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Abstract—The advent of intelligent vehicle technologies holds
significant potential to alter the dynamics of traffic flow. Prior
work on the effects of such technologies on the formation of self-
organized traffic jams has led to analytical solutions and numer-
ical simulations at the mesoscopic scale, which may not yield
significant information about the distribution of vehicle cluster
size. Since the absence of large clusters could be offset by the
presence of several smaller clusters, the distribution of cluster sizes
can be as important as the presence or absence of clusters. To ob-
tain a prediction of vehicle cluster distribution, the included work
presents a statistical mechanics-inspired method of simulating
traffic flow at a microscopic scale via the generalized Ising model.
The results of the microscopic simulations indicate that traffic
systems dominated by adaptive cruise control (ACC)-enabled ve-
hicles exhibit a higher probability of formation of moderately
sized clusters, as compared with the traffic systems dominated
by human-driven vehicles; however, the trend is reversed for the
formation of large-sized clusters. These qualitative results hold
significance for algorithm design and traffic control because it
is easier to predict and take countermeasures for fewer large
localized clusters as opposed to several smaller clusters spread
across different locations on a highway.

Index Terms—Intelligent vehicles, traffic control, road trans-
portation, self-organization, driver behavior, Potts model.

I. INTRODUCTION

THE appearance of traffic jams in the form of self-
organized vehicular clusters on highways has been a topic

of significant interest in recent decades. One reason for the
continued interest in this field is that the formation of self-
organized clusters is a fairly common phenomenon which
occurs across a wide range of fields, including nucleation in
binary alloys, herding behavior of organisms (such as in a
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school of fish), and transport of granular media [1]. However,
the primary reason for the continued interest in self-organized
vehicle clusters occurring in highway traffic (or simply self-
organized traffic jams) is the expected societal impact of
alleviating congestion. Recent reports have indicated that there
are increasing disparities between highway capacity and vehic-
ular population [2], and that highway congestion is on the rise
[3]. Additionally, congestion in the US has associated annual
costs in excess of 100 billion dollars (in 2011 dollars) [3].
The study of formation of self-organized vehicle clusters and
analysis of strategies that may limit their persistence has the
potential to significantly benefit the society.

One potential strategy to tackle congestion has arisen with
the advent of intelligent vehicle technologies. Self-organized
traffic jams typically form due to imperfections in the reaction
of human drivers to medium and high density traffic. Intelli-
gent driver algorithms, such as adaptive cruise control (ACC)
systems, that can better govern the movement of individual
vehicles in a traffic stream, may have the potential to signif-
icantly impact vehicular cluster formation [4]. Traditionally,
microscopic numerical simulations have served well to provide
some insight into traffic flow dynamics as a function of driver
behaviors [5]. These simulation approaches utilize models that
represent the driving behavior of humans to varying degrees
of accuracy. However, some approaches, such as the cellular
automata (CA) or totally asymmetric simple exclusion process
(TASEP) models, significantly simplify the driver behavior to
rules that are independent of physical interpretation of model
parameters [6], [7]. Other approaches, such as those that use
detailed car-following models (e.g., General Motors [8] or opti-
mal velocity models [9]), may cause the simulations to be com-
putationally expensive and memory intensive. Consequently, it
is desirable to have a simulation approach that is more detailed
than CA or TASEP models and builds upon physical principles,
while simultaneously being computationally amenable to para-
metric studies. The generalized Ising model provides such an
approach. The included study builds upon work presented in
[10], [11] and utilizes the simple, yet immensely popular Ising
model and its generalized forms to study traffic flow and vehicle
cluster dynamics as a function of ACC penetration.

The remainder of the paper is organized as follows. Section II
discusses previous research that has addressed the formation
of self-organized traffic jams from a statistical mechanics per-
spective. This section also describes previous research on the
effects of intelligent driver algorithms on traffic dynamics.
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Section III sets up the problem with known parameters values
typically used to represent the state of highway traffic flow.
Section IV presents the bulk of the novel work where traffic
flow is modeled as a driven lattice gas using the generalized
Ising model. The evolution of self-organized traffic jams is
then shown to manifest as a non-equilibrium process in the
presence of an external field with repulsive interactions between
vehicles. Section V describes the Monte-Carlo simulations as
well as the calibration of the generalized Ising model, and
Section VI summarizes the results of the study. In the remainder
of this work, the term “ACC-enabled” and “computer algorithm-
driven” will be used interchangeably.

II. LITERATURE REVIEW

While the study of traffic flow dynamics is a rich and vibrant
field, statistical mechanics-based approaches to address the
problem have received less attention than others. In the follow-
ing subsections, prior statistical mechanics-based techniques to
study traffic flow dynamics are discussed, and some attention is
also directed towards existing works that have studied the effect
of driver algorithms on traffic flow.

A. Statistical Mechanics-Based Techniques

One of the earliest attempts to use statistical mechanics to
study traffic flow dynamics dates back to the work of Prigogine
and Andrews in 1960, who modeled traffic flow using the
kinetic theory of gases [12]. For a long period after their work,
statistical mechanics was not used within the transportation
research community, but recently these approaches have wit-
nessed a resurgence [10], [13]–[15]. However, in the context of
analyzing changes in traffic flow dynamics as a consequence of
driver behavior, these techniques have primarily been limited to
single species environments [4], [11]. The work presented here
extends the statistical mechanics-based approach to a multi-
species environment that can model both human-driven and
ACC-enabled vehicles via the use of the generalized Ising model
(or the Potts model). The generalized Ising model presented
here provides better simulation fidelity (as compared to CA or
TASEP models), while operating with reduced computational
complexity (as compared to numerical simulations with car-
following models).

