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ABSTRACT
This paper addresses dynamic data-driven prediction of lean blowout (LBO) phenomena in
confined combustion processes, which are prevalent in many physical applications (e.g., land-
based and aircraft gas-turbine engines). The underlying concept is built upon pattern
classification and is validated for LBO prediction with time series of chemiluminescence sensor
data from a laboratory-scale swirl-stabilized dump combustor. The proposed method of LBO
prediction makes use of the theory of symbolic dynamics, where (finite-length) time series data
are partitioned to produce symbol strings that, in turn, generate a special class of probabilistic
finite state automata (PFSA). These PFSA, called D-Markov machines, have a deterministic
algebraic structure and their states are represented by symbol blocks of length D or less, where
D is a positive integer. The D-Markov machines are constructed in two steps: (i) state splitting,
i.e., the states are split based on their information contents, and (ii) state merging, i.e., two or
more states (of possibly different lengths) are merged together to form a new state without any
significant loss of the embedded information. The modeling complexity (e.g., number of states)
of a D-Markov machine model is observed to be drastically reduced as the combustor
approaches LBO. An anomaly measure, based on Kullback-Leibler divergence, is constructed
to predict the proximity of LBO. The problem of LBO prediction is posed in a pattern
classification setting and the underlying algorithms have been tested on experimental data at
different extents of fuel-air premixing and fuel/air ratio. It is shown that, over a wide range of
fuel-air premixing, D-Markov machines with D > 1 perform better as predictors of LBO than
those with D = 1.
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1. INTRODUCTION
Ultra-lean combustion is commonly used for reduction of oxides of nitrogen (NOx) and
is susceptible to thermo-acoustic instabilities and lean blowout (LBO). It is well known
that occurrence of LBO could be detrimental for operations of both land-based and
aircraft gas turbine engines. For example, LBO in land-based gas turbines may lead to
engine shutdown and subsequent re-ignition involves loss of productivity; similarly,
LBO in aircraft gas turbines may cause loss of engine thrust especially if the fuel flow
is suddenly reduced during a throttling operation, or if air flow reduction takes place at
a much slower rate due to the moment of inertia of the compressor. In essence, a sudden
decrease in the equivalence ratio may lead to LBO in gas turbine engines, which could
have serious consequences. This phenomenon calls for a real-time prediction of LBO
and adoption of appropriate measures to mitigate it.

It is noted that a priori determination of the LBO margin may not be feasible,
because of flame fluctuations in the presence of thermoacoustic instability. To address
this issue, the current paper develops an online LBO prediction tool for both well-
premixed (e.g., in land-based gas turbines) and partially premixed (e.g., in aircraft gas
turbines) combustors. The LBO limit is dependent on a number of parameters that are
related to the combustor configuration and operating conditions, and monitoring of all
these parameters would require a complicated and expensive diagnostic system. From
this perspective, quantifiable dynamic characteristics of flame preceding blowout have
been exploited in the past as LBO precursors by a number of researchers. De Zilwa 
et al. [1] investigated the occurrence of blowout in dump combustors with and without
swirl. Chaudhuri and Cetegen [2], [3] investigated the effects of spatial gradients in
mixture composition and velocity oscillations on the blowoff dynamics of a bluff-body
stabilized burner that resembles representative of afterburners of gas turbine
combustors. They used photomultiplier tubes with CH chemiluminescence filters to
capture the optical signal and characterized the signal in the vicinity of blowout.
Chaudhuri et al. [4] and Stohr et al. [5] investigated LBO dynamics of premixed and
partially premixed flames using combined particle image velocimetry/planar laser-
induced fluorescence (PIV/PLIF)-based diagnostics. However, these works did not
focus on developing strategies for mitigating LBO.

Lieuwen, Seitzman and coworkers [6], [7], [8], [9] used time series data from acoustic
and optical sensors for early detection and control of LBO in laboratory-scale gas turbine
combustors. Nair and Lieuwen [8] identified blowout parameters using various (e.g.,
spectral, statistical, wavelet-based and threshold-based) techniques. For statistical
analysis, they used moving average kurtosis. They defined thresholds in terms of cut-offs
for peak pressure in a cycle falling below. The number of such events increased sharply
near blowout. For wavelet-based analysis, they used the Mexican Hat and a customized
wavelet that matches with the time series data of OH* chemiluminescence. Yi and
Gutmark [10] identified two indices, namely, normalized chemiluminescence root mean
square and normalized cumulative duration of LBO precursor events, for LBO prediction
in real time. However, both Lieuwen et al. and Gutmark demonstrated their techniques for
LBO prediction in premixed combustors. On the other hand, Mukhopadhyay and co-
workers [11], [12] developed a number of techniques for early detection of LBO, which
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worked satisfactorily over a wide range of fuel-air premixing. Chaudhari et al. [11] used
flame color to device a novel and inexpensive strategy for LBO detection. In this work,
they used as an LBO detection metric, the ratio of red and blue intensities in the flame
image obtained with a commercial color charge-coupled device (CCD) camera.
Mukhopadhyay et al. [12] used chemiluminescence time series data for online prediction
of LBO under both premixed and partially premixed operating conditions. The algorithm
was built upon a data-driven symbolic-dynamics-based technique, called D-Markov
machine [13], [14], where the parameter D was set to 1 to construct the probabilistic finite
state automata (PFSA), which implies that the memory of the underlying combustion
process was restricted only to its immediate past state.

In a number of recent publications, the transition to LBO was correlated with
changes in signature of the dynamic characteristics of the system. Kabiraj et al. [15] and
Kabiraj and Sujith [16] investigated dynamics of a ducted laminar premixed flame and
using tools of dynamical systems analysis demonstrated that the system undergoes a
number of bifurcations involving quasiperiodic and intermittent behaviors leading to
blowout. Gotoda and co-workers [17] used a number of analytical tools to examine the
dynamics of a model gas turbine combustor and showed that close to lean blowout the
dynamics of the combustor exhibits a self-affine structure indicating fractional
Brownian motion but changes to chaotic oscillations showing oscillations with slow
amplitude modulation as the equivalence ratio increases. Gotoda et al. [18] showed that
the relatively regular pressure oscillations undergo transition to intermittent chaotic
oscillations as the equivalence ratio is decreased and the system approaches LBO.
Translational errors were used to measure the parallelism of neighboring trajectories in
the phase space as a control variable for mitigation of LBO. Through similar studies,
Sujith and co-workers [19], showed that combustion noise is due to chaotic fluctuations
of moderately high dimension that undergoes transition to high amplitude oscillations
characterized by periodic behavior. This information was used to determine the loss of
chaos in the system dynamics as a precursor for prediction of thermoacoustic instability.

The current paper is a major extension of the earlier work on D-Markov machine-
based LBO prediction, reported by Mukhopadhyay et al. [12]. The significant
contributions of the current paper in the context of dynamic data-driven application
systems (DDDAS) [20] are delineated below.

1) State splitting and state merging: The states of the D-Markov machine are
constructed in two steps [14]: (i) state splitting, i.e., the states are split based
on their information contents, and (ii) state merging, i.e., two or more states
(of possibly different lengths) are merged together to form a new state without
any significant loss of their embedded information.

2) Accommodation of a longer memory of chemiluminescence time series:
Algorithms of the D-Markov machine are reformulated with D > 1 (instead of
D = 1) to extract low-dimensional features with a longer history of the
combustion process.

3) Bias removal to achieve leaner operating conditions: The bias (i.e., the non-
zero mean) is removed from chemiluminescence time series to avoid mean-
based prediction that may result in richer operating conditions with consequent
penalties of enhanced NOx emission.
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4) Information-theoretic anomaly measure for LBO prediction: An anomaly
measure [13] is constructed, based on Kullback- Leibler divergence [21], to
anticipate the proximity of LBO with increased sensitivity.

