In this context, new obstacles are
considered as undesirable terminating states and, therefore, are
assigned negative characteristic weights (see Subsection 2.1).

5 Solution Approach

Formulation of the path planning problem as a PFSA-based
navigation allows computation of optimally feasible paths via the
language-measure-theoretic optimization scheme. For the unsu-
pervised model, the robot is free to choose from any of the defined
controllable events from any cell in the workspace.

The optimization algorithm, presented as Algorithm 1, selec-
tively disables controllable transitions to ensure that the measure
vector of the navigation automaton is elementwise maximized.
Selected controllable transitions are disabled to optimize the state
transition probability matrix P (see Definition 2.3). This is accom-
plished by maximizing the limiting measure vector (see Eq. (6))
in the sense of Definition 2.8, which corresponds to the optimally
supervised PFSA model for the robot. This implies that the super-
vised robot is constrained only to choose among the enabled
moves at each state such that a Pareto trade-off is achieved
between minimization of the collision probability and simultane-
ous maximization of the goal-reaching probability. An important
point to note is that even though the measure values are based on
optimization of a PFSA, an optimal and feasible plan is obtained
that can be executed in a deterministic sense.

For planning in the presence of environmental disturbances, it
is critical to consider the robot’s vulnerability to uncertainties cre-
ated by such disturbances (see Fig. 1). In the work presented in
Refs. [9] and [11], the measure vector was optimized by ignoring
the uncontrollable transitions arising from the uncertainties. How-
ever, ignoring the uncontrollable transitions in the presence of dis-
turbances could be fatal for autonomous robots. In this paper, the
effects of the uncontrollable transitions are taken into considera-
tion while optimizing the measure vector of the navigation autom-
aton. In this framework, a combinatorial sequence of enabling and
disabling of transitions optimizes a weighted combination of mini-
mizing the probability of collision and maximizing the probability
of reaching the goal in the presence of known environmental dis-
turbances. Depending on the strength of environmental

disturbances, the controller attempts to make an optimal trade-off
between performance (i.e., path length) and robustness to
uncertainties.

With Monte Carlo simulation of the disturbances on the test
bed, conditional probabilities for the robot (i.e., AUV) to termi-
nate at a neighboring state qj are generated as

Pðqjjqi; sÞ such that
X

qj2NðqiÞ
Pðqjjqi; sÞ ¼ 1 (13)

where qj � Q is a neighboring state of qi and s � R represents the
control action.

Let GNAV ¼ ðQ;R; d;p; vÞ be the unsupervised navigation
automaton. From the knowledge of the morph probability p and
the conditional probability distribution P due to the environmen-
tal disturbances, a family of probability matrices, PGð	; 	; jÞ;
j ¼ 1; 2; 	 	 	 ; jNðqiÞj is constructed, where jNðqiÞj is cardinality of
the set N(qi) of neighborhood states (including itself) of the state
qi (e.g., jNðqiÞj ¼ 9 for any internal state of a planar robot),
defined as

PGðqi; s; qjÞ ¼D Pðqjjqi; sÞ � pðqi; sÞ 8qi 2 Q (14)

where s � R is a control action and d(qi, s)¼ qj is a neighboring
state (including itself) of qi. m

NðqiÞ
h (used in line 24 of Algorithm 1)

is a local measure vector of state qi and consists of the measure
values of the states qj � N(qi). The transition matrix PG is opti-
mized in an iterative fashion by Algorithm 1 such that the strings,
which are likely to lead to collision in the presence of the distur-
bances, are disabled. At the same time, feasible paths to the goal
are retained so that the measure vector is elementwise maximized.

For path planning in a large-dimensional state space, a distrib-
uted iterative scheme is recommended for the computation of the
language measure, which was reported in an earlier publication
[18]. The algorithm of optimized language measure vector is pre-
sented as Algorithm 1.