B. Studies on Effects of Driver Algorithms on Traffic Flow

On the other hand, the transportation research community
has pooled significant resources to evaluate the effects of in-
troducing computer algorithm-driven vehicles into the traffic
stream. A considerable portion of these resources have been
allocated towards designing algorithms for tightly-controlled
vehicle platoons [16], and analyzing the effects of lead vehicle
maneuvers on the stability of the platoon [17]. However, as
intelligent vehicle technologies such as connected vehicles
and adaptive cruise control make their way to mainstream
passenger vehicles, the traffic stream of the near future may
consist of randomly interspersed human-driven and computer
algorithm-driven vehicles. Realizing the importance of such a
transition period where the vehicular population undergoes a

demographic shift, recent work has begun to focus on randomly
mixed traffic systems.

Studies of mixed traffic scenarios in recent times have
yielded interesting results. For example, previous work by
Jerath indicates that increasing ACC penetration can result in
higher critical densities at which vehicle clusters first begin to
form [14]. However, this work is limited by the fact that it has
been performed for single clusters and consequently does not
yield information about cluster distribution. On the other hand,
numerical simulations have been performed at microscopic
scales using car-following models to suggest that increasing
penetration rates can potentially increase capacity [5]. The
statistical mechanics-based approach utilized in the presented
work seeks to offer alternatives that may have a lower com-
putational burden compared to microscopic simulations with
detailed car-following models, while simultaneously providing
deeper insights into the statistics of self-organized traffic jams.

C. Limitations of the Ising Model

The statistical mechanics-based approach proposed by
Sopasakis and his colleagues models traffic flow using the Ising
model, and as such is limited in its predictive capacity by
the limitations of the Ising model itself [10]. Specifically, the
possible states σ that a site in the Ising model can assume is
limited to two. In other words, in an Ising model formulation,
a site on a road can either be empty (σ = 0) or be occupied by
a vehicle (σ = 1). However, if additional states are required,
such as when studying traffic systems with more than one type
of driver algorithm, the Ising model needs to be extended for
the analysis. Fortunately, there exist extensions of the Ising
model—such as the generalized Ising model in which a site can
assume any integer number of states—which can be used to
model mixed traffic systems. Details about the two-state Ising
model are provided in the Appendix.

III. PROBLEM SETUP

This section discusses the problem setup, which is essentially
an exercise in establishing variables that describe the physical
system, i.e. traffic, and relating them to model parameters in the
generalized Ising model.

A. Traffic System Description

In order to study the effects of driver algorithms on vehicle
cluster formation, a traffic system is often idealized as a single-
lane closed ring-road without on- or off-ramps. While a road
with open boundary conditions, i.e. with on- and off-ramps,
may better represent reality, the closed ring-road idealization
of the traffic system enforces periodic boundary conditions
and greatly simplifies the ensuing analysis and simulations
[14]. The closed ring-road is assumed to be of length L and
is occupied by M vehicles. The vehicles are assumed to be
physically identical with length of dv = 5.5 m, and maintain
a safe spacing of d0 = 2.5 m when stationary. Consequently,
the spatial extent occupied by each vehicle when it is stationary
is given by ds = dv + d0 = 8 m. Later, some of these vehicles
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will be modeled as being driven by humans, whereas other will
be modeled as being driven by computer algorithms.

Next, the typical traffic system is described quantitatively by
some commonly observed traffic parameters, which are known
to be representative of single-lane highways [18]. The free flow
velocity (vf ), which is the speed of vehicles at low densities,
is assumed to be 25 m/s (or 90 km/h). The maximum flow of
vehicles in the lane, or lane capacity, (qmax) is assumed to be
1800 veh/h. The backward wave speed (u), which represents
the speed at which a wave propagates backwards in the traffic
stream, is assumed ot be −6 m/s (or −19.6 km/h). The next
subsection discusses the specific prerequisites and model struc-
ture needed to analyze the system using the generalized Ising
model.

B. Space Partitioning and Lattice Structure of Traffic System

As a first step towards modeling the system, the roadway
is partitioned into individual non-overlapping sites, so that the
sites span the entire length L of the roadway. This process
is known as space partitioning and results in the partition
S = {s1, s2, . . . , sN} of the road such that

N⋃
i=1

si = S and si
⋂
i�=j

sj = φ (1)

where si denotes the ith site on the road, and φ denotes the
empty set. In the presented work, the length of each site is
assumed to be ds(= dv + d0), i.e. the space occupied by a
vehicle when it is stationary. Thus, if the roadway is occupied at
maximum density, it would result in stationary vehicles parked
a distance d0 away from each other, and occupying a total space
of N(dv + d0) = L. The maximum density is referred to as jam
density (kjam) in the traffic flow literature [18]. Other values
for the length of an individual site are also possible, but the
current value (ds = 8 m) is chosen since it makes physical
sense and also corresponds directly to the jam density (kjam =
1/ds), a physically observable quantity. The collection of sites
on the ring road forms a one-dimensional lattice structure,
where the terminology is borrowed from studies of various
physical systems [19].

