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Abstract— Dictionary learning algorithms have been success-
fully used for both reconstructive and discriminative tasks, where
an input signal is represented with a sparse linear combination
of dictionary atoms. While these methods are mostly developed
for single-modality scenarios, recent studies have demonstrated
the advantages of feature-level fusion based on the joint sparse
representation of the multimodal inputs. In this paper, we propose
a multimodal task-driven dictionary learning algorithm under the
joint sparsity constraint (prior) to enforce collaborations among
multiple homogeneous/heterogeneous sources of information.
In this task-driven formulation, the multimodal dictionaries are
learned simultaneously with their corresponding classifiers. The
resulting multimodal dictionaries can generate discriminative
latent features (sparse codes) from the data that are optimized for
a given task such as binary or multiclass classification. Moreover,
we present an extension of the proposed formulation using a
mixed joint and independent sparsity prior, which facilitates more
flexible fusion of the modalities at feature level. The efficacy of the
proposed algorithms for multimodal classification is illustrated
on four different applications—multimodal face recognition,
multi-view face recognition, multi-view action recognition, and
multimodal biometric recognition. It is also shown that, compared
with the counterpart reconstructive-based dictionary learning
algorithms, the task-driven formulations are more computation-
ally efficient in the sense that they can be equipped with more
compact dictionaries and still achieve superior performance.

Index Terms— Dictionary learning, multimodal classification,
sparse representation, feature fusion.

I. INTRODUCTION

IT IS well established that information fusion using multiple
sensors can generally result in an improved recognition

performance [1]. It provides a framework to combine local
information from different perspectives which is more tolerant
to the errors of individual sources [2], [3]. Fusion methods for
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classification are generally categorized into feature fusion [4]
and classifier fusion [5] algorithms. Feature fusion methods
aggregate extracted features from different sources into a
single feature set which is then used for classification. On the
other hand, classifier fusions algorithms combine decisions
from individual classifiers, each of which is trained using
separate sources. While classifier fusion is a well-studied
topic, fewer studies have been done for feature fusion, mainly
due to the incompatibility of the feature sets [6]. A naive
way of feature fusion is to stack the features into a longer
one [7]. However this approach usually suffers from the
curse of dimensionality due to the limited number of training
samples [4]. Even in scenarios with abundant training samples,
concatenation of feature vectors does not take into account the
relationship among the different sources and it may contain
noisy or redundant data, which degrade the performance of
the classifier [6]. However, if these limitations are mitigated,
feature fusion can potentially result in improved classification
performance [8], [9].

Sparse representation classification has recently attracted
the interest of many researchers in which the input signal
is approximated with a linear combination of a few dic-
tionary atoms [10] and has been successfully applied to
several problems such as robust face recognition [10], visual
tracking [11], and transient acoustic signal classification [12].
In this approach, a structured dictionary is usually con-
structed by stacking all the training samples from the different
classes. The method has also been expanded for efficient
feature-level fusion which is usually referred to as multi-task
learning [13]–[16]. Among different proposed sparsity con-
straints (priors), joint sparse representation has shown signif-
icant performance improvement in several multi-task learning
applications such as target classification, biometric recogni-
tions, and multiview face recognition [12], [14], [17], [18].
The underlying assumption is that the multimodal test input
can be simultaneously represented by a few dictionary atoms,
or training samples, from a multimodal dictionary, that rep-
resents all the modalities and, therefore, the resulting sparse
coefficients should have the same sparsity pattern. However,
the dictionary constructed by the collection of the training
samples suffer from two limitations. First, as the number
of training samples increases, the resulting optimization
problem becomes more computationally demanding. Second,
the dictionary that is constructed this way is not optimal
neither for the reconstructive tasks [19] nor the discriminative
tasks [20].
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Recently it has been shown that learning the dictio-
nary can overcome the above limitations and significantly
improve the performance in several applications including
image restoration [21], face recognition [22] and object
recognition [23], [24]. The learned dictionaries are usually
more compact and have fewer dictionary atoms than the
number of training samples [25], [26]. Dictionary learning
algorithms can generally be categorized into two groups:
unsupervised and supervised. Unsupervised dictionary learn-
ing algorithms such as the method of optimal direction [27]
and K-SVD [25] are aimed at finding a dictionary that yields
minimum errors when adapted to reconstruction tasks such as
signal denoising [28] and image inpainting [19]. Although,
the unsupervised dictionary learning has also been used for
classification [22], it has been shown that better performance
can be achieved by learning the dictionaries that are adapted
to an specific task rather than just the data set [29], [30].
These methods are called supervised, or task-driven, dictionary
learning algorithms. For the classification task, for example, it
is more meaningful to utilize the labeled data to minimize the
misclassification error rather than the reconstruction error [31].
Adding a discriminative term to the reconstruction error and
minimizing a trade-off between them has been proposed in
several formulations [20], [24], [32], [33]. The incoherent
dictionary learning algorithm proposed in [34] is another
supervised formulation which trains class-specific dictionaries
to minimize atom sharing between different classes and uses
sparse representation for classification. In [35], a Fisher crite-
rion is proposed to learn structured dictionaries such that the
sparse coefficients have small within-class and large between-
class scatters. While unsupervised dictionary learning can be
reformulated as a large scale matrix factorization problem
and solved efficiently [19], supervised dictionary learning is
usually more difficult to optimize. More recently, it has been
shown that better optimization tool can be used to tackle the
supervised dictionary learning [30], [36]. This is achieved by
formulating it as a bilevel optimization problem [37], [38].
In particular, a stochastic gradient descent algorithm has been
proposed in [29] which efficiently solves the dictionary learn-
ing problem in a unified framework for different tasks, such
as classification, nonlinear image mapping, and compressive
sensing.

The majority of the existing dictionary learning algorithms,
including the task-driven dictionary learning [29], are only
applicable to single source of data. In [39], a set of view-
specific dictionaries and a common dictionary are learned
for the application of multi-view action recognition. The
view-specific dictionaries are trained to exploit view-level
correspondence while the common dictionary is trained to
capture common patterns shared among the different views.
The proposed formulation belongs to the class of dictionary
learning algorithms that leverages the labeled samples to
learn class-specific atoms while minimizing the reconstruc-
tion error. Moreover, it cannot be used for fusion of the
heterogeneous modalities. In [40], a generative multimodal
dictionary learning algorithm is proposed to extract typical
templates of multimodal features. The templates represent
synchronous transient structures between modalities which

Fig. 1. Multimodal task-driven dictionary learning scheme.

can be used for localization applications. More recently, a
multimodal dictionary learning algorithm with joint sparsity
prior is proposed in [41] for multimodal retrieval where the
task is to find relevant samples from other modalities for
a given unimodal query. However, the proposed formulation
cannot be readily applied for information fusion in which the
task is to find label of a given multimodal query. Moreover, the
joint sparsity prior is used in [41] to couple similarly labeled
samples within each modality and is not utilized to extract
cross-modality information which is essential for information
fusion [12]. Furthermore, the dictionaries in [41] are learned
to be generative by minimizing the reconstruction error of data
across modalities and, therefore, are not necessary optimal for
discriminative tasks [31].

This paper focuses on learning discriminative multimodal
dictionaries. The major contributions of the paper are as
follows:
• Formulation of the Multimodal Dictionary Learning

Algorithms: A multimodal task-driven dictionary learning
algorithm is proposed for classification using homoge-
neous or heterogeneous sources of information. Infor-
mation from different modalities are fused both at the
feature level, by using the joint sparse representation,
and at the decision level, by combining the scores of
the modal-based classifiers. The proposed formulation
simultaneously trains the multimodal dictionaries and
classifiers under the joint sparsity prior in order to
enforce collaborations among the modalities and obtain
the latent sparse codes as the optimized features for dif-
ferent tasks such as binary and multiclass classification.
Fig. 1 presents an overview of the proposed framework.
An unsupervised multimodal dictionary learning algo-
rithm is also presented as a by-product of the supervised
version.

