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a b s t r a c t

This paper addresses estimation of battery state-of-charge (SOC) from the joint perspectives of dynamic
data-driven and model-based recursive analysis. The proposed SOC estimation algorithm is built upon
the concepts of symbolic time series analysis (STSA) and recursive Bayesian filtering (RBF) that is a gen-
eralization of the conventional Kalman filtering. A special class of Markov models, called �D-Markov
(pronounced as cross D-Markov) machine, is constructed from a symbolized time-series pair of input cur-
rent and output voltage. A measurement model of SOC is developed based on the features obtained from
the �D-Markov machine. Then, a combination of this measurement model and a low-order model of the
SOC process dynamics is used for construction of the RBF. The proposed algorithm of SOC estimation has
been validated on (approximately periodic) experimental data of (synchronized) current-voltage time
series, generated from a commercial-scale lead-acid battery system.

� 2016 Published by Elsevier Ltd.
1. Introduction

The state-of-charge (SOC) indicates the maximum charge that
can be drawn from a battery at a given instant of time; SOC is a
critical system state for battery operation from both safety and
performance perspectives. Since the state of the art in battery tech-
nology does not permit direct measurements of SOC, the challenge
is to perform accurate and reliable estimation of SOC in real time
based on the time series of input current and output voltage data.
Many model-based filtering techniques have been reported on the
topic of SOC estimation [1,2]. In general, state-space (e.g., equiva-
lent circuit [3] and electrochemical [4]) models are constructed
based on the understanding of the physics and chemistry of battery
cells. In these models, the input is the charging/discharging cur-
rent, the output is the battery voltage, and SOC is a model state.

To achieve a desired level of estimation accuracy in the pres-
ence of nonlinearities of battery dynamics, several algorithms have
been proposed based on the concept of Kalman filtering; examples
are: extended Kalman filtering (EKF) [5], adaptive extended Kal-
man filtering (AEKF) [6–8], and unscented Kalman filtering (UKF)
[9,10]. [11] uses a dual particle filter to simultaneously predict
SOC and drift current estimation. However, such techniques may
not result in accurate estimation of the battery state due to the lack
of adequate understanding of electrochemical dynamics of batter-
ies. This shortcoming of model-based filtering could be comple-
mented by dynamic data-driven application systems (DDDAS)
[12] that make use of the information derived from the measure-
ment ensemble, as a result of which they do not require detailed
knowledge of battery electro-chemistry; therefore DDDAS could
be more efficient in dealing with computational complexity (e.g.,
execution time and memory requirements) [13,14].

With the recent development of sensing techniques and sophis-
ticated testing platforms, large volumes of high-quality data could
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Nomenclature

C battery capacity
D depth of the Markov machine
k kth time window
nk total instants at the end of kth window
Q set of states of a probabilistic finite state automata
pðxkjxk�1;WkÞ dynamic model of SOC (probability of current state

given past state and input)
pðYkjxk;UkÞ measurement model of SOC (probability of current

measurement given current state)
Uk input symbol string corresponding to the kth time

window
ui real-valued current input at the ith instant
~ui symbolized current input at the ith instant
Yk output symbol string corresponding to the kth time

window
yi real-valued voltage output at the ith instant

~yi symbolized voltage output at the ith instant
xk state of charge at the end of the kth time window
Wk depth of discharge in the kth time window
P probability morph matrix of a probabilistic finite state

automata
R alphabet set of a probabilistic finite state automata

Acronym
DOD depth of discharge
MEP maximum entropy partitioning
PFSA probabilistic finite state automata
RBF recursive bayesian filtering
SOC state of charge
STSA symbolic time series analysis
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be made available to cover wide ranges of operating conditions.
This situation leads to the possibility of formulating robust and
accurate data-driven SOC estimation algorithms (e.g., k-nearest
neighbor (k-NN) regression [15], support vector machines (SVM)
[16], and artificial neural networks (ANNs) [17]) that can be
applied to battery management systems in practice. However,
there exists common problems for purely data-driven methods,
namely, over-fitting and under-fitting of data, which may compro-
mise the performance of the SOC estimation algorithm.