The next step in the problem setup addresses a framework
for assigning the system microstate, so that its evolution can be
tracked during numerical simulations. Specifically, this requires
assigning a state σi to each individual site si ∈ S. Since the goal
of this work is to analyze mixed traffic flow, a specific site si can
be in one of three states, i.e., σi ∈ Σ = {0, 1, 2}. It is assumed
that σi = 0 represents a site that is vacant, σi = 1 represents
a site that is occupied by a human-driven vehicle, and σi = 2
represents a site that is occupied by an ACC-enabled vehicle
[4]. A schematic representation of the partitioning of the ring
road is included in Fig. 1. The vehicles are assumed to travel
in the direction of reducing site numbers, as indicated by the
arrow in the figure.

The system microstate then encapsulates the state informa-
tion of all N sites as a vector σ = {σ1, σ2, . . . , σN}. Given
the space partition S = {s1, s2, . . . , sN} of the system and the
set of states Σ = {0, 1, 2} that each individual site can assume,

Fig. 1. Discretized version of traffic system for statistical mechanics-based nu-
merical analysis. Arrow indicates direction of travel. Vehicles travel in direction
of reducing site number. Three states, σi ∈ Σ = {0, 1, 2}, are possible for each
site in accordance with the generalized Ising model approach.

the total number of possible microstates of the traffic system
is given by |Σ||S| = 3N . The microstate contains complete
information of the entire system at any given instant of time.
The next section builds upon the microstate and lattice structure
discussed here to create a framework for simulating the traffic
system.

IV. GENERALIZED ISING MODEL FORMULATION

In this section, a simulation framework that can mimic the
dynamics of a single-lane closed ring-road system is developed.
As mentioned earlier in Section II-C, while the Ising model
allows for a statistical mechanics-based treatment of the forma-
tion of traffic jams, it does not allow for distinguishing between
different driver behaviors. In the following work, the use of the
generalized Ising model removes this limitation and allows us
to conduct a numerical analysis of the effects of different driver
behaviors on the formation of self-organized vehicle clusters, or
traffic jams. In the following subsections, the model parameters
that help distinguish between driver algorithms, as well as the
means to simulate the system microstate dynamics, will be
discussed in detail.

One of the foundational constructs of the generalized Ising
model, and statistical mechanics in general, is the idea of
the Hamiltonian. The Hamiltonian represents the energy of
the system in any given microstate, and consequently can be
used to determine system dynamics with appropriate energy-
based evolution schemes. The expression for the Hamiltonian is
given by

H(σ) = −B

N∑
i=1

σi −
∑
〈i,j〉

Jijσiσj (2)
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where j �= i and i, j ∈ {1, 2, . . . , N}. In the expression, B
represents an external field that is acting on the entire system,
Jij represents the interaction strength between sites i and j,
and 〈i, j〉 represents a pair of neighboring sites (i.e., j = i− 1
or j = i+ 1).

Now, in a traffic system, drivers do not typically interact
with every other driver on the road. Drivers, either human or
computer algorithms, are often privy to only local informa-
tion up to a certain ‘look-ahead’ distance (dl) downstream of
their location. In the current context of analyzing traffic flow
dynamics, this implies that interactions between sites on the
road are restricted to a few downstream sites within a defined
neighborhood. Mathematically, the forward-looking neighbor-
hood N (si) can be expressed as

N (si) = {sj : d(si, sj) ≤ dl, j < i} (3)

where d(si, sj) = |(i− j)ds| denotes the distance between
sites si and sj , and ds is the size of an individual site. Note that
the neighborhood N (si) does not include sites upstream from
the site si, i.e., sites for which j > i. Also note that due to the
closed ring structure, the neighborhood for numbered sites such
as s1 is appropriately re-defined to include forward-looking
sites such as sN , sN−1, sN−2, and so on. Thus, to reflect
our understanding that driver response is localized in nature,
the Hamiltonian can be re-framed for the current context to
read as

H(si) = −Bσi −
∑

sj∈N (si)

Jijσiσj (4)

where H(si) denotes the energy associated with a particular
site si and is a function of the state of the neighboring “look-
ahead” sites only. The site-based Hamiltonian H(si) governs
the probability of a vehicle moving from one site to another.
A key differentiating feature between the TASEP models men-
tioned in Section I and the statistical mechanics-inspired model
presented here is that the latter uses a site-based Hamiltonian
determine the system evolution. Specifically, the components
of the Hamiltonian such as the external field and interaction
strength can be related to physical processes, which helps
provide meaning to the probability with which a vehicle moves
forward. This is quite unlike the TASEP models which, though
simple and useful, make it relatively difficult to relate hopping
probabilities to physical processes. The next few subsections
discuss details about the Hamiltonian, its individual compo-
nents (i.e., the external field and interaction strength), and how
it can be used to determine system dynamics.

A. External Field

The role of the external field in traffic flow dynamics can be
understood by drawing parallels between Prigogine’s original
interpretation of traffic flow based on the kinetic theory of
gases and the expression presented in (4). In Prigogine’s gas
kinetic theory of traffic flow, competing forces are at play that
push and repel vehicles [12]. The external field corresponds
to Prigogine’s “relaxation” term and is the driving force that
“pushes” vehicles forward. The stronger the external field, the

greater the tendency of the vehicles to keep moving forward.
The external field acts equally on all vehicles, irrespective of
whether they are driven by humans or computer algorithms
(i.e., ACC enabled). However, the states of sites occupied
by human-driven vehicles (σi = 1) and those occupied ACC-
enabled vehicles (σi = 2) are different by design. Thus, the
expression for the field may be altered slightly as follows:

B =

{
B0, if σi = 1

B0/2, if σi = 2
(5)

so that the field component of the Hamiltonian is equal in both
cases, i.e., Bσi = B0 > 0, irrespective of the state σi of the site
si. Here, the parameter B0 can be related to the speed limit of
the roadway. From a physical perspective, a high value of the
external field parameterB0 corresponds to a larger driving force
acting on the system which, in turn, can be said to correspond
to a higher speed limit. This relation is made evident when the
model is calibrated in Section V-A.