• Differentiability of the Bi-Level Optimization Problem:
The main difficulty in proposing such a formulation is
that the solution of the corresponding joint sparse coding
problem is not differentiable with respect to the dictionar-
ies. While the joint sparse coding has a non-smooth cost
function, it is shown here that it is locally differentiable
and the resulting bi-level optimization for task-driven
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multimodal dictionary learning is smooth and can be
solved using a stochastic gradient descent algorithm.1

• Flexible Feature-Level Fusion: An extension of the pro-
posed framework is presented which facilitates more
flexible fusion of the modalities at the feature level by
allowing the modalities to have different sparsity patterns.
This extension provides a framework to tune the trade-
off between independent sparse representation and joint
sparse representation among the modalities. Improved
Performance for Multimodal Classification: The pro-
posed methods achieve the state-of-the-art performance
in a range of different multi-modal classification tasks.
In particular, we have provided extensive performance
comparison between the proposed algorithms and some of
the competing methods from literature for four different
tasks of multimodal face recognition, multi-view face
recognition, multimodal biometric recognition, and multi-
view action recognition. The experimental results on these
datasets have demonstrated the usefulness of the proposed
formulation, showing that the proposed algorithm can be
readily applied to several different application domains.

• Improved Efficiency for Sparse-Representation Based
Classification: It is shown here that, compared to
the counterpart sparse representation classification algo-
rithms, the proposed algorithms are more computationally
efficient in the sense that they can be equipped with more
compact dictionaries and still achieve superior perfor-
mance.

A. Paper Organization

The rest of the paper is organized as follows. In Section II,
unsupervised and supervised dictionary learning algorithms
for single source of information are reviewed. Joint sparse
representation for multimodal classification is also reviewed in
this section. Section III proposes the task-driven multimodal
dictionary learning algorithms. Comparative studies on several
benchmarks and concluding results are presented in Section IV
and Section V, respectively.

B. Notation

Vectors are denoted by bold lower case letters and matrices
by bold upper case letters. For a given vector x, xi is its i th

element. For a given finite set of indices γ , xγ is the vector
formed with those elements of x indexed in γ . Symbol→ is
used to distinguish the row vectors from column vectors,
i.e. for a given matrix X , the i th row and j th column of matrix
are represented as xi→ and x j , respectively. For a given finite
set of indices γ , Xγ is the matrix formed with those columns
of X indexed in γ and Xγ→ is the matrix formed with those
rows of X indexed in γ . Similarly, for given finite sets of
indices γ and ψ , Xγ→,ψ is the matrix formed with those rows
and columns of X indexed in γ and ψ , respectively. xi j is the
element of X at row i and column j . The lq norm, q ≥ 1, of
a vector x ∈ R

m is defined as ‖x‖�q = (
∑m

j=1 |x j |q)1/q . The
Frobenius norm and �1q norm, q ≥ 1, of matrix X ∈ R

m×n

1The source code of the proposed algorithm is released here:
https://github.com/soheilb/multimodal_dictionary_learning

is defined as ‖X‖F =
(∑m

i=1
∑n

j=1 x2
i j

)1/2
and ‖X‖�1q =

∑m
i=1 ‖xi→‖�q , respectively. The collection {x i |i ∈ γ } is

shortly denoted as {x i}.

II. BACKGROUND

A. Dictionary Learning

Dictionary learning has been widely used in various tasks
such as reconstruction, classification, and compressive sens-
ing [29], [33], [42], [43]. In contrast to principal component
analysis (PCA) and its variants, dictionary learning algorithms
generally do not impose orthogonality condition and are more
flexible allowing to be well-tuned to the training data. Let
X = [x1, x2, . . . , xN ] ∈ R

n×N be the collection of N (nor-
malized) training samples that are assumed to be statistically
independent. Dictionary D ∈ R

n×d can then be obtained as
the minimizer of the following empirical cost [22]:

gN (D) � 1

N

N∑

i=1

lu (xi , D) (1)

over the regularizing convex set D � {D ∈ R
n×d |‖dk‖�2 ≤1,

∀k = 1, . . . , d}, where dk is the kth column, or atom, in the
dictionary and the unsupervised loss lu is defined as

lu (x, D) � min
α∈Rd
‖x − Dα‖2�2

+ λ1‖α‖�1 + λ2‖α‖2�2
, (2)

which is the optimal value of the sparse coding problem with
λ1 and λ2 being the regularizing parameters. While λ2 is
usually set to zero to exploit sparsity, using λ2 > 0 makes
the optimization problem in Eq. (2) strongly convex resulting
in a differentiable cost function [29]. The index u of lu is used
to emphasize that the above dictionary learning formulation is
an unsupervised method. It is well-known that one is often
interested in minimizing an expected risk, rather than the
perfect minimization of the empirical cost [44]. An efficient
online algorithm is proposed in [19] to find the dictionary D as
the minimizer of the following stochastic cost over the convex
set D:

g (D) � Ex [lu (x, D)] , (3)

where it is assumed that the data x is drawn from a finite
probability distribution p(x) which is usually unknown and
Ex [.] is the expectation operator with respect to the distribu-
tion p(x).

The trained dictionary can then be used to (sparsely) recon-
struct the input. The reconstruction error has been shown to be
a robust measure for classification tasks [10], [45]. Another use
of a given trained dictionary is for feature extraction where the
sparse code α�(x, D), obtained as a solution of (2), is used as
a feature vector representing the input signal x in the classical
expected risk optimization for training a classifier [29]:

min
w∈W

Ey,x
[
l
(
y,w,α�(x, D)

)]+ ν
2
‖w‖2�2

, (4)

where y is the ground truth class label associated with the
input x, w is model (classifier) parameters, ν is a regularizing
parameter, and l is a convex loss function that measures how
well one can predict y given the feature vector α� and classifier
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parameters w. The expectation Ey,x is taken with respect to
the probability distribution p(y, x) of the labeled data. Note
that in Eq. 4, the dictionary D is fixed and independent of the
given task and class label y. In task-driven dictionary learning,
on the other hand, a supervised formulation is used which
finds the optimal dictionary and classifier parameters jointly
by solving the following optimization problem [29]:

min
D∈D,w∈W

Ey,x
[
lsu

(
y,w,α�(x, D)

)]+ ν
2
‖w‖2�2

. (5)

The index su of convex loss function lsu is used to emphasize
that the above dictionary learning formulation is supervised.
The learned task-driven dictionary has been shown to result
in a superior performance compared to the unsupervised
setting [29]. In this setting, the sparse codes are indeed the
optimized latent features for the classifier.