To overcome the individual deficiencies of the model-based and
data-driven approaches, several hybrid methods have been pro-
posed by combining both the model-based and data-driven
approaches. For example, Charkhgard and Farrokhi [18] used neu-
ral networks to approximate a state-space model and combined it
with an extended Kalman filter for SOC estimation. Xu et al. [19]
reported a similar approach with a stochastic fuzzy neural network
(SFNN). He et al. [20] adopted an unscented Kalman filter (UKF) to
enhance the accuracy of nonlinear estimation.

Li et al. [21] reported a dynamic data-driven method for SOC
estimation via Markov modeling on the battery voltage time series.
The underlying concept was built upon the theory of symbolic
analysis [22,23] that extracts the dynamic information from sym-
bolized time series. Along this line, Li et al. [14] have extended
the method by considering synchronized inputs (i.e., current) and
outputs (i.e., voltage) together in the setting of a Markov model
to incorporate input-adaptive features. Later, Sarkar et al. [24]
investigated the cross-dependency between symbolized input
strings and symbolized output strings using the �D-Markov (pro-
nounced as cross D-Markov) machine for SOC estimation. Recently,
Chattopadhyay et al. [25] constructed a sequential SOC estimation
framework based on symbolic Markov modeling [14].

This paper is a significant extension of the authors’ earlier work
[24,25] and proposes a framework for recursive estimation of SOC
by combining the underlying concepts of �D-Markov machines
and recursive Bayesian filtering (RBF). In this work, the causal
cross-dependence between the battery input current and output
voltage is modeled and represented as a �D-Markov machine,
which is somewhat analogous to a transfer function in the sense
that it analyzes the relation between the input and output of the
dynamical system. Then, the SOC measurement model is formu-
lated by a kernel-based conditional density estimation, which is
constructed from the �D-Markov features obtained in the training
phase. Finally, a model-based recursive Bayesian estimator is con-
structed, which filters out the outliers in SOC estimation to reduce
the estimation error. The proposed method has been validated
using experimental data of a (commercial-scale) lead-acid battery
under varying input conditions.

From the perspectives of state-of-the-art battery technology,
the work reported in this paper has the following major
contributions:

� Representation of the nonlinear dynamics of a battery by sym-
bolic Markov machine models that have significantly reduced
computational complexity relative to the commonly used phys-
ical dynamic models.

� Development of an SOC measurement model based on a variant
of statistical regression. The probability of SOC being a certain
value, conditioned on the battery output and input is estimated
as a locally weighted average using kernel as a weighing
function.

� Incorporation of the dynamic data-driven measurement model
within the structure of a model-based RBF for real-time SOC
estimation.

� Validation of the proposed algorithms on experimental data col-
lected from a commercial-scale lead-acid battery.

Although the work reported in this paper focuses on lead-acid
batteries, the proposed methodology can be extended to other
types of batteries (e.g., Li-ion and Ni-MH).

The paper is organized in five sections including the present
one. Section 2 briefly describes the underlying principles of sym-
bolic Markov modeling that is used for development of a SOC mea-
surement model. Section 3 proposes a hybrid (i.e., combined
dynamic data-driven and model-based recursive) SOC estimation
algorithm by combining the data-driven SOC measurement model
and model-based RBF. Section 4 briefly presents the details of the
experiment performed for acquisition of battery system data as
well as the results of the proposed estimation algorithm on the
experimental data. Finally, the paper is summarized and concluded
in Section 5 along with recommendations for future research.
2. Symbolic Markov modeling

This section presents a general framework of symbolic
�D-Markov modeling [24] for analytical measurement of battery
SOC. First, the time series of (synchronized) input (i.e., current)
and output (i.e., voltage) are preprocessed and discretized into
symbol strings via maximum entropy partitioning [26]. Then,
�D-Markov machines are constructed to obtain features that
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represent the dynamical behavior of the battery at different SOC
conditions.
2.1. Time series symbolization

This subsection addresses the procedure for time series symbol-
ization. First, battery input current and output voltage are individ-
ually normalized into zero-mean and unit-variance time series as:

~hi ¼ hi � lh

rh
for i ¼ 1;2; . . . ; L ð1Þ

where lh is the mean and rh is the standard deviation of the unpro-
cessed time series h1; h2; � � � hL of finite length L. The objective of pre-
processing is to remove the undesirable effects due to bias (e.g., due
to measurement drifts) and variance fluctuation (e.g., due to differ-
ent noise level) from time series before symbolization.