5) Pattern classification based on the features extracted from chemiluminescence
time series: The prediction of LBO is posed as a pattern classification problem
based on different ranges of the equivalence ratio at several premixing levels.
This approach largely alleviates the problem of loss of robustness due to
limited data availability for making online decisions [22].

The paper is organized in five sections, including the present one, and three
appendices. Section 2 describes a laboratory- scale swirl-stabilized dump combustor,
which has been used for prediction of LBO phenomena from time series of optical
sensor data. Section 3 explains the method of information extraction from time series
as a D-Markov machine in the form of low-dimensional features. Section 4 presents the
capability and advantages of the proposed approach for LBO prediction over different
parameter ranges. Finally, the paper is summarized and concluded in Section 5 with
selected recommendations for future research. Appendix A explains the notion of two-
time-scale behavior of combustion dynamics, which are captured from the sensor time
series data. Appendix B explains in detail the key mathematical concepts that are
necessary for construction of the pattern classification algorithms in the context of 
D-Markov machines. Appendix C lists the four algorithms of state splitting and state
merging in the construction of D-Markov machines, from which the computer codes
can be readily developed.

2. APPARATUS FOR EXPERIMENTAL RESEARCH
A swirl-stabilized dump combustor, as depicted in Figure 1, was designed as a
laboratory-scale model of a generic gas turbine combustor based on the earlier works
of Williams et al. [24], Meier et al. [25], Nair et al. [6], Chaudhuri and Cetegen [2] and
Yi and Gutmark [10]. The air is supplied at the ambient temperature from a compressor
to the bottom port on the premixing tube and the air flow rate is measured upstream of
the combustor by using a calibrated mass flow controller (MFC) (Aalborg range 0 to
500 litres per minute (lpm)). Liquefied petroleum gas (LPG), having a composition of
40% propane (C3H8) and 60% butane (C4H10) by volume, has been used as the fuel in
the experiments. The fuel is supplied from a pressurized cylinder fitted with needle
valve to control the flow rate and is also measured upstream of the combustor by a
calibrated Aalborg mass flow controller (Range: 0 – 10 lpm). To investigate the effects
of premixing on flame dynamics, six side ports are provided 50 mm apart along the
length of the premixing tube, as seen in Figure 1. This arrangement allows the fuel to
be injected at different axial positions of the premixing tube, thereby providing different
premixing lengths. The ports are numbered 1 to 6 from the bottom of the premixing
tube. Thus the fuel injected through Port 1 allows greatest premixing while Port 6
allows least premixing. The fuel is injected to one of the side ports of the premixing
tube. The fuel-air mixture enters the combustor through the inlet swirler in the annulus
around a center body, located just prior to the dump plane in the premixing section. The
inner diameter of the premixing section is 23 mm, and the diameter of the center-body
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is 8 mm. The inlet swirler has six vanes positioned at 60o to the flow axis. A quartz tube
is provided in the combustion zone having the internal diameter 60 mm and length 200
mm to facilitate optical diagnostics.

The heat release rate is measured by the chemiluminescence emitted from the CH*
radicals (wavelength λ  431 nm) of the flame. The time series data are obtained with
a photomultiplier tube (PMT) fitted with an optical band pass filter (λpass = 430 nm)
with full-width at half-maximum (FWHM) =10 nm. The PMT output signal (in volts)
is acquired using a 16-bit analog input channel on a National Instruments P X I-6250
data acquisition card that is mounted in a National Instruments P X I-1050 Chassis
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having a built-in 08 channel S C X I -1125 signal conditioner module. Time series data
with 215 points have been acquired at a sampling frequency of 2 kHz in each
experiment. Video images of the flame are recorded in order to visualize LBO
phenomenology and correlate the same with the optical signal. Still color images of the
flame are also acquired simultaneously using the digital single lens reflex (DSLR)
camera at suitable exposure to avoid pixel saturation. Further details of the
experimental apparatus and instrumentation are available in [23].

Experiments were carried out using liquefied petroleum gas (LPG) as the fuel. 
A major reason for the choice of LPG as the fuel is that LPG consists of mainly propane
and butane, which are the simplest hydrocarbons whose combustion exhibits the
chemical behavior, flame speed, and extinction limits closer to the heavier and more
complex hydrocarbon fuels [26]. Tests were first conducted with stoichiometric fuel/air
mixture (i.e., φ = 1). Then, at each given air flow rate, the fuel supply was gradually
decreased to generate progressively lean reacting mixtures. A constant air flow rate in
the experiments was maintained to ensure that the Reynolds number of fluid flow
remains practically constant because air constitutes the bulk of the incoming reactant
mixture.

3. LBO PREDICTION VIA SYMBOLIC ANALYSIS
Symbolic time series analysis (STSA) [27] is built upon the concept of symbolic
dynamics [28] that deals with discretization of dynamical systems in both space and time.
The notion of STSA has led to the development of a feature extraction tool for pattern
classification, in which a time series of sensor signals is represented as a symbol sequence
that, in turn, leads to the construction of probabilistic finite state automata (PFSA)
[29][30]. Statistical patterns of slowly evolving dynamical behavior in physical processes
can be identified from sensor time series data and often the changes in these statistical
patterns occur over a slow time scale with respect to the fast time scale of process
dynamics. The concept of two time scales is succinctly presented in Appendix A.

Since PFSA models are capable of efficiently compressing the information
embedded in sensor time series [13][31], these models could enhance the performance
and execution speed of information fusion and information source localization that are
often computation-intensive. Rao et al. [32] and Bahrampour et al. [33] have shown
that the performance of this PFSA-based tool as a feature extractor for statistical pattern
recognition is comparable (and often superior) to that of other existing techniques (e.g.,
Bayesian filters, Artificial Neural Networks, and Principal Component Analysis [34]).
Mathematical preliminaries and background information on symbolic dynamics are
presented in Appendix B.

The major steps for construction of PFSA from sensor signal outputs (e.g., time
series) of a dynamical system are as follows.

1) Coarse-graining of time series to convert the scalar or vector-valued data into
symbol strings, where the symbols are drawn from a (finite) alphabet [35].

2) Encoding (i.e., identification of labeled graph structure and pertinent
parameters) of probabilistic state machines from the symbol strings [13], [14],
[31], [22], [36].
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The next step is to construct probabilistic finite state automata (PFSA) from the
symbol strings to encode the embedded statistical information so that the dynamical
system’s behavior is captured by the patterns generated from the PFSA in a compact
form. The algebraic structure of PFSA (i.e., the underlying FSA) consists of a finite set
of states that are interconnected by transitions [37], where each transition corresponds
to a symbol in the (finite) alphabet. At each step, the automaton moves from one state
to another (including self loops) via these transitions, and thus generates a
corresponding block of symbols so that the probability distributions over the set of all
possible strings defined over the alphabet are represented in the space of PFSA. The
advantage of such a representation is that the PFSA structure is simple enough to be
encoded as it is characterized by the set of states, the transitions (i.e., exactly one
transition for each symbol generated at a state), and the transition’s probability of
occurrence.

D-Markov machines are models of probabilistic languages where the future symbol
is causally dependent on the (most recently generated) finite set of (at most) D symbols
and form a proper subclass of PFSA with applications in various fields of research such
as anomaly detection [13] and robot motion classification [38]. The underlying FSA in
the PFSA of D-Markov machines are deterministic, i.e., the future state is a
deterministic function of the current state and the observed symbol. Therefore, 
D-Markov machines essentially encode two entities: (1) probability of generating a
symbol at a given state, and (2) deterministic evolution of future states from the current
state and the symbol. It is noted that if the symbol is not observed, the description of
the state transition in the D-Markov machine becomes a probabilistic Markov chain.
Furthermore, under the assumption of irreducibility, the statistically stationary
distribution of states is unique and can be computed. This class of PFSA (i.e., 
D-Markov machines) is a proper subclass of probabilistic non-deterministic finite state
automata which is equivalent to Hidden Markov Models (HMMs) [29]. Even though
HMMs form a more general class of models, the deterministic properties of D-Markov
machines present significant computational advantages. For example, due to the
constrained algebraic structure of D-Markov machines, it is possible to construct
algorithms for efficient implementation and learning.