B. Multimodal Joint Sparse Representation

Joint sparse representation provides an efficient tool for
feature-level fusion of sources of information [12], [14], [46].
Let S � {1, . . . , S} be a finite set of available modalities
and let xs ∈ R

ns
, s ∈ S, be the feature vector for the

sth modality. Also let Ds ∈ R
ns×d be the corresponding

dictionary for the sth modality. For now, it is assumed that
the multimodal dictionaries are constructed by collections of
the training samples from different modalities, i.e. j th atom of

dictionary Ds is the j th training sample from the sth modality.
Given a multimodal input {xs|s ∈ S}, shortly denoted as {xs},
an optimal sparse matrix A� ∈ R

d×S is obtained by solving
the following �12-regularized reconstruction problem:

argmin
A=[α1...αS]

1

2

S∑

s=1

‖xs − Dsαs‖2�2
+ λ‖A‖�12, (6)

where λ is a regularization parameter. Here αs is the
sth-column of A which corresponds to the sparse represen-
tation for the sth modality. Different algorithms have been
proposed to solve the above optimization problem [47], [48].
We use the efficient alternating direction method of multi-
pliers (ADMM) [49] to find A�. The �12 prior encourages
row sparsity in A�, i.e. it encourages collaboration among all
the modalities by enforcing the same dictionary atoms from
different modalities that present the same event, to be used
for reconstructing the inputs {xs}. An �11 term can also be
added to the above cost function to extend it to a more general
framework where sparsity can also be sought within the rows,
as will be discussed in Section III-D. It has been shown that
joint sparse representation can result in a superior performance
in fusing multimodal sources of information compared to
other information fusion techniques [45]. We are interested
in learning multimodal dictionaries under the joint sparsity
prior. This has several advantages over a fixed dictionary
consisting of training data. Most importantly, it can potentially
remove the redundant and noisy information by representing
the training data in a more compact form. Also using the
supervised formulation, one expects to find dictionaries that
are well-adapted to the discriminative tasks.

III. MULTIMODAL DICTIONARY LEARNING

In this section, online algorithms for unsupervised and
supervised multimodal dictionary learning are proposed.

A. Multimodal Unsupervised Dictionary Learning

Unsupervised multimodal dictionary learning is derived by
extending the optimization problem characterized in Eq. (3)
and using the joint sparse representation of (6) to enforce
collaborations among modalities. Let the minimum cost
l ′u ({xs, Ds}) of the joint sparse coding be defined as

min
A

1

2

S∑

s=1

‖xs − Dsαs‖2�2
+ λ1‖A‖�12 +

λ2

2
‖A‖2F , (7)

where λ1 and λ2 are the regularizing parameters. The addi-
tional Frobenius norm ‖.‖F compared to Eq. (6) guarantees
a unique solution for the joint sparse optimization problem.
In the special case when S = 1, optimization (7) reduces
to the well-studied elastic-net optimization [50]. By natural
extension of the optimization problem (3), the unsupervised
multimodal dictionaries are obtained by:

Ds� = argmin
Ds∈Ds

Exs
[
l ′u

({xs, Ds})] , ∀s ∈ S, (8)

where the convex set Ds is defined as

Ds � {D ∈ R
ns×d |‖dk‖�2 ≤ 1,∀k = 1, . . . , d}. (9)

It is assumed that data xs is drawn from a finite (unknown)
probability distribution p(xs). The above optimization prob-
lem can be solved using the classical projected stochastic
gradient algorithm [51] which consists of a sequence of
updates as follows:

Ds ← �Ds
[

Ds − ρt∇Ds l ′u
({xs

t , Ds})] , (10)

where ρt is the gradient step at time t and �D is the
orthogonal projector onto set D. The algorithm converges to a
stationary point for a decreasing sequence of ρt [51], [52].
A typical choice of ρt is shown in the next section. This
problem can also be solved using online matrix factorization
algorithm [26]. It should be noted that the while the stochas-
tic gradient descent does converge, it is not guaranteed to
converge to a global minimum due to the non-convexity of
the optimization problem [26], [44]. However, such stationary
point is empirically found to be sufficiently good for practical
applications [21], [28].

B. Multimodal Task-Driven Dictionary Learning

As discussed in Section II, the unsupervised setting does not
take into account the label of the training data, and the dic-
tionaries are obtained by minimizing the reconstruction error.
However, for classification tasks, the minimum reconstruction
error does not necessarily result in discriminative dictionaries.
In this section, a multimodal task-driven dictionary learning
algorithm is proposed that enforces collaboration among the
modalities both at the feature level using joint sparse repre-
sentation and the decision level using a sum of the decision
scores. We propose to learn the dictionaries Ds�,∀s ∈ S,



28 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 25, NO. 1, JANUARY 2016

and the classifier parameters ws�,∀s ∈ S, shortly denoted as
the set {Ds�,ws�}, jointly as the solution of the following
optimization problem:

min
{Ds∈Ds,ws∈W s}

f
({Ds,ws})+ ν

2

S∑

s=1

‖ws‖2�2
, (11)

where f is defined as the expected cumulative cost:

f
({Ds,ws}) = E

S∑

s=1

lsu(y,w
s ,αs�), (12)

where αs � is the sth column of the minimizer A�({xs, Ds}) of
the optimization problem (7) and lsu(y,w,α) is a convex loss
function that measures how well the classifier parametrized
by w can predict y by observing α. The expectation is taken
with respect to the joint probability distribution of the multi-
modal inputs {xs} and label y. Note that αs � acts as a hidden/
latent feature vector, corresponding to the input xs , which
is generated by the learned discriminative dictionary Ds�.
In general, lsu can be chosen as any convex function such that
lsu(y, ., .) is twice continuously differentiable for all possible
values of y. A few examples are given below for binary and
multiclass classification tasks.

1) Binary Classification: In a binary classification task
where the label y belongs to the set {−1, 1}, lsu can be
naturally chosen as the logistic regression loss

lsu(y,w,α
�) = log(1+ e−ywT α� ), (13)

where w ∈ R
d is the classifier parameters. Once the optimal

{Ds,ws} are obtained, a new multimodal sample {xs} is
classified according to sign of

∑S
s=1 ws T α� due to the uniform

monotonicity of
∑S

s=1 lsu . For simplicity, the intercept term
for the linear model is omitted here, but it can be easily
added. One can also use a bilinear model where, instead of
a set of vectors {ws}, a set of matrices {W s} are learned and
a new multimodal sample is classified according to the sign
of

∑S
s=1 xsT W sα�. Accordingly, the �2-norm regularization

of Eq. (11) needs to be replaced with the matrix Frobenius
norm. The bilinear model is richer than the linear model and
can sometimes result in better classification performance but
needs more careful training to avoid over-fitting.

2) Multiclass Classification: Multiclass classification can
be formulated using a collections of (independently learned)
binary classifiers in a one-vs-one or one-vs-all setting.
Multiclass classification can also be handled in an all-vs-all
setting using the softmax regression loss function. In this
scheme, the label y belongs to the set {1, . . . , K } and the
softmax regression loss is defined as

lsu(y,W,α�) = −
K∑

k=1

1{y=k} log

(
ewT

k α�

∑K
l=1 ewT

l α�

)

, (14)

where W = [w1 . . .wK ] ∈ R
d×K , and 1{.} is the indicator

function. Once the optimal {Ds,W s} are obtained, a new
multimodal sample {xs} is classified as

argmaxk∈{1,...,K }
S∑

s=1

(
ews

k
T αs�

∑K
l=1 ews

l
T αs�

)

. (15)

In yet another all-vs-all setting, the multiclass classification
task can be turned into a regression task in which the scaler
label y is changed to a binary vector y ∈ R

K , where the kth

coordinate corresponding to the label of {xs} is set to one
and the rest of the coordinates are set to zero. In this setting,
lsu is defined as

lsu(y,W,α�) = 1

2
‖y −Wα�‖2�2

, (16)

where W ∈ R
K×d . Having obtained the optimal {Ds,W s},

the test sample {xs} is then classified as

argmink∈{1,...,K }
S∑

s=1

‖qk − W sαs�‖2�2
, (17)

where qk is a binary vector in which its kth coordinate is one
and its remaining coordinates are zero.