The first step in symbolization of time series involves partition-
ing of the range space of the signal. The signal space is partitioned
into a finite number of cells and a symbol associated with each cell,
i.e., the number of cells is identically equal to the cardinality jRj of
the (symbol) alphabet R. As an example, for the one-dimensional
time series in Fig. 1, three partitioning lines divide the ordinate
(i.e., y-axis) of the time series profile into four mutually exclusive
and exhaustive regions that form a partition of the range space,
where each region is labeled with one symbol from the alphabet
R. If the value of time series at a given instant is located in a par-
ticular cell, then it is coded with the symbol associated with that
cell. In this way, a symbol string is generated from the (finite-
length) time series. Details are reported in [22].

Ensembles of time series data have been symbolized by using a
partitioning tool, called maximum entropy partitioning (MEP) [26],
that maximizes the entropy of the generated symbols; therefore,
the information-rich cells of a data set are partitioned finer and
those with sparse information are partitioned coarser (i.e., each cell
contains approximately equal number of data points). The choice
of alphabet size jRj largely depends on the specific data set and
the allowable loss of information [23].
2.2. �D-Markov modelling

While the details are reported in authors’ earlier publications
[22–24], this subsection very concisely presents the pertinent con-
cepts for construction of D-Markov machine and �D-Markov
machine models.
Fig. 1. �D-Markov (pronounced as cross D-M
Definition 2.1 (DFA [27]). A deterministic finite-state automaton
(DFA) G is a triple R;Q; dð Þ where:

� R is a (nonempty) finite alphabet with cardinality jRj;
� Q is a (nonempty) finite set of states with cardinality jQj;
� d : Q� R ! Q is the state transition map.
Definition 2.2 (Symbol Block). A symbol block, also called a word,
is a finite-length string of symbols si belonging to the alphabet R,
where the length of a word w , s1s2 � � � s‘ with si 2 R is jwj ¼ ‘,
and the length of the empty word � is j�j ¼ 0. The parameters of
DFA are extended as:

� The set of all words constructed from symbols in R, including
the empty word �, is denoted as RH,

� The set of all words, whose suffix (respectively, prefix) is the
word w, is denoted as RHw (respectively, wRH).

� The set of all words of (finite) length ‘, where ‘ > 0, is denoted
as R‘.
Definition 2.3 (PFSA [22,23]). A probabilistic finite-state automa-
ton (PFSA) is constructed on the algebraic structure of determinis-
tic finite-state automata (DFA) G ¼ ðR;Q; dÞ as a pair K ¼ ðG;PÞ,
i.e., the PFSA K is a 4-tuple K ¼ ðR;Q; d;PÞ, where:

(1) R is a non-empty finite set, called the symbol alphabet, with
cardinality jRj < 1;

(2) Q is a non-empty finite set, called the set of states, with car-
dinality jQj < 1;

(3) d : Q� R ! Q is the state transition map;
(4) P : Q� R ! ½0;1� is the symbol generation matrix (also

called probability morph matrix) that satisfies the conditionPjRj
j¼1Pði; jÞ ¼ 1 8qi 2 Q, and Pði; jÞ is the probability of

emission of a symbol rj 2 R from the state qi 2 Q.
Definition 2.4 (D-Markov Machine [22,23]). Let S ¼ . . . sk�1

skskþ1 . . . be a discrete symbol sequences which is a statistically sta-
tionary stochastic process. The probability of occurrence of a new
symbol depends only on the last D symbols, i.e.,

P½skj � � � sk�D � � � sk�1� ¼ P½skjsk�D � � � sk�1� ð2Þ
arkov) modeling and feature extraction.
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where D is called the depth of the Markov machine. Then, a
D-Markov machine is modeled as a PFSA, in which each state is rep-
resented by a finite history of D symbols, and is defined as a 4-tuple
M , ðQ;R; d;PÞ such that:

(1) R ¼ fs1; . . . ; sjRjg is the alphabet of symbols and jRj < 1 is
cardinality of the alphabet.

(2) Q ¼ fq1; q2; . . . ; qjQjg is the state set with cardinality

jQj 6 jRjD, i.e., the states are represented by equivalence
classes of symbol blocks of maximum length D correspond-
ing to a symbol sequence S.

(3) d : Q� R ! Q is the state transition mapping, which gener-
ates the symbol sequences;

(4) P : Q� R ! ½0;1� is the morph matrix of size jQj � jRj; the
ijth element Pði; jÞ of the matrix P denotes the probability
of finding the symbol rj at next time step while making a
transition from the state qi.