Since long-range dependencies in the time series rapidly diminish under the
assumption of strong mixing [39], such a dynamical system could be modeled as a 
D-Markov machine with a sufficiently large value of D. However, increasing the value
of D may lead to an exponential growth in the number of machine states and hence the
computational complexity of the model grows. The main issue addressed in this paper
is order reduction of the states of a D-Markov machine model for representing the
stationary probability distribution of the symbol strings that are generated from the
times series of a dynamical system [14]. In addition, this paper addresses the trade-off
between modeling accuracy and model order, represented by the number of states, for
the proposed algorithm. The power of the proposed tool of PFSA-based D-Markov
machines is its capability of real-time execution on in-situ platforms for anomaly
detection, pattern classification, condition monitoring, and control of diverse physical
applications.
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A. Construction of D-Markov Machines
This subsection develops the pertinent concepts that are necessary to construct a 

D-Markov machine. The PFSA model of the D-Markov machine generates symbol
strings on the underlying Markov process. The generation

of a symbol depends only on the current state in the PFSA structure of a D-Markov
machine. However, if the state is unknown, the next symbol generation may depend on
the history of the symbol generated by the PFSA. In the PFSA model, a transition from
one state to another is independent of the previous states. Therefore, the states and
transitions form a Markov process, which is a special class of Hidden Markov Models
(HMM) [30]. However, from the perspectives of PFSA construction from a symbol
sequence, the states are implicit and generation of the next symbol may depend on the
complete history of the symbol sequence. In the construction of a D-Markov machine
[13], generation of the next symbol depends only on a finite history of at most D
consecutive symbols, i.e., a symbol block of length not exceeding D. A formal
definition of the D-Markov machine follows.

Definition 3.1 (D-Markov Machine [13]) A D-Markov machine is a PFSA (see
Definition B.5 in Appendix B) and it generates symbols that solely depend on the (most
recent) history of at most D symbols in the sequence, where the positive integer D is
called the depth of the machine. Equivalently, a D-Markov machine is a statistically
stationary stochastic process S =  s-1s0s1 , where the probability of occurrence of
a new symbol depends only on the last D symbols, i.e.,

(1)

Consequently, for w  D (see Definition B.2), the equivalence class *w of all
(finite-length) words, whose suffix is w, is qualified to be a D-Markov state that is
denoted as w.

Considering the set of all symbol blocks of length D as the set of states, one may
construct a D-Markov machine from a symbol sequence by frequency counting to
estimate the probabilities of each transition. Since the number of states increases
exponentially as the depth D is increased, state merging might be necessary for order
reduction of D-Markov machines with relatively large values of D.

Given a finite-length symbol sequence S over a (finite) alphabet , there exist
several PFSA construction algorithms to discover the underlying irreducible PFSA
model K of S, such as causal-state splitting reconstruction (CSSR) [36] and D-Markov
[13], [14]. All these algorithms start with identifying the structure of the PFSA K � (Q,
, δ, π) (see Appendix B). Then, to estimate the morph matrix, a |Q|  || count
matrix C is initialized to the matrix, each of whose elements is equal to 1.

Let Nij denote the number of times that a σj is generated from the state qi upon
observing the sequence S. An estimate of the probability map for the PFSA K is
computed by frequency counting as

(2)
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The rationale for initializing each element of the count matrix C to 1 is that if no
event is generated at a state q  Q, then there should be no preference to any particular

symbol and it is logical to have i.e., the uniform distribution of

event generation at the state q. The above procedure guarantees that the PFSA,
constructed from a (finite-length) symbol string, must have an (elementwise) strictly
positive morph map P, as stated in Definition B.6 of Appendix B.

B. Algorithm Development
This subsection develops the algorithms for construction of D-Markov machines. The
underlying procedure consists of two major steps, namely, state splitting and state
merging. In general, state splitting increases the number of states to achieve more
precision in representing the information content in the time series. This is performed
by splitting the states that effectively reduce the entropy rate H(|Q), thereby focusing
on the critical states (i.e., those states that carry more information). Although this
process is executed by controlling the exponential growth of states with increasing
depth D, the D-Markov machine still may have a large number of states. The
subsequent process reduces the number of states in the D-Markov machine by merging
those states that have similar statistical behavior. Thus, a combination of state splitting
and state merging, described in Algorithms 1, 2, 3 and 4 in Appendix C leads to the final
form of the D-Markov machine.

1) The State Splitting Algorithm: In D-Markov machines, a symbol block of (finite)
length D is sufficient to describe the current state. In other words, the symbols that
occur prior to the last D symbols do not affect the subsequent symbols observed.
Therefore, the number of states of a D-Markov machine of depth D is bounded above
by ||D , where || is the cardinality of the alphabet . For example, with the alphabet
size || = 4 (i.e., 4 symbols in the alphabet ) and a depth D = 3, the D-Markov
machine could have at most ||D = 64 states. As this relation is exponential in nature,
the number of states rapidly increases as D is increased. However, form the perspective
of modeling a symbol string, some states may be more important than others in terms
of their embedded information contents. Therefore, it is advantageous to have a set of
states that correspond to symbol blocks of different lengths. This is accomplished by
starting off with the simplest set of states (i.e., Q =  for D = 1) and subsequently
splitting the current state that results in the largest decrease of the entropy rate.

The process of splitting a state q  Q is executed by replacing the symbol block q by
its branches as described by the set {σq : σ  } of words. Maximum reduction of the
entropy rate is the governing criterion for selecting the state to split. In addition, the
generated set of states must satisfy the self-consistency criterion, which only permits a
unique transition to emanate from a state for a given symbol. If δ(q, σ) is not unique for
each σ  , then the state q is split further. In the state splitting algorithm, a stopping
rule is constructed by specifying the threshold parameter ηspl on the rate of decrease of
conditional entropy. An alternative stopping rule for the algorithm is to provide a
maximal number of states Nmax instead of the threshold parameter ηspl. The operation
of state splitting is described in Algorithm 1 (see Appendix C).

π σ σ=
Σ
∀ ∈Σqˆ( , )

1
| |

,
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Let q be a D-Markov state (see Definition 3.1), which is split to yield new states σq,
where σ   and σq represents the equivalence class of all (finite-length) symbol
strings with the word σq as the suffix. Figure 2 illustrates the process of state splitting
in a PFSA with alphabet  = {0, 1}, where each terminal state is circumscribed by an
ellipse. For example, the states in the third layer from the top are: 00q, 10q, 01q, and
11q, of which all but 10q are terminal states. Consequently, the state 10q is further split
as 010q and 110q that are also terminal states, i.e, Q = {00q, 01q, 11q, 010q, 110q},
as seen in the split PFSA diagram of Figure 2. Given the alphabet  and the associated
set Q of states, the morph matrix P can be computed in the following way.

(3)

where P() and P(|) are the same as those used in Definition B.7 and Eq. (14) therein.
For construction of PFSA, each element p(σ, q) of the morph matrix P is estimated

by frequency counting as the ratio of the number of times, N(qσ), the state q is followed
(i.e., suffixed) by the symbol σ and the number of times, N(q), the state q occurs. By
using the structure of Eq. (2), it follows from Eq. (3) that each element p̂(σ, q) of the
estimated morph matrix P̂ is obtained as

(4)

where

Similar to Eq. (4) and following the structures of Eq. (2), each element P(q) of the
stationary state probability vector is estimated by frequency counting as

(5)

π σ σ
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where is an element of the estimated stationary state probability vector, which

implies the estimated stationary probability of the PFSA being in the state q  Q. Wen
et al. [22] have statistically modeled the error of estimating the state probability vector
from finite-length symbol strings.