In choosing between the one-vs-all setting, in which inde-
pendent multimodal dictionaries are trained for each class, and
the multiclass formulation, in which multimodal dictionaries
are shared between classes, a few points should be considered.
In the one-vs-all setting, the total number of dictionary atoms
is equal to d SK in the K -class classification while in the
multiclass setting the number is equal to d S. It should be noted
that in the multiclass setting a larger dictionary is generally
required to achieve the same level of performance to capture
the variations among all classes. However, it is generally
observed that the size of the dictionaries in multiclass setting
is not required to grow linearly as the number of classes
increases due to atom sharing among the different classes.
Another point to consider is that the class-specific dictionaries
of the one-vs-all approach are independent and can be obtained
in parallel. In this paper, the multiclass formulation is used to
allow feature sharing among the classes.

C. Optimization

The main challenge in optimizing (11) is the non-
differentiability of A�({xs, Ds}). However, it can be shown
that although the sparse coefficients A� are obtained by
solving a non-differentiable optimization problem, the func-
tion f ({Ds,ws}), defined in Eq. (12), is differentiable on
D1 × · · ·DS ×W1 × · · ·W S , and therefore its gradients are
computable. To find the gradient of f with respect to Ds ,
one can find the optimality condition of the optimization (7)
or use the fixed point differentiation [36], [38] and show
that A� is differentiable over its non-zero rows. Without loss
of generality, we assume that label y admits a finite set of
values such as those defined in Eqs. (13) and (14). The same
algorithm can be derived for the scenario when y belongs to a
compact subset of a finite-dimensional real vector space as in
Eq. (16). A couple of mild assumptions are required to prove
the differentiability of f which are direct generalizations of
those required for the single modal scenario [29] and are listed
below:

Assumption (A): The multimodal data (y, {xs}) admit a
probability density p with compact support.

Assumption (B): For all possible values of y, p(y, .) is
continuous and lsu(y, .) is twice continuously differentiable.
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The first assumption is reasonable when dealing with the
signal/image processing applications where the acquired val-
ues obtained by the sensors are bounded. Also all the given
examples for lsu in the previous section satisfy the second
assumption. Before stating the main proposition of this paper
below, the term active set is defined.

Definition 1 (Active Set): The active set 
 of the
solution A� of the joint sparse coding problem (7) is
defined to be


 = { j ∈ {1, . . . , d} : ‖a�j→‖�2 �= 0}, (18)

where a�j→ is the j th row of A�.
Proposition 2 (Differentiability and Gradients of f ): Let

λ2 > 0 and the assumptions (A) and (B) hold. Let
ϒ = ∪ j∈
ϒ j where ϒ j = { j, j + d, . . . , j + (S − 1)d}.
Let the matrix D̂ ∈ R

n×|ϒ | be defined as

D̂ =
[

D̂1 . . . D̂|
|
]
, (19)

where D̂ j = blkdiag(d1
j , . . . , d S

j ) ∈ R
n×S ,∀ j ∈ 
, is

the collection of the j th active atoms of the multimodal
dictionaries, ds

j is the j th active atom of Ds , blkdiag is the
block diagonalization operator, and n = ∑

s∈S ns . Also let
matrix � ∈ R

|ϒ |×|ϒ | be defined as

� = blkdiag(�1, . . . ,�|
|), (20)

where � j = 1
‖a�j→‖�2 I − 1

‖a�j→‖�2 3 a�j→
T a�j→ ∈ R

S×S,∀ j ∈ 
,

and I is the identity matrix. Then, the function f defined in
Eq. (12) is differentiable and ∀s ∈ S,

∇ws f = E
[∇ws lsu

(
y,ws ,αs�)] ,

∇Ds f = E
[(

xs − Dsαs�)βT
s̃ − Dsβs̃α

s�T
]
, (21)

where s̃ = {s, s + S, . . . , s + (d − 1)S} and β ∈ R
d S is

defined as

βϒc = 0,βϒ = ( D̂T D̂ + λ1�+ λ2 I)−1 g, (22)

in which g = vec(∇A�
→
T

∑S
s=1 lsu(y,ws,αs �)), ϒc =

{1, . . . , d S} \ϒ , βϒ ∈ R
|ϒ | is formed of those rows of β

indexed by ϒ , and vec(.) is the vectorization operator.
The proof of this proposition is given in the Appendix.

A stochastic gradient descent algorithm to find the opti-
mal dictionaries {Ds�} and classifiers {ws�} is described in
Algorithm 1. The stochastic gradient descent algorithm is
guaranteed to converge under a few assumptions that are
mildly stricter than those in this paper (requires three-times
differentiability) [53]. To further improve the convergence of
the proposed stochastic gradient descent algorithm, a classic
mini-batch strategy is used in which a small batch of the
training data are sampled in each batch, instead of 1 sample,
and the parameters are updated using the averaged updates
of the batch. This has additional advantage in which D̂T D̂
and the corresponding factorization of the ADMM for solv-
ing the sparse coding problem can be computed once for
the whole batch. For the special case when S = 1, the
proposed algorithm reduces to the single-modal task-driven
dictionary learning algorithm in [29]. Selecting λ2 in Eq. (7)

Algorithm 1 Stochastic Gradient Descent Algorithm for
Multimodal Task-Driven Dictionary Learning

to be strictly positive guarantees the linear equations of (22)
to have a unique solution. In other words, it is easy to
show that the matrix ( D̂T D̂ + λ1� + λ2 I) is positive def-
inite given λ1 ≥ 0, λ2 > 0. However, in practice it is
observed that the solution of the joint sparse representation
problem is numerically stable since D̂ becomes full-column
rank when sparsity is sought with a sufficiently large λ1,
and λ2 can be set to zero. It should be noted that the
assumption of D̂ being a full column rank matrix is a
common assumption in sparse linear regression [26]. As in
any non-convex optimization algorithm, if the algorithm is not
initialized properly, it may yield poor performance. Similar
to [29], the dictionaries {Ds} are initialized by the solution
of the unsupervised multimodal dictionary learning algorithm.
Upon assignment of the initial dictionaries, parameters {ws}
of the classifiers are set by solving (11) only with respect
to {ws} which is a convex optimization problem.

D. Extension

We now present an extension of the proposed algorithm
with a more flexible structure on the sparse codes. Joint
sparse representation relies on the fact that all the modalities
share the same sparsity pattern in which, if a multimodal
training sample is selected to reconstruct the input, then all
the modalities within that training sample are active. However,
this group sparsity constraint, imposed by the �12 norm, may
be too stringent for some applications [45], [54], for example
in the scenarios where the modalities have different noise
levels or when the heterogeneity of the modalities imposes
different sparsity levels for the reconstruction task. A natural
relaxation to the joint sparsity prior is to let the multimodal
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inputs not share the full active set which can be achieved by
replacing the �12 norm with a combination of the �12 and �11
norms (�12−�11 norm). Following the same formulation as in
Section III-B, let A�({xs, Ds}) in Eq. (11) be the minimizer
of the following optimization problem:

min
A

1

2

S∑

s=1

‖xs − Dsαs‖2�2

+ λ1‖A‖�12 + λ′1‖A‖�11 +
λ2

2
‖A‖2F , (23)

where λ′1 is the regularization parameter for the added �11
norm and other terms are the same as those in Eq. (7). The
selection of λ1 and λ′1 influences the sparsity pattern of A�.
Intuitively, as λ1/λ

′
1 increases, the group constraint becomes

dominant and more collaboration is enforced among the
modalities. On the other hand, small values of λ1/λ

′
1 encour-

age independent reconstructions across modalities. In the
extreme case of λ1 being set to zero, the above optimization
problem is separable across the modalities. The above formu-
lation brings added flexibility with the cost of one additional
design parameter which is obtained in this paper using cross-
validation.