Thus, the symbol sequence is compressed as a PFSA by assign-
ing the states as words of finite length from the symbol sequence.
The PFSA induces a D-Markov chain of finite order [22,23].

Next the notion of �D-Markov machine is introduced, and the
underlying concept is illustrated in Fig. 1.

Definition 2.5 (�D-Markov Machine [24]). Let
U , . . . ~uk�1~uk~ukþ1 . . . and Y , . . . ~yk�1~yk~ykþ1 . . . be two (time-
synchronized) stochastic symbol sequences. Then, a �D-Markov
machine, where the Markov assumption holds for Y with respect
to U, is defined as a 5-tuple M1!2 , ðQ1;R1;R2; d1;P1!2Þ such
that:
(1) R1 ¼ fs1; . . . ; sjR1 jg is the alphabet of symbols in U.
(2) R2 ¼ fr1; . . . ;rjR2 jg is the alphabet of symbols in Y.
(3) Q1 ¼ fq1; q2; . . . ; qjQ1 jg is the set of states corresponding to U.
(4) d1 : Q1 � R1 ! Q1 is the state transition mapping. It is

noted that the PFSA structure is built on U and thus, the
transition map d1 generates a sequence of symbols that
belong to R1; however the Markov assumption holds for Y

on the states inferred from U.
(5) P1!2 : Q1 � R2 ! ½0;1� is the �-morph (pronounced as cross

morph) matrix of dimension jQ1j � jR2j; the ijth element
Pði; jÞ of the �-morph matrix P denotes the probability of
finding the symbol rj in the symbol string Y at next time
step while making a transition from the state qi of the PFSA
constructed from the symbol sequence U.

Similarly, a 5-tuple M2!1 , ðQ2;R2;R1; d2;P2!1Þ yields sym-
bols in R1 from states in Q2.

While a D-Markov Machine captures the temporal dynamics of
a single sequence, �D-Markov machine models capture the causal
dependency between two sequences.

2.3. Feature extraction by a �D-Markov machine

Given a (finite-length) symbol string S over a (finite) alphabet
R, there exist several construction algorithms to discover the
underlying irreducible PFSA model. For both algorithmic simplicity
and computational efficiency, �D-Markov machines [24] have
been adopted in this paper for modeling cross-dependence
between two PFSAs. The symbolic time series corresponding to
the input current X and output voltage Y are modeled as PFSA’s
K1 and K2 respectively (as described in Definition 2.4).

Let Nðrj; qkÞ denote the number of times that a symbol rk is
generated by PFSA K2 when the state qj is observed (as a symbol
string) by PFSA K1. The maximum a posteriori probability (MAP)
estimate of the symbol emission probability of the PFSA K2 from
PFSA K1 is obtained by frequency counting [23] as:

P1!2ðqk;rjÞ � 1þ Nðrj; qkÞ
jR2j þ

P
‘Nðr‘; qkÞ

ð3Þ

If no event is generated at a combination of symbol rj 2 R2 and
state qk 2 Q1, then there should be no preference to any particular
symbol and it is logical to have P1!2ðk; jÞ ¼ 1=jR2j. The above pro-
cedure guarantees that �D-Markov machines, constructed from
two (finite-length) symbol strings, will have an (elementwise)
strictly positive �-morph matrix P1!2 that is constructed by esti-
mating the individual emission probabilities P1!2ðk; jÞ for
k 2 f1;2; � � � ; jQ1jg and j 2 f1;2; � � � ; jR2jg. Similar procedures hold
for the �-morph matrix P2!1.

3. Hybrid recursive SOC estimation

This section first introduces definitions of pertinent battery
parameters at a given ambient temperature [28], followed by for-
mulation of a recursive Bayesian estimation filter.

Definition 3.1 (Battery capacity). The capacity CðTÞ of a battery at
time T (in the slow time-scale) is its maximum charge (in units of
ampere-hours) that can be drawn from its fully charged condition
at a rate CðTÞ=30 (in units of amperes).
Definition 3.2 (DOD and SOC). Let a battery be fully charged at
time T (in the slow time-scale) and let IðsÞ be the applied current
(in units of amperes) at time s (in the fast time-scale). Then, depth
of discharge (DOD) and state of charge (SOC) at time T þ DT are
respectively defined as:

DODðT þ DTÞ ¼ 1
CðTÞ

Z TþDT

T
IðsÞ ds; DT P 0 ð4Þ

SOCðT þ DTÞ ¼ 1� DODðT þ DtÞ; DT P 0 ð5Þ

If the battery capacity C is a known parameter that is assumed
to be a constant for the purpose of SOC estimation, then DOD
depends only on the input current that is also a known variable.