B. Interaction Strength

The role of the interaction strength on traffic flow dynamics
can also be understood by reviewing Prigogine’s gas kinetic
theory of traffic flow. Specifically, the interaction strength Jij
is representative of the “collision” term in Prigogine’s work
and is a measure of “repulsion” faced by vehicles as they
approach another vehicle [12]. The greater the magnitude of
the interaction term between a vehicle and a preceding vehicle,
the slower it will approach that preceding vehicle. To produce
a repulsive effect with downstream vehicles, the interaction
strength must be negative, i.e. Jij < 0, for j < i. As interaction
with upstream vehicles is not considered, so Jij = 0 for j > i.
The precise nature of the interactions is assumed to follow an
inverse-square law as follows:

Jij =

{
J0

(d(si,sj))
2 , if sj ∈ N (si)

0, otherwise
(6)

where the interaction coefficient J0 is a constant, and d(si, sj)
represents the distance between sites as discussed earlier in
Section IV. The inverse-square law representation for the
interaction strength chosen here is in accordance with prior
work [20], which has shown that such interactions produce
long range order via a continuous phase transition in the
one-dimensional Potts model, similar to the phase transitions
observed in traffic flow [21]. Other interaction laws, such as
where the interaction strength is inversely proportional to the
distance between the sites, yield discontinuous (or first-order)
phase transitions, which are uncharacteristic of traffic flow
[20], [22].

From a physical perspective, the interaction coefficient J0
can be related to driver sensitivity or alertness. An alert driver,
such as a computer algorithm, may respond sooner to the pres-
ence of a cluster downstream, and may correspondingly have
a higher magnitude of the interaction coefficient as compared
to an inattentive driver, such as a distracted human. In the
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Fig. 2. Interaction coefficients for vehicles determined using differences in
local density. Dashed box denotes the neighborhood for the respective vehicles.
(a) Difference in local density is negative for a vehicle (circled) entering a
cluster. (b) Difference in local density is positive for a vehicle (circled) exiting
a cluster.

next subsection, the use of interaction strength to model driver
behaviors and algorithms is discussed in more detail.

C. Modeling Driver Behavior via Interactions

It is known that the behaviors of vehicles when they are
accelerating from rest [23] or decelerating to a stop [24] are
quite different. Consequently, the interaction coefficients for
vehicles entering or exiting a cluster are designed to be different
as well, and are postulated to be

J0 =

{
Jin, if ki − kl < 0

Jout, if ki − kl > 0
(7)

where Jin < 0 represents the interaction coefficient for vehicles
entering a region of higher local density, Jout < 0 represents
the interaction coefficient for vehicles exiting a region of higher
local density, sl is the nearest occupied site within the neighbor-
hood N (si), i.e. σl �= 0, and ki denotes the dimensionless local
density at site si, and is defined as

ki =
1

|N (si)|
∑

sj∈N (si)

1lN (si)(sj) (8)

where |N (si)| = N represents the cardinality of the neighbor-
hood set, and 1lA(·) represents the indicator function for
elements belonging to the set A. The use of the local density to
determine the interaction coefficient can be better understood
by using Fig. 2 as an aid. The dimensionless local density
represents the density of vehicles present in the neighborhood
of a particular site. In the scenario where the local density kl at
site sl is neither greater nor less than the local density ki at site
si, the interaction coefficient is chosen randomly with uniform
distribution.

Now, the key innovation of the presented work is the ability
to model various driver algorithms and behavior, and observe
their effects on the formation of vehicle clusters, within a
statistical mechanics framework. Different driver behaviors
are implemented by changing the manner in which vehicles

interact with one another. Consider that a computer algorithm is
designed so that it attempts to avoid contributing to the growth
of self-organized vehicle clusters whenever possible. Let the
interaction coefficient associated with this algorithm be denoted
by JACC

0 , whereas the interaction coefficient associated with
a human-driven vehicle be denoted by JH

0 . An appropriately
modeled qualitative difference between the coefficients JH

0 and
JACC
0 can result in reduced congestion incidents due to forma-

tion of self-organized vehicle clusters. For example, an ACC-
enabled vehicle approaching a vehicular cluster will attempt
to avoid contributing to the cluster growth. In the context of
the current model, this behavior may be associated with the
ACC-enabled vehicles experiencing greater repulsion near the
cluster, as compared to human-driven vehicles. Mathematically,
the behavior can be realized by the following relation between
the interaction coefficients:

|JACC
in | > |JH

in| (9)

where JACC
in and JH

in denote the interaction coefficient while
entering a cluster for an ACC-enabled and a human-driven
vehicle, respectively. Similarly, an ACC-enabled vehicle exiting
a vehicular cluster will attempt to leave it as quickly as possible
so as not to contribute to the cluster growth. In the context
of the current model, this behavior may be associated with
the ACC-enabled vehicles experiencing less repulsion from
vehicles downstream of the cluster, as compared to human-
driven vehicles. Mathematically, the behavior can be realized
by the following relation between the interaction coefficients:

|JACC
out | < |JH

out| (10)

where JACC
out and JH

out denote the interaction coefficient while
exiting a cluster for an ACC-enabled and human-driven ve-
hicle, respectively. The next subsection describes how the
Hamiltonian can be used to study the evolution of the traffic
system.