Here we present how the Algorithm 1 should be modified to
solve the supervised multimodal dictionary learning problem
under the mixed �12 − �11 constraint. The proof for obtaining
the algorithm is similar to the one for the �12 norm and is
briefly discussed in the appendix. In Algorithm 1, let A� be
the solution of the optimization problem (23) and let 
 be the
set of its active rows. Let � ⊆ {1, . . . , S|
|} be the set of
indices with non-zero entries in vec(A�
→

T ); i.e. it consists
of non-zero entries of the active rows of A�. Let D̂, �, and g
be the same as those defined in algorithm 1. Then, β ∈ R

d S

is updated as

βϒc = 0, βϒ = ( D̂T
� D̂� + λ1��→,� + λ2 I)−1 g�,

where ϒ is the set of indices with non-zero entries in vec(A�
T
)

and ϒc = {1, . . . , d S} \ϒ . Note that ϒ is defined over the
entire matrix A� while � is defined over its active rows. The
rest of the algorithm remains unchanged.

IV. RESULTS AND DISCUSSION

The performance of the proposed multimodal dictionary
learning algorithms are evaluated on the AR face data-
base [55], the CMU Multi-PIE dataset [56], the IXMAS action
recognition dataset [57] and the WVU multimodal dataset [58].
For these algorithms, ls is chosen to be the quadratic loss
of Eq. (16) to handle the multiclass classification. In our
experiments, it is observed that using the multiclass formu-
lation achieves similar classification performance compared to
using the logistic loss formulation of Eq. (13) in the one-vs-
all setting. Regularization parameters λ1 and ν are selected
using cross-validation in the sets {0.01+ 0.005k|k ∈ {−3, 3}}
and {10−2, ..., 10−9}, respectively. It is observed that when
the number of dictionary atoms is kept small compared to
the number of training samples, ν can be arbitrarily set to
a small value, e.g. ν = 10−8, for the normalized inputs.

Fig. 2. Extracted modalities from a sample in AR dataset.

TABLE I

CORRECT CLASSIFICATION RATES OBTAINED USING THE

WHOLE FACE MODALITY FOR THE AR DATABASE

When the mixed �12 − �11 norm is used, the regularization
parameters λ1 and λ′1 are selected by cross-validation in the
set {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05}. The parameter
λ2 is set to zero in most of the experiments except when using
the �11 prior in Section IV-B1 where a small positive value
for λ2 was required for convergence. The learning parameter
ρt is selected according to the heuristic proposed in [29],
i.e. ρt = min

(
ρ, ρ t0

t

)
where ρ and t0 are constants. This

results in a constant learning rate during the first t0 iterations
and an annealing strategy of 1/t for the rest of the iterations.
It is observed that choosing t0 = T/10, where T is the total
number of iterations over the whole training set, works well for
all of our experiments. Different values of ρ are tried during
the first few iterations and the one that results in minimum
error on a small validation set is retained. T is set equal
to be 20 in all the experiments. We observed empirically
that the selection of these parameters is quite robust and
small variations in their values do not affect considerably the
obtained results. We also used a mini-batch size of 100 in all
our experiments. It should also be noted that design parameters
for the competitive algorithms are also selected using cross-
validation for a fair comparison.

A. AR Face Recognition

The AR dataset consists of faces under different poses, illu-
mination and expression conditions, captured in two sessions.
A set of 100 users are used, each consisting of seven images
from the first session as training samples and seven images
from the second session as test samples. A small randomly
selected portion of the training set, 50 out of 700, is used as
validation set for optimizing the design parameters. Fusion is
taken on five modalities which are the left and right periocular,
nose, mouth, and the whole face modalities, similar to the
setup in [14] and [45]. A test sample from the AR dataset
and the extracted modalities are shown in Fig. 2. Raw pixels
are first PCA-transformed and then normalized to have zero
mean and unit l2 norm. The dictionary size for the dictionary
learning algorithms is chosen to be four per class, resulting in
dictionaries of overall 400 atoms.

1) Classification Using the Whole Face Modality: The
classification results using the whole face modality are shown
in Table I. The results are obtained using linear support vector
machine (SVM) [60], multiple kernel learning (MKL) [59],
logistic regression (LR) [60], sparse representation classifica-
tion (SRC) [10], and unsupervised and supervised dictionary
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TABLE II

COMPARISON OF THE �11 AND �12 PRIORS FOR MULTIMODAL
CLASSIFICATION. MODALITIES INCLUDE 1. LEFT PERIOCULAR,

2. RIGHT PERIOCULAR, 3. NOSE, 4. MOUTH, AND 5. FACE

learning algorithms (UDL and SDL) [29]. For the MKL
algorithm, linear, polynomial, and RBF kernels are used. The
UDL and SDL are equipped with the quadratic classifier (16).
The SDL results in the best performance.

2) �11 vs �12 Sparse Priors for Multimodal Classification:
A straightforward way of utilizing the single-modal dictionary
learning algorithms, namely UDL and SDL, for multimodal
classification is to train independent dictionaries and classifiers
for each modality and then combine the individual scores for
a fused decision. This way of fusion is equivalent to using the
�11 norm on A, instead of �12 norm, in Eq. (7) (or setting λ1
to zero in Eq. (23)) which does not enforce row sparsity in the
sparse coefficients. We denote the corresponding unsupervised
and supervised multimodal dictionary learning algorithms
using only the �11 norm as UMDL�11 and SMDL�11 , respec-
tively. Similarly, the proposed unsupervised and supervised
multimodal dictionary learning algorithms using the �12 norm
are denoted as UMDL�12 and SMDL�12 . Table II compares the
performance of the multimodal dictionary learning algorithms
under the two priors. As shown, the proposed algorithms with
�12 prior, which enforces collaborations among the modalities,
have better fusion performances than those with �11 prior.
In particular, SMDL�12 has significantly better performance
than the SMDL�11 for fusion of the first and second (left and
right periocular) modalities. This agrees with the intuition that
these modalities are highly correlated and learning the mul-
timodal dictionaries jointly indeed improves the recognition
performance.

3) Comparison With Other Fusion Methods: The perfor-
mances of the proposed fusion algorithms under different
sparsity priors are compared with those of the several state-
of-the-art decision-level and feature-level fusion algorithms.
In addition to �11 and �12 priors, we evaluate the proposed
supervised multimodal dictionary learning algorithm with the
mixed �12 − �11 norm which is denoted as SMDL�12−�11.
One way to achieve decision-level fusion is to train indepen-
dent classifiers for each modality and aggregate the outputs
by either adding the corresponding scores of each modality
to come up with the fused decision, or using the major-
ity voting among the independent decisions obtained from
different modalities. These approaches are abbreviated with
Sum and Maj, respectively, and are used with SVM and LR
classifiers for decision-level fusion. The proposed methods
are also compared with feature-level fusion methods includ-
ing the joint sparse representation classifier (JSRC) [14],
joint dynamic sparse representation classifier (JDSRC) [7],
and MKL. For the JSRC and JDSRC, the dictionary consists of
all the training samples. Table III compares the performance of

our proposed algorithms with the other fusion algorithms for
the AR dataset. As expected, the multimodal fusion results in
significant performance improvement compared to using only
the whole face modality. Moreover, the proposed SMDL�12

and SMDL�12−�11 achieve the superior performances.
4) Reconstructive vs Discriminative Formulation With Joint