Now the entropy rate (see Eq. (14) in Appendix B) is computed in terms of the
elements of estimated state probability vector and estimated morph matrix as

(6)

2) The State Merging Algorithm: Once state splitting is performed, the resulting 
D-Markov machine is a statistical representation of the symbol string under
consideration. Depending on the choice of alphabet size || and depth D, the number
of states after splitting may run into hundreds. Although increasing the number of states
of the machine may lead to a better representation of the symbol string, it rapidly
increases the execution time and memory requirements. The motivation behind the state
merging is to reduce the number of states, while preserving the D-Markov structure of
the PFSA. Of course, such a process may cause the PFSA to have degraded precision
due to loss of information. The state merging algorithm aims to mitigate this risk.

In the state merging algorithm, a stopping rule is constructed by specifying an
acceptable threshold ηmrg on the distance F(, ) between the merged PFSA and the
PFSA generated from the original time series. Before embarking on the state merging
algorithm, the procedure for merging of two states is described below.

Notion of merging two states: The process of state merging is addressed by creating
an equivalence relation [40], denoted as , between the states. The equivalence relation
specifies which states are identified to belong to the same class, thereby partitioning the
original set of states into a smaller number of equivalence classes of states, each being
a nonempty collection of the original states. The new states are, in fact, equivalence
classes as defined by .

Let K1 = {, Q1, δ1, π1} be the split PFSA, and let q, q  Q1 be two states that are
to be merged together. Initially, an equivalence relation is constructed, where none of
the states are equivalent to any other state except itself, i.e., each equivalence class is
represented by a singleton set. To proceed with the merging of states q and q, an
equivalence relation is imposed between q and q, denoted as q  q; however, the
transitions between original states may not be well-defined anymore, in the following
sense: there may exist σ   such that the states δ1(q, σ) and δ2(q, σ) are not equivalent.
In essence, the same symbol may cause a transition to two different states from the
merged state {q, q}. As the structure of D-Markov machines does not permit this
ambiguity of non-determinism [13], the states δ1(q, σ) and δ2(q, σ) are also required to
be merged together, i.e., δ1(q, σ)  δ2(q, σ) (this procedure is known as determinization
in the state merging literature). Therefore, the symbol σ will cause a transition from the
merged state {q, q} to the merged state {δ1(q, σ), δ2(q, σ)}. This process is recursive
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and is performed until no ambiguity in state transitions occurs. Indeed at each iteration,
the number of states of the future machine is reduced, and the machine where all the
states are merged is always consistent. Therefore, the number of states is a decreasing
sequence of positive integers, which must eventually converge. The recursive operation
of the equivalence relation  is described in Algorithm 2 (see Appendix C).

Let K1 = {, Q1, δ1, π1} be the split PFSA that is merged to yield the reduced-order
PFSA K2 = {, Q2, δ2, π2}, where the state-transition map δ2 and the morph function π2
for the merged PFSA K2 are defined on the quotient set Q2 � Q1/, and [q]  Q2 is the
equivalence class of q  Q1. Then, the associated morph function p2 is obtained as:

(7)

As seen in Eq. (7), the morph function π2 of the merged PFSA K2 is estimated as the
sum of p̂1 weighted by the stationary state probabilities of the PFSA K1. By
construction, δ2 is naturally obtained as

(8)

Algorithm 3 in Appendix C presents the procedure to obtain the PFSA, where the
objective is to merge the states q and q.

Identification of the states to be merged: The next task is to decide which states have
to be merged. States that behave similarly (i.e., have similar morph probabilities) have
a higher priority for merging. The similarity of two states, q, q  Q, is measured in
terms of morph functions (i.e., conditional probabilities) of future symbol generation as
the distance between the two rows of the estimated morph matrix P̂ corresponding to
the states q and q. The �1-norm (i.e., the sum of absolute values of the vector
components) has been adopted to be the distance function as seen below.

(9)
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A small value of M(q, q) indicates that the two states have close probabilities of
generating each symbol. Note that this measure is bounded above as M(q, q)  2 q,
q  Q, because and Now the procedure of

state merging is briefly described below.
First, the two closest states (i.e., the pair of states q, q  Q having the smallest value

of M(q, q)) are merged using Algorithm 3 (see Appendix C). Subsequently, distance
F(, ) (see Eq. (15) in Subsection B-C) of the merged PFSA from the initial symbol
string is evaluated. If F < ηmrg where ηmrg is a specified threshold, then the machine
structure is retained and the states next on the priority list are merged. On the other
hand, if F ≥ ηmrg, then the process of merging the given pair of states is aborted and
another pair of states with the next smallest value of M(q, q) is selected for merging.
This procedure is terminated if no such pair of states exist, for which F < ηmrg. The
operation of the procedure is described in Algorithm 4 (see Appendix C).

3) Feature Extraction: After the D-Markov machine is constructed, the stationary
state probability vector is computed in the following way. Similar to Eq. (4), each
element of the stationary state probability vector P(q) is estimated by frequency
counting as (see Eq. (5)).

The estimated stationary state probability vector serves as a feature vector
representing the associated time series for classification of different zones of flame; this
feature vector is low-dimensional and can be computed in real time, based on the
varying equivalence ratio before the onset of LBO. For example, if the alphabet is {1,
2, 3, 4, 5}, the set of states after state splitting is {1, 2, 13, 23, 33, 43, 53, 14, 24, 34,
44, 54, 5} for port 3 and state merging leads to the set of states, {1, 2, 13, 23, 33, 43,
53, {14, 24, 34}, 44, 54, 5}. The stationary state probability vector computed from the
D-Markov machine with proposed state description, served as the feature for this
prediction problem. Figure 3 shows the state probability vectors from
chemiluminescence time series at three different stages of fuel-air ratios.

∑ π≤ ′ ⋅ ≤
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4) Kullback-Leibler Divergence as LBO measure: Let be the estimated state
probability vector (see Eq. (5)) of the resulting probabilistic finite state automaton
(PFSA) model at the reference epoch τ0 in the slow time scale (see Appendix A) and let

be the estimated state probability vector of the (possibly evolved) PFSA model at
an epoch tk . Relative to the reference flame condition at the epoch τ0, any anomalous

behavior of the current flame condition at the epoch τk is expressed in terms of and

as the (scalar) Kullback-Leibler divergence [21] that is defined as

(10)

where other choices of the divergence (e.g., standard Euclidean distance) can also be
made (for example, see [13]). A special advantage of using the Kullback-Leibler
divergence is that it provides an average anomaly measure of the current the flame
relative to the reference condition in the log scale. It is noted that, in Eq. (10), the

standard conventions 0 log(0) = 0 and are applicable based on

the continuity arguments.   However, such a singularity condition is highly undesirable
for continous monitoring and control of flame stability and it is avoided by appropriate
selection of the reference vector , each of whose elements is strictly positive.

5) Pattern Classification: The next step is classification of patterns among the features
extracted from the time series data. A nested classification architecture, as shown in Figure
4, is proposed based on the range of the non-dimensional ratio of φ/φLBO to predict a
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Chemiluminescence time-series
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φ / φLBO  > 1.2
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Impending LBO
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Figure 4: Nested classification for lean blowout (LBO) prediction.



forthcoming LBO, irrespective of the airflow rates for a certain premixing level. Initially,
the chemiluminescence time series of duration 16 sec for different premixing lengths were
grouped into two classes as: Alarm (1  φ/φLBO  1.20) and Nominal (φ/φLBO > 1.20).
The class Alarm was divided into two finer classes as: Impending LBO (ILBO) for 1 
φ/φLBO  1.1, and Progressive LBO (PLBO) for 1.1 < φ/φLBO  1.2. Identification of
the PLBO phase is crucial for LBO mitigation as the control actions need to be initiated
typically near the PLBO-ILBO boundary.