Salient properties of Algorithm 1 are delineated below:

• Computation of the uncertain behavior of the robot’s motion
caused by environmental disturbances: The sequence of dis-

abling and enabling actions at the robot’s discretion is gen-

erated by (elementwise) maximization of the language

measure vector. To relax the assumption of restriction of

uncontrollable transitions to the neighboring states, a proba-

bility distribution over the entire workspace could be consid-

ered instead of using a local measure vector in line 24 of

Algorithm 1. This is also true in trajectory planning for

Fig. 1 Illustration of the effects of uncontrollable transitions
due to the disturbances. It is shown how uncontrollable transi-
tions may cause the robot to end up in a different neighboring
state of the origin cell, thus interfering with control actions.
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UAVs, where the environmental disturbances may require

widening of its flight envelope.
• Generation of the optimized measure vector m? for robot

navigation based on its PFSA model, along with the associ-

ated optimized outputs p? and P?G. The path to the goal from

arbitrary initial locations is obtained by following the gradi-

ent of the measure vector.

Real-time obstacle avoidance in the presence of disturbances is
a difficult problem due to the disturbance-induced uncontrollable
transitions. An online replanning algorithm must propagate the
motion model in time and make sure that the robot is clear of the
obstacle. In this regard, one may take advantage of the fact that
the stochastic navigation matrix (i.e., the optimized state transition
matrix of the controlled PFSA) contains the information on the
disturbances. To make a local adaptation, the original infinite-
horizon measure vector is augmented with the information on
recently discovered obstacles. The effects of this obstacle are con-
sidered on a finite-time horizon of replanning by using the already
optimized stochastic navigation matrix P?G. However, as the sto-
chastic matrix was already optimized by considering the effects of
disturbances, the replanning keeps the vehicle clear of the obstacle
under such disturbances. The quality of adaptation is expected to
improve with an increase in the replanning time horizon. Hence, a
choice of the replanning time horizon (T) depends on the trade-off
between the computation time and quality of the solution. The
steps involved in replanning are succinctly presented in Algorithm
2, which efficiently computes a feasible path. This is accom-
plished by removing those strings that reach the goal via the
newly detected obstacle states from the language generated by
any state of the PFSA. The measure vector is consequently
updated by removing those strings from the original optimal lan-
guage generated by the states of the PFSA, i.e., by subtracting the
measure of such strings (see Definition 2.5) from the original

language measure. The resulting path improves monotonically in
the replanning time horizon because the estimate of the measure
of such strings improves monotonically.

Algorithm 1. Distributed updating of measure vector for plan-
ning in the presence of disturbances

Require: GNAVðQ;R; d; p; vÞ; h;PG

Ensure: m?;p?;P?G
1: Initialize 8qi 2 Q; �i

h ¼ 0.
2: Pdum

G ¼ PG

3: pdum¼p
/ * * Begin infinite asynchronous loop * * /

4: while true do

5: for each cell qi � Q do

6: if N(qi) 6¼ ; then

7: for each node qj � N(qi) do

8: Query �
j
h and vj

/ * * Enabling and Disabling transitions for Control * */
/ * * Compare measure with neighbors and allow
transitions only to the better neighbors * */

9: if �
j
h < �i

h then

10: if
P

k:qk2NðqiÞ PGðqi; sj; kÞ 6¼ 0 then

11: PGðqi; si; :Þ ¼ PGðqi; si; :Þ þ Pdum
G ðqi; si; :Þ

12: PGðqi; sj; :Þ ¼ 0
13: pðqi; siÞ ¼ pðqi; siÞ þ pdumðqi; siÞ
14: p(qi, sj)¼ 0
15: end if