Sparsity Prior: Comparison of the algorithms with joint spar-
sity priors in Table III indicates that the proposed SMDL�12

algorithm equipped with dictionaries of size 400 achieves
relatively better results than the JSRC that uses dictionaries
of size 700. The results confirm the idea that by using the
supervised formulation, compared to using the reconstruction
error, one can achieve better classification performance even
with more compact dictionaries. For further comparison, an
experiment is performed in which the correct classification
rates of the reconsturtive and discriminative formulations are
compared when the their dictionary sizes are kept equal. For
a given number of dictionary atoms per class d , dictionaries
of JSRC are thus constructed by random selection of d train
samples from different classes. This is different from the
standard JSRC, utilized for the results in Table III, in which all
the training samples are used to construct the dictionaries [14].
Moreover, to utilize all the available training samples for the
reconstructive approach and make a more meaningful compar-
ison, we use the unsupervised multimodal dictionary learning
algorithm of Eq. (8) to train class-specific sub-dictionaries
which minimizes the reconstruction error in approximating
the training samples for a given class. These sub-dictionaries
are then stacked to construct the final dictionaries, similar to
the approach in [22]. We call this algorithm as JSRC-UDL
to indicate that the dictionaries are indeed learned by the
reconstructive formulation. Table IV summarizes the recog-
nition performance of JSRC and JSRC-UDL in comparison
to the proposed SMDL�12 , which enjoys a discriminative
formulation, for different number of dictionary atoms per class.
As seen, SMDL�12 outperforms the reconstructive approaches,
especially when the number of dictionary is chosen to be
relatively small. This is the main advantage of SMDL�12

compared to the reconstructive approaches in which more
compact dictionaries can be used for the recognition task that
is important for the real-time applications. It is clear that
reconstructive model can only result in comparable perfor-
mance when the dictionary size is chosen to be relatively
large. On the other hand, the SMDL�12 algorithm may get
over-fitted with the large number of dictionary atoms. In terms
of computational expense at test time, as discussed in [14], the
time required to solve the optimization problem (7) is expected
to be linear in the dictionary size using the efficient ADMM if
the required matrix factorization is cashed beforehand. Typical
computational time to solve (7) for a given multimodal test
sample is shown in Fig. 3 for different dictionary sizes.
As expected, it increases linearly as the size of the dictionary
increases. This illustrates the advantage of the SMDL�12

algorithm that results in the state-of-the-art performance with
more compact dictionaries.

5) Classification in Presence of Disguise: The AR dataset
also contains 600 occluded samples per session, overall
1200 images, where the faces are disguised using sun glasses
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TABLE III

MULTIMODAL CLASSIFICATION RESULTS OBTAINED FOR THE AR DATASETS

TABLE IV

COMPARISON OF THE RECONSTRUCTIVE-BASED (JSRC AND JSRC-UDL)
AND THE PROPOSED DISCRIMINATIVE-BASED (SMDL�12 )

CLASSIFICATION ALGORITHMS OBTAINED USING THE

JOINT SPARSITY PRIOR FOR DIFFERENT
NUMBERS OF DICTIONARY ATOMS PER

CLASS ON THE AR DATASET

Fig. 3. Computational time required to solve the optimization problem (7)
for a given test sample.

TABLE V

COMPARISON OF THE SUPERVISED MULTIMODAL DICTIONARY LEARNING

ALGORITHMS WITH DIFFERENT SPARSITY PRIORS FOR FACE
RECOGNITION UNDER OCCLUSION ON THE AR DATASET

or scarf. Here we use these additional images to evaluate the
robustness of the proposed algorithms. Similar to previous
experiments, images from session 1 are used as training
samples and images from session 2 are used as test data.
Classification performance under different sparsity priors are
shown in Table V and as expected, the SMDL�12−�11 achieves
the best performance. In presence of occlusion, some of the
modalities are less coupled and the joint sparsity prior among
all the modalities may be too stringent as is also reflected in
the results.

B. Multi-View Recognition

1) Multi-View Face Recognition: In this section, the
performance of the proposed algorithm is evaluated for
multi-view face recognition using the CMU Multi-PIE

Fig. 4. Configurations of the cameras and sample multi-view images from
CMU Multi-Pie dataset.

dataset [56]. The dataset consists of a large number
of face images under different illuminations, viewpoints,
and expressions which are recorded in four sessions over
the span of several months. Subjects were imaged using
13 cameras at different view-angles of {0°,±15°,±30°,
±45°,±60°,±75°,±90°} at head height. Illustrations for the
multiple camera configurations, as well as sample multi-view
images are shown in Fig. 4. We use the multi-view face images
for 129 subjects that are present in all sessions. The face
regions for all the poses are extracted manually and resized
to 10 × 8. Similar to the protocol used in [61], images from
session 1 at views {0°,±30°,±60°,±90°} are used as training
samples. Test images are obtained from all available view
angles from session 2 to have a more realistic scenario in
which not all the testing poses are available in the training
set. To handle multi-view recognition using the multi-modal
formulation, we divide the available views into three sets
of {−90°,−75°,−60°,−45°}, {−30°,−15°, 0°, 15°, 30°, },
{45°, 60°, 75°, 90°}, each of which forms a modality. A test
sample is then constructed by randomly selecting an image
from each modality. Two thousand test samples are generated
in this way. The dictionary size for the dictionary learning
algorithms is chosen to have two atoms per class.

The classification results obtained using individual modali-
ties are shown in Table VI. As expected, better classification
performance is obtained using the frontal view. Results of
the multi-view face recognition is shown in Table VII. The
proposed supervised dictionary learning algorithms outper-
form the corresponding unsupervised methods and other fusion
algorithms. The SMDL�12−�11 results in the state-of-the-art
performance. It is consistently observed in all the studied
applications that the multimodal dictionary learning algorithm
with the mixed prior results in better performance than those
with individual �12 or �12 prior. However, it requires one
additional regularizing parameter to be tuned. For the rest of
the paper, the performance of the proposed dictionary learning
algorithms are only reported under the individual priors.
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TABLE VI

CORRECT CLASSIFICATION RATES OBTAINED USING INDIVIDUAL
MODALITIES IN THE CMU MULTI-PIE DATABASE

TABLE VII

CORRECT CLASSIFICATION RATES (CCR) OBTAINED USING MULTI-VIEW

IMAGES ON THE CMU MULTI-PIE DATABASE

Fig. 5. Sample frames of the IXMAS dataset from 5 different views.

2) Multi-View Action Recognition: This section presents
the results of the proposed algorithm for the purpose of
multi-view action recognition using the IXMAS dataset [57].
Each action is recorded simultaneously by cameras from five
different viewpoints, which are considered as modalities in
this experiment. A multimodal sample of the IXMAS dataset
is shown in Fig. 5. The dataset contains 11 action classes
where each action is repeated three times by each of the ten
actors, resulting in 330 sequences per view. The dataset include
actions such as check watch, cross arms, and scratch head.
Similar to the work in [57], [62], and [63], leave-one-actor-
out cross-validation is performed and samples from all five
views are used for training and testing.

We use dense trajectories as features which are generated
using the publicly available code [63] in which a 2000 word
codebook is generated by a random subset of these tra-
jectories and the k-means clustering as in [64]. Note that
Wang et al. [63] used HOG, HOF, and MBH descriptors in
addition to the dense trajectories. However, here only dense
trajectory descriptors are used. The number of dictionary
atoms for the proposed dictionary learning algorithms are
chosen to be 4 atoms per class, resulting in a dictionary
of 44 atoms per view. The five dictionaries for JSRC are
constructed using all the training samples, thus each dictionary,
corresponding to a different view, has 297 atoms.