While there are many tools for pattern classification [34], this paper makes uses of
two well known techniques, namely, leave-one-out and support vector machines (SVM).
The leave-one-out method is adopted, because of the limited availability of training 
and test data; it makes use of the cross validation concept, where n groups of (n - 1)
training data are used with the remaining one of the n available measurements being
treated as test data. In Section 4, the SVM method with either a Gaussian or a linear
kernel [34] has been used to determine the classes to which the test features belong.

4. RESULTS AND DISCUSSIONS
This section validates the algorithms of D-Markov machines for LBO prediction on the
ensemble of time series data that were generated from the swirl-stabilized dump
combustor described in Section 2. Multiple experiments have been conducted with
liquefied petroleum gas (LPG) fuel at airflow rates of 150, 175 and 200 lpm for three
different fuel-air premixing lengths (i.e., distance of fuel injection port from the dump
plane) of Lfuel = 350 mm, 250 mm, and 150 mm for Port 1, Port 3, and Port 5,
respectively, where Reynolds numbers based on cold flow conditions have been up to
18, 700 at 200 lpm.

A. Experimental Observations
The combustion process was relatively steady and occupied the whole combustor while
the shape of the flame was conical as the fuel was injected through Port 1 (with Lfuel =
350 mm) at stoichiometric air-fuel mixture (i.e., φ = 1) . As the equivalence ratio was
reduced to φ = 0.81 case, there was a significant change in the flame color; it became
bluish with a reddish tip while retaining a well defined combustion region. For
conditions close to LBO (e.g., φ = 0.75) the flame shape changed from conical to
elongated columnar due to reduced reaction rate and burning velocity of flame near
LBO. There were random instances of flame oscillations and flame lift-off from the
dump plane. As the unburned fuel was reignited, the flame became detached from the
center body and returned to the inlet. The random occurrences of unique extinction and
re-ignition events spanned a period of several milliseconds prior to LBO.

The observations with the minimum premixing length Lfuel = 150 mm were
significantly different from those of larger premixing lengths for operations near the
LBO limit. The flame was attached to the dump plane and did not show any lift-off
pattern at all times due to lower fuel-air premixing. The flame intensity was
significantly reduced and, after a subsequent reignition, the flame did not oscillate and
the precursor events were not so intense. Furthermore, the flame was not symmetrically
attached to the dump plane and exhibited asymmetric spread with a flickering nature.
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B. Reduction of Modeling Complexity near Lean Blowout
Each chemiluminescence time-series is converted to zero mean by subtracting the bias
which is a dominating factor in generating the anomaly measure in the symbolic
analysis, reported by Mukhopadhyay et al. [12]. The removal of the bias has yielded a
significant improvement in the performance of LBO prediction over the previous
strategy [12], because mean-based detection may lead to the controller operating the
engine at relatively richer conditions with consequent penalties of enhanced NOx
emission. Since there is no bias in the algorithms reported in this paper, the texture of
time series data is modeled precisely to predict LBO ahead of time. The reference time
series (i.e., at φ = 1) for different premixing lengths are partitioned for an alphabet size
of seven (i.e., || = 7) via maximum entropy partitioning (MEP) [14], [31]. This
information on partitioning has been used to symbolize the data set at different
equivalence ratios (i.e., for φ < 1) for the corresponding premixing length. Once the
time series data are symbolized, D-Markov machines are constructed from the symbol
strings via state splitting and state merging.

Figure 5 shows that the number of states of the D-Markov machine after state
splitting and state merging reduces approximately monotonically as the equivalence
ratio is dropped for Lfuel = 350) mm. In this case, state splitting is done with an upper
bound of 30 PFSA states (i.e., Nmax = 30 in Algorithm 1 of Appendix C) and state
merging with a threshold parameter ηmrg = 0.05 (see Algorithm 4 of Appendix C). In
Figure 5, the right-hand endpoints of the curves after φ = 0.63 denote the onset of LBO.
Hence, it can be inferred that modeling complexity (i.e., the number of states) for 
D-Markov machine construction reduces drastically as the flame approaches LBO. For
other premixing lengths (e.g., Lfuel = 250 mm and Lfuel = 150 mm), the modeling
complexity near LBO is also reduced by a large amount compared to that at φ = 1.

It appears that the complexity of PFSA models (e.g., the number of states |Q|) tends to
reduce as an LBO situation is approached. The dynamics of a combustor close to blowout
is a topic of intense current research. For example, Gotoda and coworkers [17][18] 
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have reported increase in system complexity as LBO is approached; on the other hand,
Kabiraj and Sujith [16] have shown a slight decrease in embedding dimension during
intermittency prior to blowout. A possible explanation is that the effects of both
destructive and constructive interferences in the combustion process give rise to a large
dimension of the phase-space that is represented by a relatively large |Q| in the PFSA
model. Similarly, it is observed that the embedding dimension of the combustion system
reduces in the vicinity of an LBO. However, since these conjectures are at best qualitative,
further theoretical and experimental research is necessary to quantitatively assess their
truth or falsity. Therefore, in the context of the current paper, further research is needed 
to correlate the reduction in |Q| with changes in the dynamic characteristics of the
combustion process. These issues are identified as a topic of future research in 
Section 5.

Although modeling complexity approximately monotonically reduces as the flame
approaches LBO, it cannot be treated as a definitive measure for LBO prediction,
because the number of states may fluctuate within ranges of equivalence ratios at small
premixing length. Hence, an anomaly measure (see Eq. (10) in Subsection 3-B4) is
constructed to quantify the proximity of the combustion system to LBO. Furthermore,
while approaching LBO, different ranges of equivalence ratio φ can be identified,
irrespective of the airflow rate at a fixed premixing level.

C. Prediction of Lean Blowout (LBO)
This subsection presents the performance of the anomaly measure to quantify the
proximity to LBO under different premixing conditions and also elucidates the
classification performance for predicting different combustion regimes before the onset
of LBO. Following Figure 5, where the number of states is within a reasonable (i.e.,
after excluding a few obvious outliers) range of 6 to 13, the maximum number of states
was assigned to be Nmax = 13 for state splitting in the D-Markov machine construction.
The LBO measure is computed with respect to a reference at a condition far from LBO
and it is kept at zero. To compare LBO measures for different airflow rates at a certain
premixing level, they are normalized with respect to the LBO measures at their
respective blowout point.

Figures 6(a), 6(b), and 6(c) show the performance of the proposed LBO measure for
three different flow rates (i.e., 150, 175 and 200 lpm) at well-premixed (Port 1),
partially-premixed (Port 3), and poorly-mixed (Port 5) fuel-air conditions, respectively.
It is seen that, with the exception of the poorly-mixed condition (i.e., Lfuel = 150 mm
(Port 5)), the average slope of the normalized LBO measure with respect to normalized
equivalence ratio (φ/φLBO) remains low till φ/φLBO reaches  1.2. As φ/φLBO is reduced
below 1.2, the slope of the normalized LBO measure starts increasing rapidly even for
the well-premixed condition, as seen in Figure 6(a). Below φ/φLBO = 1.1, the
normalized LBO measure attains a value in the range of 0.4 – 0.6 and it reaches 1 with
a steep slope when the flame blows out. The steep rise in slope of the normalized LBO
measure close to LBO (φ/φLBO < 1.2) is desirable, because a sensitive LBO measure
would be capable of detecting the proximity of LBO. It is apparent from Figure 6(c) that
the normalized LBO measure for the poorly-mixed is not as sensitive as it is in the cases
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of well-premixed and partially-premixed conditions. The rationale for this result can be
attributed to the absence of dominant precursor events prior to LBO at a poorly-
premixed condition.