D. Exchange Dynamics

One of the first steps while studying the evolution of the
traffic system is to identify the type of dynamics that will
govern this evolution. In the statistical mechanics literature,
two types of dynamics are popular, viz. the spin flip dynamics
and the spin exchange dynamics [25]. In spin flip dynamics, a
particular site flips from one state to another, without affecting
the remainder of the system. Spin flip dynamics may be useful
when modeling vehicles that are entering or leaving the system,
such as at on- or off-ramps. For example, the state at the last
site on the edge of the system may flip from σN = 1 at time
t to σN = 0 at time t+ 1, to indicate that a vehicle has left
the system. However, in the current context, it is evident that
the total number of vehicles is conserved on the closed ring-
road, i.e., no vehicles are leaving the system. As a result,
the sites can only exchange their states to model the forward
motion of vehicles, so exchange dynamics are chosen to model
system evolution. Specifically, exchange dynamics imply that
if a vehicle moves from site si at time t to si−1 at time t+ 1,
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then the states of these sites are exchanged. For example, if at
time t the states are given by {σi, σi−1}t = {1, 0}, then at time
t+ 1 the states will be {σi, σi−1}t+1 = {0, 1}, i.e. the states
have exchanged and the vehicle has moved forward. Further,
the current implementation of exchange dynamics stipulate that
state exchange may only take place with an adjacent and vacant
downstream site, i.e. the exchange may occur if

σi �= 0 and σi−1 = 0. (11)

With knowledge of the exchange dynamics, the only missing
component to begin a study of the system evolution is the
rate at which these exchanges take place. The next subsection
discusses the development of transition probability rates and
their significance in relation to the modeling of non-equilibrium
(or far-from equilibrium) processes.

E. Transition Probability Rates

Parallels can be drawn between the problem of modeling
of traffic dynamics using the Potts model, and the study of
driven Ising lattice gases [7], [19]. Systems that are driven
by an external field, such as a temperature or concentration
gradient, typically operate far-from-equilibrium. Such systems
can exhibit steady-state behavior, though such a state may be
one of continuous flux. Mathematically, such systems cannot
be described by a stationary probability distribution. It is im-
mediately evident that certain traffic behavior, such as forma-
tion of self-organized vehicle clusters or “stop-and-go” waves,
belong to a class of far-from-equilibrium systems because their
microstate probability distributions are non-stationary.

The non-stationary nature of the probability distributions
of far-from-equilibrium systems has a direct impact on how
the transition probability rates are determined. Far-from-
equilibrium systems do not necessarily obey the condition of
detailed balance [21]. Consequently, the transition probability
rates have to be determined on the basis of observations of spe-
cific physical phenomena occurring in the system. For example,
since vehicles are not expected to move backward in a traffic
system, the associated transition probability rate of a vehicle
moving to an adjacent and vacant upstream site is assumed to
be zero. Such observations allow reasoned estimates to be made
about potential transition probability rates. Mathematically, the
transition probability rate (w) in this scenario is given by:

w(σ → σ′) = 0
where, σ = {σ1, σ2, . . . , σi−1, 1, 0, σi+2, . . . , σN} (12)

σ′ = {σ1, σ2, . . . , σi−1, 0, 1, σi+2, . . . , σN}

i.e., σ′ represents a microstate where the vehicle at site si has
moved to the upstream site si+1, while the states {σ1, σ2, . . . ,
σi−1, σi+2, . . . , σN} remain unchanged. On the other hand, the
microstate transition probability rate for the scenario where a

vehicle at site si moves to the adjacent and vacant downstream
site si−1 is given by

w(σ → σ′) = c0 exp (−βH(si)) (13)

= c0 exp

⎛
⎝βBσi + β

∑
sj∈N (si)

Jijσiσj

⎞
⎠ (14)

where, σ = {σ1, σ2, . . . , σi−2, 0, 1, σi+1, . . . , σN}
σ′ = {σ1, σ2, . . . , σi−2, 1, 0, σi+1, . . . , σN}
c0 = pre-exponential factor, and
β = ki.

The expression in (13) is similar to the reaction rate postu-
lated for Arrhenius dynamics [10]. The parameter β is assumed
to be proportional to the local density and is conceptually
analogous to its interpretation in other physical systems. For
example, in a ferromagnet, β ∝ 1/T , where T denotes the
temperature. Consequently, a high value of β corresponds to
a low temperature T , in which case the magnetic moments are
forced to align with their neighboring moments. Similarly, in a
traffic system, a high value of β corresponds to a high value of
local density ki, in which case the vehicles are not free to move
and are forced to “align” with the slow-moving or stationary
states of their neighbors.

The expression for the transition probability rates in (13) can
be used to determine the probability with which a randomly
selected vehicle will transition from site si to the site si−1

P (σt+1 = σ′|σt = σ) = min {1, w(σ → σ′)} (15)

which is similar to the expression for the acceptance probabil-
ity employed in the Metropolis-Hastings algorithm [26]. The
following sections use the statistical-mechanics inspired frame-
work built here to numerically simulate and analyze the effects
of driver algorithms of formation of self-organized vehicular
clusters.

V. MONTE CARLO SIMULATIONS

In order for the developed framework to accurately reflect
the evolution of self-organized vehicular clusters, the values of
the model parameters must be chosen carefully. The following
subsection discusses the model calibration procedure.