/ * * where, d(qi, si)¼ qi & d(qi, sj)¼ qj * */
/ * * Disabling * */

16: else

17: if
P

k:qk2NðqiÞ PGðqi; sj; kÞ ¼¼ 0 then

18: PGðqi; sj; :Þ ¼ Pdum
G ðqi; sj; :Þ

19: PGðqi; si; :Þ ¼ PGðqi; si; :Þ � Pdum
G ðqi; si; :Þ

20: pðqi; siÞ ¼ pðqi; siÞ � pdumðqi; siÞ
21: pðqi; sjÞ ¼ pdumðqi; sjÞ

/ * * Enabling * */
22: end if

23: end if

24: �i
h ¼

P
k:qk2NðqiÞ ð1� hÞPGðqi; sk; :ÞmNðqiÞ

h þ hvi

/ * * Node updating * */
25: end for

26: end if

27: end for

28: end while

Algorithm 2. Updating of measure vector for replanning

Require: GNAVðQ;R; d; p?; vÞ; h;P?G; m?; jTj
Ensure: m?replan;P

?
G;replan;p

?
replan

1: Update v with new information about obstacles
2: Initialize mh ¼ m? & n¼ 1
3: Pdum

G ¼ P?G and pdum¼p?

4: while n 
 jTj do

5: Lines 4 through 24 of Algorithm 1
6: n¼ nþ 1
7: end while

Remark 5.1. The time complexity of Algorithm 1 is
s1 � OðjQjjNðqÞj2Þ, for a PFSA with jQj states and jNðqÞj is the

Fig. 2 Optimal paths under different directions of the ocean current. (The vehicle is con-
strained to stay in the box and not hit the walls.)

Fig. 3 Real-time replanning over a finite time horizon T
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maximum neighborhood size of the PFSA states [18]. The time
complexity of Algorithm 2 is s2 � OðjTjjNðqÞjÞ, where T is the
finite-time horizon of replanning.

6 Interpretation of the Results

This section presents pertinent results of AUV simulation for
the proposed method of path planning in the presence of uncer-
tainties due to ocean currents. To justify the usage of a
disturbance-aware path planning algorithm for AUVs and to dem-
onstrate the algorithm’s efficacy to react to different types of dis-
turbances, Fig. 2 shows the (simulated) optimal paths of an AUV
that is navigated from point A to point B in a similar environment
with three different directions of the ocean current. The optimal
nominal paths in these three cases are significantly different,
because the paths are calculated to accommodate the disturbances
due to the ocean current.

During actual navigation, the AUV is likely to deviate from the
nominal trajectory; however, it finds a path from any arbitrary
state to the terminal state by following the gradient of the opti-
mized measure vector. The nominal trajectory in each of the three
plates in Fig. 2 shows the shortest safe path based on the expected
deviations due to the disturbances.

Figure 3 presents a scenario, where the environment is only par-
tially known a priori and an unforeseen obstacle at point D is
observed when the AUV reaches point C. Consequently, the origi-
nal plan (i.e., without the knowledge of the obstacle at D) is
altered to avoid a potential collision. In Fig. 3, the uncontrollable
transitions (that are due to the ocean current) tend to push the ve-
hicle upstream and path replanning attempts to bypass the obsta-
cle at D; however, the amount of time available for online
replanning is limited. Algorithm 2 is iteratively executed to
improve the replanning monotonically with an increase in the
span jTj of time horizon T. As seen for jTj ¼ 2; 5; and 10 in Fig.
3, the respective replans are generated to navigate the AUV fur-
ther down so that even if the vehicle is drifted upwards by the
ocean current, it would still be able to avoid a collision with the
obstacle. By increasing the replanning time horizon from jTj ¼ 2
to jTj ¼ 10, the plan becomes more robust to collision as it
attempts to keep the vehicle clear of the obstacle by a larger dis-
tance by optimizing the margin of error due to the ocean current-
induced disturbances. A small replanning time horizon results in
local greedy search of the configuration space; it limits the effects
of the new obstacle to a narrow region around it. A smaller replan-
ning time horizon also limits the expected deviation of the vehicle
due to disturbances.