Now the issue of recursive Bayesian estimation (also known as a
recursive Bayes filter (RBF)) is addressed, which is a general prob-
abilistic approach for estimating unobserved states recursively
over time using incoming measurements and a dynamic model.
It consists of the following two steps:

(1) Predicting the state from the previously estimated (or ini-
tially provided) state by using a dynamic model.

(2) Updating the state estimation using the current measure-
ment based on the measurement model.

Fig. 2 depicts the construction of SOC dynamic model and data-
driven measurement model used in the implementation of a recur-
sive Bayes filter for SOC estimation. In this filter, the unobserved
SOC state and the dynamic model input DOD change only in the
slow time scale, while the symbolic measurements are extracted
from (synchronized) time series pairs of real-valued current
input and voltage output in the fast time scale. The following
notations are used in the proposed Bayes filter for SOC state
estimation:

� ui: Real-valued current input at the ith instant;
� yi: Real-valued voltage output at the ith instant;
� ~ui: Real-valued voltage output at the ith instant;



Fig. 2. Schematic representation of SOC dynamic model and measurement model.
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� ~yi: Symbolized voltage output at the ith instant;
� nk: The total instants at the end of kth window;
� xk: State of charge (SOC);
� Wk: Depth of discharge (DOD);
� Uk: Input symbol string during kth window;
� Yk: Input symbol string during kth window;
� pðxkjxk�1;WkÞ: SOC Dynamic model;
� p Ykjxk;Ukð Þ: Data-driven Measurement model;

where Wk ,
Pnk

i¼nk�1þ1ui Dt and Dt is the sampling time for the

fast time scale; Uk , f~unk�1þ1; . . . ; ~unkg and Yk , f~ynk�1þ1; . . . ; ~ynkg;
and ~u and ~y denote the respective input and output symbols corre-
sponding to real-valued inputs u and outputs y in the fast time
scale, as depicted in Fig. 2.

3.1. Analytical measurement model

This subsection describes how to obtain the measurement
model via statistical regression. The crucial assumption here is that
the estimated conditional probability from the training phase pre-
serves its mathematical structure in the testing phase. For exam-
ple, let there be M training data sets, where each data set
consists of a (synchronized) finite-length time series pair of real-
valued current input fukgLk¼1 and real-valued voltage output

fykgLk¼1 with the associated SOC label x. A �D-Markov machine is
constructed from each data set by the procedure described in Sec-
tion 2.3. Thus, for each data set i, there exists a symbolic output

string Yi ¼ f~yikg
L
k¼1, the PFSA state string Q

i generated from the

symbolic input string Ui ¼ f~ui
kg

L
k¼1, the �D-Markov morph matrix

Pi, and the SOC value xi. The cross dependency between the cur-
rent (input) and voltage (output) is expected to vary for different
values of SOC. The proposed algorithm is schematically repre-
sented in Fig. 3.

Given the input state string Q and the cross dependency speci-
fied byP j (generated from the jth training data), the probability of
observing a symbol output string Y is:

pðYjU;P jÞ ¼ PðYjQ;P jÞ ¼
YL�Dþ1

k¼1

P jðqk; ~ykþD�1Þ ð6Þ

where L is the length of the symbol string and D is the depth for the
Markov modeling.

Let Uk and Yk denote the input and output symbol strings, in
the kth time window of the testing phase. The probability of
observing Yk conditioned on the system state xk and the input
Uk is estimated as:
p Ykjxk;Ukð Þ ¼
XM
i¼1

Wðxk;PiÞpðYkjUk;P
iÞ ð7Þ

where the weighting function W is formulated as a (Gaussian)
radial basis function kernel:

Wðxk;Pi; cÞ ¼
exp �cðxk � xiÞ2

� �
PM

j¼1 exp �cðxk � x jÞ2
� � ð8Þ

where c > 0 is a free parameter and xi is the SOC label associated
with the �-morph matrix Pi.