A. Calibration of Parameters

The calibration procedure of the presented model is per-
formed in a traffic scenario whose evolution is theoretically
and empirically well known. The traffic system, i.e., the closed
ring-road is populated with human-driven vehicles so that they
form a queue, such as one that may form at a signalized
intersection, to yield a moderate-density scenario with a nor-
malized dimensionless density k∗ = k/kjam. At time t = 0,
the queue is allowed to dissipate and the system evolution
is compared with known results from the Lighthill-Whitham-
Richards (LWR) model of traffic flow [27], [28] as well as
the representative traffic parameters described in Section III-A.
Specifically, as the vehicles begin to exit a queue, they discharge
at the maximum flow rate (qmax) and attain free flow velocity
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Fig. 3. Calibration of generalized Ising model parameters B and c0 to match
free flow speed on a highway (vf = 25 m/s). Contours indicate free flow
speeds (m/s) obtained with corresponding set of model parameters. The values
are chosen to be B = 125 and c0 = 0.05.

(vf ). At the same time, a backward wave moving with speed u
can be seen to develop, both at the beginning of the queue (due
to vehicles leaving the cluster) and at the end of the queue (due
to vehicles entering the cluster after traversing the ring-road).
The model parameters c0, B, JH

in, and JH
out should be such that

the simulation behavior matches these known representative
values of the traffic parameters.

The calibration procedure is performed in two steps. In the
first step, the parameters c0 andB are calibrated to yield the free
flow velocity calculated via the speed of the first vehicle exiting
the queue. The queued traffic system is simulated several times
for different values of c0 and B and the free flow velocities
obtained by exiting vehicles are shown in Fig. 3. Assuming that
vehicles are nearly stationary (v ≈ 0.5 m/s) when the external
driving field is absent (B = 0), and using the representative
value of free flow velocity vf = 25 m/s for highways, the
calibrated parameters for the traffic system are found to be
c0 = 0.05 and B = 125. Vehicles cannot be assumed to be
completely stationary when the external field is absent because
in that scenario c0 evaluates to zero, implying that the transition
probability rate is identically zero.

In the second step of the procedure, the calibrated values of
B and c0 are used to evaluate the appropriate values of JH

in

and JH
out. The queued traffic system is simulated for a range of

interaction coefficients and the resulting backward wave speeds
are compared for both vehicles exiting (uout) and entering (uin)
a cluster. According to the LWR theory, for a queued traffic
system on a closed ring-road populated with human-driven
vehicles, the values of (uout) and (uin) should be identical and
equal to−6 m/s. Point H in Fig. 4 indicates the parameter values
(JH

in = −0.325 × 104 m2, JH
out = −1.395 × 105 m2) for which

the backward wave speed matches empirical observations in
traffic systems (see Section III-A).

Finally, the interaction coefficients for ACC-enabled vehi-
cles can also be determined from Fig. 4. As discussed in
Section IV-C, ACC-enabled vehicles with appropriately de-
signed algorithms are expected to exit clusters faster so as to
avoid contributing to the growth of self-organized clusters. If

Fig. 4. (a) Backward wave speed (uout) evaluated for vehicles exiting a
cluster. (b) Backward wave speed (uin) evaluated for vehicles entering a
cluster. Parameters Jin and Jout are calibrated to match backward wave
propagation speeds for both human-driven (H) and ACC-enabled (A) vehicles,
evaluated using B = 125 and c0 = 0.05. Contours indicate backward wave
speeds (m/s) obtained with corresponding set of model parameters.

such vehicles exit the cluster faster, the backward wave speed
(uout) will have a larger magnitude, implying a higher cluster
dissipation rate. Similarly, such vehicles are also expected to
enter clusters at a slower rate to avoid increasing cluster size.
As a result, the backward wave speed (uin) will have a smaller
magnitude, implying a higher cluster dissipation rate. Using the
calibration procedure already performed, and the qualitative re-
lationships described in (9) and (10), the values of the backward
wave speeds for a traffic system comprising only ACC-enabled
vehicles are assumed to be uout = −7 m/s and uin = −5 m/s.
Point A in Fig. 4 indicates the calibrated parameter values
(JACC

in = −1.85 × 104 m2, JACC
out = −1.002 × 105 m2) for the

associated backward wave speeds.
These parameters enable us to carry out the Monte Carlo sim-

ulations to mimic traffic flow dynamics in a mixed traffic flow.
A simulation of the queued traffic system with the calibrated
model parameters is shown in Fig. 5. It must be noted that these
parameter values for the ACC-enabled vehicles provide us with
only a qualitative assessment of the effects of increased ACC
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Fig. 5. Queued traffic system is simulated with k∗ = 0.5, c0 = 0.05, B =
125, JH

in = −0.325 × 104, and JH
out = −1.395 × 105. Use of a queued traffic

system helps ensure that calibrated model parameters lead to behavior that
mimics real-life and agrees with existing theory (LWR model).

penetration. The pseudo-code for the Monte Carlo algorithm
used in the study is included in Algorithm 1.