A global optimal policy could be significantly different from a
local greedy solution obtained in limited time as seen in Fig. 3,

where the replanned path for jTj ¼ 15 is different from those for
jTj ¼ 2, 5, and 10. While Algorithm 2 makes local perturbations
in the initial plan to keep the AUV clear of an observed obstacle
at D, a sufficiently large replanning time horizon (e.g., jTj ¼ 15 in
Fig. 3) generates an optimal path such that the local changes in
the replanned path may finally cause convergence to a global opti-
mal path.

As the original optimal stochastic navigation matrix contains
information of the disturbance, even a small replanning time hori-
zon could keep the AUV clear of the obstacle in the presence of
disturbances; however, robustness of the plans improve monotoni-
cally with increase in the replanning time horizon parameter jTj.
In essence, a choice of jTj depends on the in situ computational
capabilities of the AUV and the time available for online updating
of the path plan, which may depend on the AUV’s speed and
observation window.

For time-critical operations with limited computational capabil-
ities, a goal of replanning is to ensure safety while maintaining an
accepted level of performance (e.g., path length). This trade-off
could be achieved in the language-measure-theoretic framework
by selecting the characteristic weight of new-obstacle states dur-
ing replanning, where an increased penalty on collision with an
obstacle would enhance safety at the expense of a longer deviation
from the original plan. This is achieved by having the characteris-
tic weights of the newly observed obstacles states as K ? vobs,
where the multiplicative constant K is a positive real parameter,
while all other characteristic weights remain unchanged. Figure 4
shows the effects of changing the characteristic weight vector for
the case jTj ¼ 2 in Fig. 3. As seen in Fig. 4, the safety margin is
enhanced by increasing K, which is capable of accommodating
larger anomalous behavior of the robot in the presence of ocean
currents at the expense of an increased path length. For a family
of admissible values of K, the convex hull of the generated solu-
tions would lead to a Pareto-optimal front representing trade-off
between safety and performance. For any particular real-time
operation, the choice of the parameter K is dependent on computa-
tional capabilities and time available for replanning as well as
strength of disturbances.

7 Summary, Conclusions, and Future Work

This paper presents a generalized framework for robust path
planning of AUVs in the presence of environmental disturbances
and actuation errors. Concepts of recently developed language
measure-based optimization [10,11] have been applied to demon-
strate successful navigation of an autonomous robot moving in an
uncertain and partially known environment. The algorithm is ro-
bust to both modeling and environmental uncertainties; however,
these uncertainties must be bounded. The efficacy of the proposed
concept is demonstrated by numerical simulation on a test bed of
an AUV moving in the presence of ocean currents and unforeseen
obstacles. The paper is summarized below:

1. It presents a path planning philosophy that is fundamentally
different from the ones reported in literature.

2. It performs online adaptation of the planning algorithms to
unanticipated obstacles in the presence of disturbances.

Many path planning algorithms, reported in the current litera-
ture, may not be able to efficiently handle collision avoidance in
real time in the presence of disturbances, primarily due to over-
whelming computational requirements. It is shown in this paper
through numerical simulations that the language-measure-theo-
retic algorithm can handle unanticipated obstacles in real time in
the presence of disturbances. However, actual performance com-
parisons with state-of-the-art planning are yet to be demonstrated
by experimental validation.

While there are numerous research areas for robot path plan-
ning based on language-measure-theoretic concepts, the following
topics are recommended for future research.

Fig. 4 Replanning with jT j ¼ 2 for different characteristic
weights
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1. Construction of a biased sampling scheme while updating
the language measure of nodes in a distributed fashion to
enhance the quality of path planning and to mitigate the
computational cost. Such a scheme is important for a trade-
off between exploration and exploitation.

2. Extension of the proposed method of robot path planning
under time constraints as well as by minimizing the energy
consumption.

3. Validation of the proposed method by laboratory experimen-
tation on a networked robotic test bed with nonholonomic
constraints [8].

4. Performance comparison with other methods like those pre-
sented in Refs. [5–7].
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