Table VIII shows average accuracies over all classes
obtained using the existing algorithms and the state of the
art algorithms. The Wang et al. 1 [63] algorithm uses only
the dense trajectories as feature, similar to our setup. The
Wang et al. 2 [63] algorithm, however, uses HOG, HOF, MBH
descriptors and the spatio-temporal pyramids in addition to
the trajectory descriptor. The results show that the proposed

TABLE VIII

CORRECT CLASSIFICATION RATES (CCR) OBTAINED FOR MULTI-VIEW
ACTION RECOGNITION ON THE IXMAS DATABASE

Fig. 6. The confusion matrix obtained by the SMDL�12 algorithm on the
IXMAS dataset. The actions are 1: check watch, 2: cross arms, 3: scratch
head, 4: sit down, 5: get up, 6: turn around, 7: walk, 8: wave, 9: punch,
10: kick and 11: pick up.

SMDL�12 algorithm achieves the superior performance while
the SMDL�11 algorithm achieves the second best perfor-
mance. This indicates that sparse coefficients generated by
the trained dictionaries are indeed more discriminative than
the engineered features. The resulting confusion matrix of the
SMDL�12 algorithm is shown in Fig. 6.

C. Multimodal Biometric Recognition

The WVU dataset consists of different biometric modalities
such as fingerprint, iris, palmprint, hand geometry, and voice
from subjects of different age, gender, and ethnicity. It is a
challenging data set, as many of the samples are corrupted
with blur, occlusion, and sensor noise. In this paper, two irises
(left and right) and four fingerprint modalities are used. The
evaluation is done on a subset of 202 subjects which have more
than four samples in all modalities. Samples from different
modalities are shown in Fig. 1. The training set is formed by
randomly selecting four samples from each subject, overall
808 samples. The remaining 509 samples are used for testing.
The features used here are those described in [14] which are
further PCA-transformed. The dimension of the input data
after preprocessing are 178 and 550 for the fingerprint and iris
modalities, respectively. All inputs are normalized to have zero
mean and unit l2 norm. The number of dictionary atoms for
the dictionary learning algorithms are chosen to be 2 per class,
resulting in dictionaries of overall 404 atoms. The dictionaries
for JSRC and JDSRC are constructed using all the training
samples.
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TABLE IX

CORRECT CLASSIFICATION RATES OBTAINED USING INDIVIDUAL MODALITIES IN THE WVU DATABASE

TABLE X

MULTIMODAL CLASSIFICATION RESULTS

OBTAINED FOR THE WVU DATASET

The classification results obtained using individual modal-
ities on 5 different splits of the data into training and test
samples are shown in Table IX. As shown, finger 2 is the
strongest modality for the recognition task. The SRC and
SDL algorithms achieve the best results. It should be noted
that dictionary size of SRC is twice of that in SDL.

For multimodal classification, we consider fusion of finger-
prints, fusion of Irises, and fusion of all the modalities. Table X
summarizes the correct classification rates of several fusion
algorithms using 4 fingerprints, 2 Irises, and all the modalities,
obtained on 5 different training and test splits. Fig. 7 shows the
corresponding cumulative matched score curves (CMC) for the
competitive methods. CMC is a performance measure, similar
to ROC, which is originally proposed for biometric recognition
systems [67]. As seen, the SMDL�12 algorithm outperforms
the competitive algorithms and achieves the state-of-the-art
performance using the Irises and all modalities with the rank
one recognition rate of 83.77% and 99.10%, respectively.
Using the fingerprints, the performance of the SMDL�12 is
close to the best performing algorithm, which is JSRC. The
results suggest that using joint sparsity prior indeed improves
the multimodal classification performance by extracting the
coupled information among the modalities.

Comparison of the algorithms with the joint sparsity priors
indicates that the proposed SMDL�12 algorithm equipped with
dictionaries of size 404 achieves comparable, and mostly
better, results than the JSRC that uses dictionary of size 808.
Similar to the experiment in Section IV-A, we compared the
reconstructive and discriminating algorithms that are based
on the joint sparsity prior when the number of dictionary
atoms per class is kept equal. Fig. 8 summarizes the results of
the different fusion scenarios. As seen, SMDL�12 significantly

Fig. 7. CMC plots obtained by fusing the Irises (top), fingerprints (middle),
and all modalities (below) on the WVU dataset.

outperforms JSRC and JSRC-UDL when the number of dic-
tionary atoms per class is chosen to be 1 or 2. The results are
consistent with that of Table IV for the AR dataset indicating
that the proposed supervised formulation equipped with more
compact dictionaries achieves superior performance than that
of the reconstructive formulation for the studied biometric
recognition applications.
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Fig. 8. Comparison of the reconstructive-based (JSRC and JSRC-UDL)
and the proposed discriminative-based (SMDL�12 ) classification algorithms
obtained using the joint sparsity prior for different numbers of dictionary
atoms per class on the WVU dataset.

V. CONCLUSIONS AND FUTURE WORKS

The problem of multimodal classification using sparsity
models was studied and a task-driven formulation was pro-
posed to jointly find the optimal dictionaries and classifiers
under the joint sparsity prior. It was shown that the resulting
bi-level optimization problem is smooth and an stochastic
gradient descent algorithm was proposed to solve the cor-
responding optimization problem. The algorithm was then
extended for a more general scenario where the sparsity prior
was the combination of the joint and independent sparsity
constraints. The simulation results on the studied image clas-
sification applications suggest that while the unsupervised
dictionaries can be used for feature learning, the sparse
coefficients generated by the proposed multimodal task-driven
dictionary learning algorithms are usually more discriminative
and therefore can result in improved multimodal classification
performance. It was also shown that, compared to the sparse-
representation classification algorithms (JSRC, JDSRC, and
JSRC-UDL), the proposed algorithms can achieve significantly
better performance when compact dictionaries are utilized.

In the proposed dictionary learning framework which uti-
lizes the stochastic gradient algorithm, the learning rate should
be carefully chosen for convergence of the algorithm. In out
experiments, a heuristic was used to control the learning
rate. Topics of future research include developing of better
optimization tools for fast convergence guarantee in this non-
convex setting. Moreover, developing task-driven dictionary
learning algorithms under other proposed structured sparsity
priors for multimodal fusion such as the tree-structured spar-
sity prior [45], [68] is another future research topic. Future
research will also include adapting of the proposed algo-
rithms for other multimodal tasks such as multimodal retrieval,
multimodal action recognition using Kinect data, and image
super-resolution.

APPENDIX

The proof of Proposition 2 is presented using the following
two results.

Lemma 3 (Optimality Condition): The matrix A� =[
α1� . . .αS�

]
=

[
a�1→

T . . . a�d→
T
]T ∈ R

d×S is a minimizer

of (7) if and only if , ∀ j ∈ {1, . . . , d},
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

[
d1

j
T

(
x1 − D1α1�

)
. . . d S

j
T

(
xS − DSαS�

)]

− λ2a�j→ = λ1
a�j→
‖a�j→‖�2

, if ‖a�j→‖�2 �= 0,

‖
[

d1
j
T

(
x1 − D1α1�

)
. . . d S

j
T

(
xS − DSαS�

)]

− λ2a�j→‖�2 ≤ λ1, otherwise.

(24)

Proof: The proof follows directly from the subgradient
optimality condition of (7), i.e.