Algorithm 1 Simulating Traffic Flow Dynamics With Markov
Chain Monte Carlo Algorithm

1: Uniformly distribute M vehicles across N available sites
to set up initial microstate σ

2: while time ≤ ENDTIME do
3: for all sites si ∈ S do
4: if σi �= 0 and σi+1 = 0 then
5: calculate the site-based Hamiltonian H(si)
6: calculate transition probability w=exp(−βH(si))
7: select a random number r ∼ U(0, 1)
8: if r < min(1, w) then
9: exchange states σi and σi+1

10: accept new microstate
11: end if
12: end if
13: end for
14: time ← time + 1
15: end while

B. Simulation Results

With the appropriate model parameters, and the transition
probability rates developed in Section IV-E, the traffic system
was simulated as a closed-ring road with N = 500 sites. The
number of vehicles populating the ring-road were varied to
create scenarios where the normalized density k∗ = k/kjam
varies from 0.1 to 0.9 in steps of 0.1. Additionally, the levels
of penetration for ACC-enabled vehicles were varied from 0%
to 100%, in steps of 10%. The simulation was run for a real-
time equivalent of one hour to allow for transients to die off,
so that steady state cluster distribution could be observed. The
system was updated in a random-parallel fashion, i.e. all sites

Fig. 6. Probability of a randomly selected vehicle lying in a cluster of size
r∗ for varying levels of ACC penetration and densities of interest. Lines of
decreasing thickness indicate increasing levels of ACC penetration. Dotted line
corresponds to a traffic system consisting entirely of ACC-enabled vehicles.
Clusters of size r = 1 not shown in the figure.

were updated at each time step, but the order within each time
step update was chosen randomly.

The Monte Carlo simulations yield a probability mass func-
tion fR(r) which denotes the probability that a vehicle cluster
of size R = r exists in the traffic system in steady state. Then,
the joint probability mass function fV R(v, r) which denotes
the probability that a randomly selected vehicle V = v is in a
vehicular cluster of size R = r can be expressed as follows:

fV R(v, r) = fV |R(V = v|R = r)fR(r) (16)

where fV |R(V = v|R = r) denotes the probability of selecting
a vehicle V that lies in a cluster, given that a cluster of size R
exists in the traffic system. The conditional probability is found
to be

fV |R(V = v|R = r) =
r

M
= r∗ (17)

where M is the total vehicular population on the closed ring-
road, and r∗ denotes the normalized cluster size. The resulting
joint probability distribution fV R(v, r) is plotted for varying
values of density for which the Monte Carlo simulations were
performed. Extremely high values of density are not usu-
ally observed in traffic, and no significant cluster formation
trends were observed in the simulations for low values of den-
sity (k∗ ∈ [0.1, 0.3]). Consequently, the probability distribution
fV R(v, r) is plotted in Fig. 6 for the range of density values
k∗ ∈ [0.4, 0.6], where freely flowing and clustered vehicles co-
exist in real-world traffic scenarios. The implications of these
results and the conclusions that can be drawn from them are
discussed in the next section.
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VI. RESULTS AND CONCLUDING REMARKS

The simulation results included in Fig. 6 describe the proba-
bility of a randomly selected vehicle being present in a cluster
of a particular size. The trends observable in these results,
while not definitive, can still be used to draw qualitative con-
clusions pertaining to the effect of ACC penetration of the
formation of clusters and cluster distributions. One trend that
is immediately evident is that cluster distributions for predom-
inantly human-driven traffic systems are skewed to the right
(towards large-sized clusters), whereas those for predominantly
ACC-populated traffic systems are skewed to the left (towards
moderately-sized clusters), across all densities shown in the
figure. Consequently, the probability that a randomly selected
vehicle is present in a large-sized cluster is higher for traffic
systems consisting predominantly of human-driven vehicles as
opposed to ACC-enabled vehicles. Similarly, the probability that
a randomly selected vehicle is present in a moderately-sized
cluster is higher for traffic systems consisting predominantly of
ACC-enabled vehicles.

A. Broader Impacts

These qualitative results may have significant implications
for autonomous vehicle design, traffic control and guiding
policy decision-making. Specifically, from a traffic control per-
spective, it is easier to design and handle highway elements to
counter localized bottlenecks that could result in large clusters.
On the other hand, having several moderately-sized clusters
that may appear at random across a large swathe of highway
may require the development of more elaborate traffic control
techniques. However, these findings are only applicable to
traffic systems operating at medium densities (k∗ ∈ [0.4, 0.6]).
In contrast, our previous research has indicated that ACC pen-
etration is quite advantageous at lower densities (k∗ ∈ [0, 0.3])
since it raises the critical density at which jams first begin to
appear and enables higher flows [14].

The appearance of several moderately-sized clusters at
medium densities in mixed human-ACC traffic may have other
implications as well. For example, the presence of several
spatially-distributed and moderately-sized self-organized vehi-
cle clusters in predominantly ACC-enabled traffic flow may lead
to an increase in ‘stop-and-go’ behavior. Each such stop-and-go
maneuver carries with it the risk of collision or disruption of
traffic flow, especially from human drivers. It is hypothesized
that the acceleration and deceleration maneuvers associated
with such stop-and-go traffic may also lead to higher emissions
of greenhouse gases as compared to steady traffic flow. Such an
impact has not been quantified in this paper.

The statistical mechanics-based method, proposed in this
paper, may be expanded in the future to model additional
traffic scenarios. For example, this approach could be used to
model connected vehicles or incorporate V2X communication
technologies, in which case vehicles may receive congestion
information from and react to events outside their immediate
neighborhood. This methodology may also be used to model
adverse weather scenarios, where the model could be re-
calibrated to account for modified driver behavior in different

weather conditions. In conclusion, it was found that the gen-
eralized Ising model could satisfactorily simulate the traffic
dynamics of mixed traffic flows, and that these simulations
reveal interesting effects of driver algorithms on the formation
of self-organized vehicular clusters.