Subsequently, the ensemble of time series data for these three air-flow rates are
mixed to build a robust classification scheme, where it is ensured that such data sets
were independently collected. Since the number of samples in each class is not large
(e.g.,  10), leave-one-out cross-validation approach is adopted for LBO prediction and
support vector machines (SVM) with linear kernels [34] are used at both first and
second levels of classification (see Figure 4). The results of this classification method
are presented in Table I using confusion matrices for three different premixing lengths,
where the rows are the actual classes (i.e., ground truth) and the columns are the
predicted classes. [Note: the notions of two classes of alarm, namely, Impending LBO
(ILBO) and Progressive LBO (PLBO) have been introduced in Subsection 3-B5]. 
Table I shows high accuracy in detecting ILBO, PLBO, and nominal conditions with
larger air-fuel premixing (i.e., higher values of Lfuel)).

The confusion matrices in Table I show that the D-Markov machine is capable of
classifying different LBO situations fairly accurately even in the absence of intense
visual flame-precursor events. The efficacy of the proposed method to detect LBO even
at low levels of premixing is important as other methods reported in literature mostly
deal with lean premixed flames and do not generally work very satisfactorily for
partially premixed configurations [12]. This classification scheme, in general, predicts
the proximity of LBO fairly accurately for a wide range of air-flow rate,

The D-Markov machine parameters of the pattern classifier are now presented for
LBO prediction for well-premixed, partially-premixed, and poorly premixed fuel-air
flow.

1) LBO Prediction for Premixed Flame: For combustion flames with fuel flow from
Port 1 (i.e., Lfuel = 350 mm) and Port 3 (i.e., Lfuel = 250 mm) are at well-premixed and
partially-premixed conditions, respectively. The D-Markov machine parameters are
found to be the same for these cases.

The symbol alphabet is  = {1, 2, 3, 4, 5, 6, 7}, i,e,, the alphabet size is || = 7.
After state merging, the states of the D-Markov machine are calculated for the
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Table 1: Confusion matrix before lean blow out for differet premixing 
(port 1, port 3 and port 5)

PREDICTED

A Premixing level Port 1 (Lfuel = 350 mm) Port 3 (Lfuel = 250 mm) Port 5 (Lfuel = 150 mm)

C Alarm Alarm Alarm

T Class ILBO PLBO Nom ILBO PLBO Nom ILBO PLBO Nom

U ILBO 9 0 0 9 0 0 6 2 0

A Alarm PLBO 0 7 0 0 6 0 0 6 0

L Nom 0 1 12 0 1 12 0 3 16



stoichiometric fuel/air ratio, i.e., φ = 1, are found to be eleven (i.e., |Q| = 11) for the
data from Port 1 and Port 3. The corresponding sets of states are: {1, 2, 3, {14, 24}, 34,
44, 54, {64, 74}, 5, 6, 7} and {1, 2, 3, 4, {15, 75}, {25, 35}, 45, 55, 65, 6, 7} for 
port 1 and port 3, respectively.

2) LBO Prediction for Non-Premixed Flame: Combustion flame with fuel flow from
port 5 (Lfuel = 150 mm) is close to non-premixed condition. The alphabet size is kept
at || = 7. After state merging, the number of states for the D-Markov machine is
calculated (based on φ = 1) to be eleven. Figure 6(c) shows the performance of the
proposed LBO measure for different flow rates at a (nearly) non-premixed condition.

D. Performance of D-Markov Machine: D = 1 and D > 1
D-Markov machines with D = 1 was reported by Chaudhuri [23] and Mukhopadhyay
et al. [12] to perform equivalently or sometime superior to other time series based
online LBO prediction tools [6], [7], [8], [9], [10]. This subsection makes a comparison
of the predictive performance of D-Markov machines for D > 1 with that for D = 1,
which was reported earlier for LBO prediction [12]. This comparison is performed
based on the following two metrics.

1) Total mis-prediction = (Actual ILBO, predicted PLBO) + (Actual ILBO,
predicted Nominal) + (Actual PLBO, predicted Nominal); and

2) Total false alarm = (Actual Nominal, predicted PLBO) + (Actual Nominal,
predicted ILBO) + (Actual PLBO, predicted ILBO).

Figure 7 shows how the classification performance is improved for a typical case of
combustion with fuel inlet at port 5 (see Figure 1), as the number of PFSA states |Q| in
the D-Markov machine is increased via state splitting and state merging for an alphabet
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size || = 5. It appears that the predictive performance of the D-Markov machine
saturates beyond a certain value of number of states (e.g., |Q| = 10), as seen in 
Figure 7. Investigation of the fact, whether the phase space dimension of the
combustion dynamics consistently converges in the vicinity of LBO, is a topic of future
research as indicated in Section 5.

Table II shows that the classification performance of the D-Markov machine with 
D > 1 becomes increasing better relative to that of its predecessor with D = 1 as the
quality of premixing is degraded. For higher premixing, the performances of Port 1 and
Port 3 are comparable, which is intuitively supported by the presence of intense and
clearly visible precursor events before the onset of LBO. However, as the quality of
fuel-air premixing is reduced (e.g., Port 5), the visibility of precursor events becomes
rather rare. This physical phenomenon makes the task of LBO prediction more difficult.
The last row of Table II shows that the the D-Markov machine with D > 1 performs
well for all ports including Port 5 too, whereas the D-Markov machine with D = 1 fails
to predict LBO as it yields unacceptable levels of total mis-predictions and total false
alarms. The technique adopted in [12] (that uses D = 1) may not perform satisfactorily
when the bias due to the mean value of the CH* chemiluminescence is removed from
the analyzed signal. Although the usage of D = 1 may work in presence of the bias,
mean-based implementations could lead to higher emission as discussed earlier. Thus,
the development and validation of the D-Markov machine with D > 1 for LBO
prediction is one of the major contributions of the present work.

E. Estimate of the Computational Cost
The computational cost of the proposed algorithm is estimated for calculating the LBO
measure from the time series of raw chemiluminescence data on a Dell Precision T3400
platform with Intel(R) Core(TM) 2 Quad CPU Q9550 @ 2.83 GHz 2.83 GHz. The state
space of the PFSA is usually constructed off-line via state splitting and state merging.
Figure 8 shows the profiles of required computational time (in the MATLAB 7.10.0
(R2010a) environment) to obtain the LBO measure from a one-second-duration time
series of raw chemiluminescence data, collected at a sample frequency of 2 kHz. The
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Table 2: Performance comparison oflbo prediction by D-Markov
machine classification with D > 1 and D = 1)

Port # Total mis- Total false
(# of test cases) predictions alarms

Port 1 (29) D > 1 0 1
D = 1 2 3

Port 3 (28) D > 1 0 1
D = 1 4 4

Port 5 (33) D > 1 2 3
D = 1 6 9



equality of alphabet size || and number of PFSA states |Q| > at the beginning of each
plot in Figure 8 implies D = 1; for subsequent points in each plot, |Q| > ||, which
implies that state splitting and merging with D > 1. It is seen that the computational
time has an increasing trend as the depth D of the underlying PFSA (see Definition 3.1)
is increased from one. A typical value of computational time is 20 ms for the alphabet
size || = 7 and the number of PFSA states |Q| = 11. Apparently, the proposed method
of LBO prediction is well-suited for real-time LBO prediction, where the typical
frequency response of combustion dynamics is  10 Hz [18].

5. SUMMARY, CONCLUSIONS AND FUTURE WORK
This paper addresses data-driven pattern classification for prediction of lean blowout
(LBO) phenomena in combustion processes. The proposed LBO prediction method is
built upon low-dimensional feature vectors that are extracted from time series of optical
sensor data of chemiluminescence. The feature vectors are realized as (statistically
stationary) state probability vectors of a special class of finite-history probabilistic
finite state automata (PFSA). These PFSA, called D-Markov machines, have a
deterministic algebraic structure and their states are represented by symbol blocks of
length D or less, where D is a positive integer. The states of a D-Markov machine are
constructed via splitting the symbol blocks of different lengths based on their
information contents and merging two or more split states without any significant loss
of the embedded information.