0 ∈ {
[

D1T
(

D1α1� − x1
)
. . . DST

(
DSαS� − xS

)]

+ λ2 A� + λ1 P : P ∈ ∂‖A�‖�12},
where ∂‖A�‖�12 denotes the subgradient of the �12 norm evalu-
ated at A�. As shown in [69], the subgradient is characterized,
for all j ∈ {1, . . . , d}, as p j→ = a j→

‖a j→‖�2 if ‖a j→‖�2 > 0, and
‖ p j→‖�2 ≤ 1 otherwise.

Before proceeding to the next proposition, we need to define
the term transition point. For a given {xs}, let 
λ be the active
set of the solution A� of (7) when λ1 = λ. Then λ is defined
to be a transition point of {xs} if 
λ+ε �= 
λ−ε ,∀ε > 0.

Proposition 4 (Regularity of A�): Let λ2 > 0 and assump-
tion (A) be hold. Then,

Part 1: A�({xs, Ds}) is a continuous function of {xs}
and {Ds}.

Part 2: If λ1 is not a transition point of {xs}, then the
active set 
 of A�({xs, Ds}) is locally constant with respect
to both {xs} and {Ds}. Moreover, A�({xs, Ds}) is locally
differentiable with respect to {Ds}.

Part 3: ∀λ1 > 0, ∃ a set Nλ1 of measure zero in which
∀{xs} ∈ {Rns }\Nλ1 , λ1 is not any of the transition points
of {xs}.

Proof: Part 1. In the special case of S = 1, which
is equivalent to an elastic net problem, this has already
been shown [19], [70]. Our proof follows similar steps.
Assumption (A) guarantees that A� is bounded. Therefore, we
can restrict the optimization problem (7) to a compact subset
of R

d×S . Since A� is unique (imposed by λ2 > 0) and the
cost function of (7) is continuous in A and each element of
the set {xs, Ds} is defined over a compact set, A�({xs, Ds})
is a continuous function of {xs} and {Ds}.

Part 2 and Part 3. These statements are proved here by
converting the optimization problem (7) into an equivalent
group lasso problem [71] and using some recent results on
it. Let the matrix D′j = blkdiag(d1

j , . . . , d S
j ) ∈ R

n×S ,∀ j ∈
{1, . . . , d}, be the block-diagnoal collection of the j th atoms
of the dictionaries. Also let D′ = [

D′1 . . . D′d
] ∈ R

n×Sd ,

x ′ =
[

x1T
. . . xST

]T ∈ R
n , and a′ = [a1→ . . . ad→]T ∈ R

Sd .
Then (7) can be rewritten as

min
A

1

2
‖x ′ − D′a′‖2�2

+ λ1

d∑

j=1

‖a j→‖�2 +
λ2

2
‖A‖2F . (25)

This can be further converted into the standard group lasso:

min
A

1

2
‖x ′′ − D′′a′‖2�2

+ λ1

d∑

j=1

‖a j→‖�2, (26)
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where x ′′ =
[

x ′T 0T
]T ∈ R

n+Sd and D′′ =
[

D′T
√
λ2 I

]T ∈
R
(n+Sd)×Sd. It is clear that the matrix D′′ is full column

rank. The rest of the proof follows directly from the results
in [72].

Proof of Proposition 2: The above proposition implies that
A� is differentiable almost everywhere. We know prove the
proposition 2. It is easy to show that f is differentiable with
respect to ws due to the assumption (A) and the fact that
lsu is twice differentiable. f is also differentiable with respect
to Ds given assumption (A), twice differentiability of lsu , and
the fact that A� is differentiable everywhere except on a set
of measure zero (Prop 4). We obtain the derivative of f with
respect to Ds using the chain rule. The steps are similar to
those taken for �1-related optimization in [36], though a bit
more involved. Since the active set is locally constant, using
the optimality condition (24), we can implicitly differentiate
A�({xs, Ds}) with respect to Ds . For the non-active rows
of A�, the differential is zero. On the active set 
, (24) can
be rewritten as

[
D1



T
(

x1 − D1α1�
)
. . . DS



T

(
xS − DSαS�

)]

− λ2 A�
→ = λ1

[
a�1→

T

‖a�1→‖�2

. . .
a�N→

T

‖a�N→‖�2

]T

, (27)

where N is the cardinality of 
 and D
 and A�
→ are the
matrices consisting of active columns of D and active rows
of A�, respectively. For the rest of the proof, we only work
on the active set and the symbols 
 and � are dropped for
the ease of notation. Taking the partial derivative from both
sides of (27) with respect to ds

i j , the element in the i th-row
and j th-column of Ds , and taking its transpose we have:

λ2
∂ AT

∂ds
i j
+

⎡

⎣
0

(Dsαs − xs)T Es
i j + αs T Es

i j
T Ds

0

⎤

⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂α1T

∂ds
i j

D1T
D1

...

∂αS T

∂ds
i j

DST
DS

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= −λ1

[

�1
∂aT

1→
∂ds

i j
. . .�N

∂aT
N→
∂ds

i j

]

,

where Es
i j ∈ R

ns×N is a matrix with zero elements except the
element in the i th row and j th column which is one and

�k = 1

‖ak→‖�2

(

I − 1

‖ak→‖2�2

aT
k→ak→

)

∈ R
S×S,

∀k ∈ {1, . . . , N}. It is easy to check that �k ≥ 0. Vectorizing
the both sides and factorizing results in

vec

(
∂ AT

∂ds
i j

)

= P

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
(xs − Dsαs)T es

i j 1
− αs T Es

i j
T ds

1
...

(xs − Dsαs)T es
i j N
− αs T Es

i j
T ds

N

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(28)

where es
i j k

is the kth column of Es
i j , P =

(
D̂T D̂ + λ1�+ λ2 I

)−1
, and D̂ and � are defined in

Eqs. (19) and (20), respectively. Further simplifying Eq. (28)
yields

vec

(
∂ AT

∂ds
i j

)

= Ps̃ Es
i j

T (
xs − Dsαs)− Ps̃ ds

i→
Tαs

j ,

where s̃ is defined in Eq. (21). Using the chain rule, we have

∂ f

∂ds
i j
= E

[

gT vec

(
∂ AT

∂ds
i j

)]

,

where g = vec

(
∂

∑S
s=1 lsu

∂AT

)

. Therefore, derivative with respec-

tive to the active columns of dictionary Ds is

∂ f

∂Ds = E

⎡

⎢
⎢
⎣

gT Ps̃

(
Es

11
T (xs − Dsαs)− ds

1→
Tαs

1

)

...
gT Ps̃

(
Es

ns 1
T (xs − Dsαs)− ds

ns→
Tαs

1

)

. . . gT Ps̃

(
Es

1N
T (xs − Dsαs )− ds

1→
Tαs

N

)

...
. . . gT Ps̃

(
Es

ns N
T (xs − Dsαs )− ds

ns→
T αs

N

)

⎤

⎥
⎥
⎦

= E
[(

xs − Dsαs) gT Ps̃ − Ds PT
s̃ gαs T

]
.

Setting β = PT g ∈ R
N S and noting that βs̃ = PT

s̃ g complete
the proof. �

Derivation of the algorithm with the mixed �12 − �11 prior
can be obtained similarly. For each active row j ∈ 
 of A�,
the solution of the optimization problem (23) with the mixed
prior, let � j ⊆ S be the set of active modalities which have
non-zeros entries. Then the optimality condition for the active
row j is

[
d1

j
T

(
x1 − D1α1�

)
. . . d S

j
T

(
xS − DSαS�

)]

� j

− λ2a�j→ = λ1

a�j→,� j

‖a�j→‖�2

+ λ′1 sign
(

a�j→,� j

)
.

Then, the algorithm for the mixed prior can be obtained by
differentiating the optimality condition, following similar steps
as was shown for the �12 prior.
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