APPENDIX

ISING MODEL IN ONE DIMENSION WITH

NEAREST-NEIGHBOR INTERACTIONS

Ernst Ising presented a particle interaction model for fer-
romagnetism in his Ph.D. thesis in 1925, and this model has
since come to be known by his name [29]. In this work, Ising
modeled a one-dimensional ferromagnet as an infinitely long
chain of “magnets,” where each site represented a magnetic
dipole moment generated by the atomic spin. If the atomic
spins are aligned, the magnetic moments add up, resulting in
the magnetic nature of a ferromagnetic material. On the other
hand, if the spins are not aligned, such as at high tempera-
tures, the magnetic nature is lost. The phase transition between
these two behaviors of a ferromagnetic material occurs at the
Curie temperature. The goal of Ising’s thesis was to study if
the interaction between neighboring spins was the underlying
mechanism for such behavior of ferromagnetic materials.

Model Description: In this model, atomic spins are denoted
by σ. The atomic spins can be in one of two states, i.e.,
σ ∈ {−1,+1}. The actual values of the spins do not hold any
physical significance, except for the fact that they simplify some
of the following analysis. Specifically, if two adjacent atomic
spins are aligned in the same direction, they could be modeled
as either {−1,−1} or {+1,+1}, with no change in the ensuing
analysis. Similarly, if two adjacent spins are not aligned, they
could either be represented by {−1,+1} or {+1,−1}. Now,
the state of the magnet is collectively represented by the atomic
spins at each site of the one-dimensional chain of N mag-
nets as σ = {σ1, σ2, . . . , σN}, which is known as the system
microstate, where N is a large positive integer. The energy
associated with the microstate σ for a one-dimensional Ising
model with only nearest-neighbor interactions is given by the
Hamiltonian

H(σ) = −B

N∑
i=1

σi −
∑
〈i,j〉

Jijσiσj (18)

where B represents an external magnetic field, 〈i, j〉 represents
a nearest-neighbor site pair (i.e., j = i− 1 or j = i+ 1), and
Jij = Jji denotes the interaction strength between sites i and j.
The interaction strength is assumed to be constant (i.e., Jij =
J) in this paper.

In order to further simplify the analysis, the one-dimensional
model is assumed to have periodic boundary conditions, so that
σN+1 = σ1. While this assumption does not affect the thermo-
dynamic properties of the N -magnet chain in the limit N → ∞,
it does allow a symmetric representation of the Hamiltonian as
follows:

H(σ) = −B

2

N∑
i=1

(σi + σi+1)− J

N∑
i=1

σiσj . (19)
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Partition Function: The partition function plays a very im-
portant role in the field of statistical mechanics and can be used
to determine the aggregated properties of a system. It derives its
name from the fact that it encodes the probability distribution
that partitions microstates into “bins” of equal energy. Specifi-
cally, the probability of occurrence of a particular microstate σ
is given by

P (σ) =
1
Z
e−βH(σ) (20)

where Z denotes the partition function that serves as a normal-
izing constant, β = 1/kBT , where kB denotes the Boltzmann
constant, and T denotes the temperature. The partition function
Z is thus defined as

Z =

σ1=+1∑
σ1=−1

σ2=+1∑
σ2=−1

· · ·
σN=+1∑
σN=−1

e−βH(σ) (21)

which can be written as

Z=

σ1=+1∑
σ1=−1

· · ·
σN=+1∑
σN=−1

exp

{
β

N∑
i=1

(
B

2
(σi+σi+1)+Jσiσj

)}
.

(22)

Transfer Matrix: In order to evaluate the partition function,
Kramers and Wannier suggested the use of transfer matrices
[29, pp. 476]. The right-hand side of (22) can be expressed
as a product of 2 × 2 matrices as explained below. Consider
a situation with only two adjacent sites σi and σi+1. Then, in
accordance with (19), the Hamiltonian H(σ) yields

e−βH(σ) =

⎧⎪⎨
⎪⎩
eβ(B+J), σi = +1, σi+1 = +1

eβ(−B+J), σi = −1, σi+1 = −1

e−βJ , otherwise.

(23)

Now, for a vector representation of the spins, let the spins
+1 and −1 be denoted as vectors q1 = [1 0] and q2 = [0 1],
respectively. If the transfer matrix P is given by

P =

[
eβ(B+J) e−βJ

e−βJ eβ(−B+J)

]
(24)

the operation (σiPσi+1) yields the same results as in (23), i.e.

(σiPσi+1) =

⎧⎪⎨
⎪⎩
eβ(B+J), σi = q1, σi+1 = qT1
eβ(−B+J), σi = q2, σi+1 = qT2
e−βJ , otherwise.

(25)

Solution of the Partition Function: Using the transfer matrix
representation, the partition function is re-written as

Z =

σ1=+1∑
σ1=−1

· · ·
σN=+1∑
σN=−1

(σ1Pσ2)(σ2Pσ3) · · · (σNPσ1)

=

σ1=+1∑
σ1=−1

(σ1P
Nσ1) = Tr(PN )

= λN
a + λN

b (26)

where the eigenvalues of P are represented as λa and λb in a
ordered way (i.e., λb < λa). In the absence of an external field
(i.e., B = 0), the eigenvalues are found to be

λa = 2 cosh(βJ) (27)

λb = 2 sinh(βJ) (28)

which yield a solution of the partition function. With knowledge
of the partition function, several other statistics (e.g., free
energy and magnetization per spin) can be evaluated along with
their trends as a function of inverse temperature β.
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