An anomaly measure, based on Kullback-Leibler divergence, is constructed to
successfully predict the onset of LBO. This anomaly measure becomes increasingly
sensitive to small changes in the equivalence ratio as the combustion process
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approaches LBO. An architecture of the pattern classification problem has been
formulated based on different ranges of the equivalence ratio to reliably predict the
LBO optimally ahead of its onset. The proposed pattern classification method has been
validated on experimental data collected from a laboratory-scale swirl-stabilized
combustor. It is observed that the modeling complexity (i.e., number of states of D-
Markov machine) of the PFSA, constructed from optical sensor data reduces drastically
as the system approaches LBO.

It is demonstrated over a wide range of fuel-air premixing and air flow rates that the
D-Markov machine with D > 1 performs significantly better than the D-Markov
machine with D = 1 for prediction of LBO [12]. The results, reported in this paper,
suggest the potential capability of D-Markov machines to fairly precisely predict
regions close to LBO in a laboratory- scale combustor. In this way, the operating
condition in a combustor could be extended to a leaner equivalence ratio without
significantly risking LBO. While there are many other areas yet to be addressed in this
context, a few topics of future research are delineated below.

1) Theoretical research on identification of the optimum threshold for maximum
number of states (state splitting) and the distance metric (state merging) for
enhancement of the predictive performance of the D-Markov machine.

2) Prediction of combustion instability in both premixed and non-premixed
combustors.

3) Prediction of LBO under thermo-acoustic instability for different flow
conditions.

4) Validation of the proposed data-driven approach with respect to model-driven
tools.

5) Identification of the statistical ranges of uncertainty in the LBO measure (e.g.,
relative to different confidence levels) in typical combustors.

6) Investigation of the physical significance of the reduction in number of D-
Markov machine states in the vicinity of LBO relative to the corresponding
changes in the dynamic behavior of the combustion system under nominal
operating conditions.

7) Theoretical and experimental research on prediction of thermo-acoustic
instabilities under operating conditions, other than LBO (e.g., screech
phenomena in the afterburner of gas turbine engines in tactical aircraft [41]).
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APPENDIX A
CONCEPT OF TWO TIME SCALES
This appendix presents the notion of two time scales in dynamical systems, as needed
for pattern classification based on time series of sensor data.

Definition A.1 (Fast Scale) The fast scale is defined to be a time scale over which
the statistical properties of the process dynamics are assumed to remain invariant, i.e.,
the process is assumed to have statistically stationary dynamics at the fast scale.

Definition A.2 (Slow Scale) The slow scale is defined to be a time scale over which
the statistical properties of the process dynamics may gradually evolve, i.e., the process
may exhibit statistically non-stationary dynamics at the slow scale.

In view of Definition A.1, statistical variations in the internal dynamics of the
process are assumed to be negligible at the fast scale. Thus, sensor time series data are
acquired based on the assumption of statistical stationarity at the fast scale. In view of
Definition A.2, an observable non-stationary behavior could be associated with the
gradual evolution of anomalies (i.e., deviations from the nominal behavior) in the
process at the slow scale. In general, a long time span at the fast scale is a tiny (i.e.,
several orders of magnitude smaller) interval at the slow scale. A pictorial view of the
two-time-scales operation in Figure 9 illustrates the concept.

APPENDIX B
MATHEMATICAL PRELIMINARIES
This appendix presents pertinent information regarding construction of D-Markov
machines and other mathematical tools (e.g., entropy rate and metric to quantify the
distance between two PFSA). The following standard definitions are recalled [14].

Definition B.1 (Finite State Automaton) A finite state automaton (FSA) G, having a
deterministic algebraic structure, is a triple (, Q, δ) where:
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•  is a (nonempty) finite alphabet with cardinality ||;
• Q is a (nonempty) finite set of states with cardinality |Q|;
• δ : Q    Q is a state transition map.
Definition B.2 (Symbol Block) A symbol block, also called a word, is a finite-length

string of symbols belonging to the alphabet , where the length of a word

with si   is |w| = �, and the length of the empty word ε is |ε| = 0. The parameters of
FSA are extended as:

• The set of all words constructed from symbols in , including the empty word ε,
is denoted as *,

• The set of all words, whose suffix (respectively, prefix) is the word w, is denoted as
*w (respectively, w*).

• The set of all words of (finite) length �, where � > 0, is denoted as �.
Definition B.3 (Extended Map) The extended state transition map δ* : Q  *  Q

transfers one state to another through finitely many transitions such that, for all q  Q,
σ   and w  *,

where wσ is the suffixing of the word w by the symbol .
Definition B.4 (Irreducible FSA) An FSA G is said to be irreducible if, for all q1 , q2

 Q, there exists a word w1,2  * such that q1 = δ* (q2, w1,2).
In the process of symbol generation, the space of time series is partitioned into

finitely many mutually exclusive and exhaustive cells, each corresponding to a symbol
belonging to a (finite) alphabet. As a trajectory of the dynamical system passes through
or touches various cells of the partition, the symbol assigned to the cell is inserted in
the symbol string. In this way, a time series corresponding to a trajectory is converted
into a symbol string. Figure 10 illustrates the concept of constructing finite state
automata (FSA) from time series, which provides the algebraic structure of probabilistic
finite state automata (PFSA).

� � �w s s s1 2

δ δ σ δ δ σ( )( ) ( )= =∈q q and q w q w, , ( , ),* * *
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Definition B.5 (PFSA) A probabilistic finite state automaton (PFSA) K is a pair 
(G, π), where:

• The deterministic FSA G is called the underlying FSA of the PFSA K;
• The probability map π : Q    [0, 1] is called the morph function (also known

as symbol generation probability function) that satisfies the condition:
for all q  Q.

Equivalently, a PFSA is a quadruple K = ( , Q, δ, π), where
• The alphabet  of symbols is a (nonempty) finite set, i.e., 0 < || < ∞, where ||

is the cardinality of ;
• The set Q of automaton states is (nonempty) finite, i.e., 0 < |Q| < ∞, where |Q|

is the cardinality of Q;
• The state transition function δ : Q    Q;
• The morph function π : Q    [0, 1], where for all q  Q.

The morph function π generates the (|Q|  ||)
morph matrix P.

Definition B.6 (Extended Morph Function) The morph function π : Q    [0, 1]
of PFSA is extended as π* : Q  *  [0, 1] such that, for all q  Q, σ   and 
w  *,

where w is the suffixing of the word w by the symbol . The above equations
represent how the PFSA responds to occurrence of a certain block of symbols, i.e, a
word w  * of finite length |w|.

A. Symbolization of Time Series
This step requires partitioning (also known as quantization) of the time series data of
the measured signal. The signal space is partitioned into a finite number of cells that are
labeled as symbols, i.e., the number of cells is identically equal to the cardinality ||
of the (symbol) alphabet . As an example for the one-dimensional time series in 
Figure 10, the alphabet  = {α, β, γ , δ}, i.e., || = 4, and three partitioning lines
divide the ordinate (i.e., y-axis) of the time series profile into four mutually exclusive
and exhaustive regions. These disjoint regions form a partition, where each region is
labeled with one symbol from the alphabet . If the value of time series at a given
instant is located in a particular cell, then it is coded with the symbol associated with
that cell. As such, a symbol from the alphabet  is assigned to each (signal) value
corresponding to the cell where it belongs. (Details are reported in [31].) Thus, a (finite)
array of symbols, called a symbol string (or symbol block), is generated from the
(finite-length) time series data.

The ensemble of time series data are partitioned by using a partitioning tool (e.g.,
maximum entropy partitioning (MEP) or uniform partitioning (UP) methods [31]). In
UP, the partitioning lines are separated by equal-sized cells. On the other hand, MEP
maximizes the entropy of the generated symbols and therefore, the information-rich

π π σ π π δ σ( )( ) ( )= = ×∈q and q w q w q w, 1 , ( , ) ( , ),* * * *

∑ π σ =
σ∈Σ

q( , ) 1

∑ π σ =
σ∈Σ

q( , ) 1
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cells of a data set are partitioned finer and those with sparse information are partitioned
coarser, i.e., each cell contains (approximately) equal number of data points under MEP.
In both UP and MEP, the choice of alphabet size || largely depends on the specific
data set and the allowable loss of information (e.g., leading to error of detection and
classification).

1) Selection of Alphabet Size: Considerations for the choice of alphabet size ||
include the maximum discrimination capability of a symbol sequence and the
associated computational complexity. The maximum discrimination capability is
characterized by the entropy of the sequence that should be maximized to the extent it
is possible, or alternatively by minimizing the information loss that is denoted as the
negative of the entropy. As the alphabet size is increased, there is both an increase in
computational complexity and a possible reduction in loss of information; in addition,
the effects of a large alphabet may become more pronounced for an insufficiently long
time series [22].

In partitioning of a (one-dimensional) time series for symbolization, the alphabet
size || must be appropriately chosen in order to transform the real-valued finite-length
data set S into a symbol string. The data set S is partitioned into a (finite) number of
(mutually exclusive and exhaustive) segments to construct a mapping between S and
the alphabet of symbols {s|s  }. To do so, a choice must be made as to the number
of symbols, i.e., the cardinality || of the symbol alphabet . Presented below is a brief
discussion on how to make the tradeoff between information loss and computational
complexity.

Let the alphabet size be k = || and the method of partitioning the time series be
maximum entropy partitioning [31], i.e., a uniform probability distribution on the

symbols with Then, the information loss, represented by the

negative of the entropy [21] of the symbol sequence, is given as

(11)

By representing the computational complexity as a function g(k) of the alphabet size
k and choosing an appropriate scalar tradeoff weighting parameter a  (0, 1), the cost
functional to be optimized becomes:

(12)

The optimal alphabet size || is obtained by solving for k in the equation J(k + 1) -
J(k) = 0 along with additional constraints that may have to be imposed in the
optimization procedure to realize the effects of critical issues such as any bounds on the
alphabet size.

B. Entropy rate
This subsection introduces the notion of entropy rate that, given the current state,
represents the predictability of PFSA.

σ σ( ) = ∀ ∈ ∑P
k
1

.

σ σ( ) ( )=− = ∑ =−σ∈∑I H P P kIn In

α α( ) ( ) ( )=− + −J k k g kIn 1
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Definition B.7 (Conditional Entropy and Entropy Rate [21]) The entropy of a PFSA
(, Q, δ, π) conditioned on the current state q  Q is defined as follows.

(13)

The entropy rate of a PFSA (, Q, δ, π) is defined in terms of the conditional
entropy as follows.

(14)

where P(q) is the (unconditional) probability of a PFSA state q  Q; and P( |q) is the
(conditional) probability of a symbol σ   emanating from the PFSA state q  Q.

C. Metric for the distance between two PFSA
This subsection introduces the notion of a metric to quantify the distance between two
PFSA.

Definition B.8 (Metric) Let K1 = (, Q1, δ1, π1) and K2 = (, Q2, δ2, π2) be two
PFSA with a common alphabet . Let P1(

j) and P2(
j) be the steady state

probability vectors of generating words of length j from the PFSA K1 and K2,
respectively, i.e., P1(

j) � [P(w)]wj for K1 and P2(
j) � [P(w)]wj for K2. Then,

the metric for the distance between the PFSA K1 and K2 is defined as

(15)

where the norm ||*||�1 indicates the sum of absolute values of the elements in the vector *.
The norm on the right side of Eq. (15) yields

because each of the probability vectors P1(
j) and P2(

j) has non-negative entries that
sum to 1. Furthermore, convergence of the infinite sum on the right side of Eq. (15) is

guaranteed due to the weight and satisfies the relation 0  F(, )  1. It is noted

that alternative forms of norms could also be used, because of norm equivalence in
finite-dimensional vector spaces.

Since the metric in Definition B.8 assigns more weight to words of smaller length,
the infinite sum could be truncated to a relatively small order D (e.g., typically in the
range of 5 to 20) [31] for a given tolerance ε � 1. That is, the distance F(, ) in 
Eq. (15) effectively compares the probabilities of generating words of length D in two
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PFSA and is especially adaptable to D-Markov machines whose dynamical behavior is
characterized by words of a specified maximal depth [13].

The metric F(, ) can also be used to calculate the distance between a PFSA and a
symbol string, in which case the probabilities are expressed in terms of relative
frequency of occurrence of a word.

APPENDIX C
STATE SPLITTING & STATE MERGING ALGORITHMS
This appendix lists the algorithms of state splitting and state merging for construction
probabilistic finite state state automata (PFSA) from symbol strings, where state
splitting is addressed by Algorithm 1 and state merging by Algorithms 2, 3 and 4.

Algorithm 1 State splitting
Input: Symbol sequence s1s2s3....., where each si belongs

to the symbol alphabet 
User defined Parameters: Maximum number of states Nmax and

threshold ηspl for state splitting
Output: PFSA K = {, Q, δ, π}
Initialize: Create a 1-Markov machine := 
repeat

Q := ;

= arg minQ H(|Q);
where Q = (Q\{q})  ({σq : σ  }) and q  Q

until | | < Nmax or H(|Q) - H(| ) < ηspl

for all and σ   do

if δ(q, ) is not unique then

:= ( \{q})  ({σq : σ  });
end if

end for
return K = {, Q, δ, π}

Algorithm 2 Minimal equivalence relation given q  q
Input: δ, q, q, Initial equivalence relation 
Output: Updated equivalence relation 
NOTE: Recursive function () := Merge(δ, q, q, )
Set q  q;
for all σ   do

if δ(q, σ)  δ(q, σ) then

Set := Merge(δ, δ(q, σ), δ(q, σ), );

end if
end for
return 

�Q

�Q
�Q

�Q

�∈q Q

�Q�Q

�Q
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Algorithm 3 Minimal PFSA K2 after merging of two states

Input: K1 = {, Q1, δ1, π1}, q, q
Output: Merged PFSA K2 = {, Q2, δ2, π2}
Compute the equivalence relation  using Algorithm 2;
Set Q2 := Q1/ ; % Q2 is the quotient set of Q1 under 
Compute the stationary-probability vector P̂1 of the PFSA K1;
for all [q]  Q2 do

for all σ   do
Set δ2([q], σ) := [δ1(q, σ)];
Compute p2([q], σ) using Eq. (7);

end for
end for
return K2 = {, Q2, δ2, π2}

Algorithm 4 State merging in PFSA
Input: PFSA K = {, Q, δ, π} and symbol sequence {si}
User defined Parameter: Threshold ηmrg for state merging
Output: Merged PFSA Km = {, Qm, δm, πm}
Set Km := K;
for all q, q  Qm do

if q ≠ q then
Set LIST STATES (q, q) = M(q, q) using Eq. (9);

else
Set LIST STATES (q, q) = 2;

end if
end for
sort (LIST STATES); % Place the pair (q, q) with the smallest M(q, q) on top of
the list
Set (q, q) := pop (LIST STATES); % Select the pair (q, q) that is on top of the
sorted list
loop

Compute K1 from Km by merging the states q and q via Algorithm 3;
if d [K1, {si}] < mrg then

Set Km := K1;
Recompute LIST STATES;
Set (q, q) := pop (LIST STATES);

else

Set (q, q) := pop (LIST STATES);
if q = q then

Break loop;
end if

end if
end loop
return Km = {, Qm, δm, πm}
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