Compared to physical measurements, symbolic measurements
are more robust to noise due to the increased signal-to-noise-
ratio (SNR) as a consequence of discretization [29], and it provides
a better state estimation in the sense that the conditional variance
of measurements given the state is reduced.

3.2. Recursive Bayesian filtering for SOC estimation

This subsection combines the data-driven (analytical) measure-
ment model with the process model of SOC in the sense of Bayesian
filtering. For this purpose, a linear state-space model of SOC varia-
tion is formulated as:

State equation : xk ¼ xk�1 � 1
Ck

Wk þwk ð9Þ

where Ck is the maximum capacity of the battery during the kth
time window, and wk is the process noise which is assumed to be
drawn from a zero-mean Gaussian distribution with variance of
tk. The dynamic variable Wk is the depth of discharge (DOD) from
the beginning to the end of kth time window, which is obtained as:

Wk ,
Xnk

i¼nk�1þ1

ui Dt ð10Þ

where Dt is the sampling time of real-valued current input.
Then, the probability of the current true state xk given the pre-

vious state xk�1 and the DOD Wk is assumed to follow a Gaussian
distribution Nðxk�1 � Wk

Ck
; tkÞ:

pðxkjxk�1;WkÞ ¼ f xkjxk�1 �Wk

Ck
; tk

� �

¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2ptk

p exp �
xk � ðxk�1 � Wk

Ck
Þ

� �2

2tk

0
B@

1
CA ð11Þ



Fig. 3. Schematic description of the hybrid recursive Bayesian filtering algorithm for SOC estimation.
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The algorithm of the recursive Bayesian filter (RBF) is formulated as
follows:

� Initialization: The distribution of system state is:
pðx0jY0Þ ¼ unifða; bÞ ð12Þ
where a and b are respectively the lower and upper limits of the
system state x.

� State prediction for k P 1
p xkjY1:k�1; fU1:k�1;W1:kgð Þ ¼
Z

pðxkjxk�1;WkÞ

� p xk�1jY1:k�1; fU1:k�1;W1:k�1gð Þdxk�1

ð13Þ
� State update for k P 1
The measurement update stage for k P 1 is formulated as:
p xkjY1:k; fU1:k;W1:kgð Þ ¼ pðYkjxk;UkÞp xkjY1:k�1; fU1:k�1;W1:kgð Þ
p YkjY1:k�1; fU1:k;W1:kgð Þ

ð14Þ
where

p YkjY1:k�1; fU1:k;W1:kgð Þ ¼
Z

pðYkjxk;UkÞpðxkjY1:k�1; fU1:k�1;W1:kgÞdxk
ð15Þ

The optimal state estimation is achieved by different criterion.
Examples are:

� Minimum mean-square error (MMSE)
x̂MMSE
kjk ¼ E½xkjY1:k� ¼

Z
xkp xkjY1:k; fU1:k;W1:kgð Þdxk ð16Þ

� Maximum a posteriori (MAP)
x̂MAP
kjk ¼ arg max

xk

p xkjY1:k; fU1:k;W1:kgð Þ ð17Þ
Remark 3.1. The measurement model possibly involves a non-
linear nonparametric discrete-valued conditional probability
distribution. Therefore, instead of using the commonly used
Kalman filter, the general recursive Bayesian filter (RBF) might
be the statistically correct way to compute the posterior distri-
bution of the unobserved state [30]. Although the resulting
computational cost would be larger to implement this RBF,
there are benefits from using such an analytical measurement
model as stated at the end of Subsection 3.1. Performance com-
parison of the proposed method and the conventional Kalman
filter with a linear (or linearized) model with additive Gaussian
measurement measurement noise is recommended as a topic of
future research as stated in Section 5.

4. Experimental validation of the SOC estimation algorithm

This section validates the proposed sequential estimation algo-
rithm, which is a synergistic combination of both dynamic data-
driven and model-based recursive analyses, on an ensemble of
experimental data that have been collected from a commercial-
scale lead-acid battery.

4.1. Experimental platform and data collection

This section addresses validation of the proposed SOC estima-
tion method with the available experimental data that were used
by Shen and Rahn in their recent publications [31,32]. Therefore,
the experimental platform and data acquisition are not described
in details in this paper. However, for the sake of completeness, a
very brief description of the experimental platform and the data
collection process is presented below.

The fresh (12 V AGM VRLA with 56 A h capacity) lead-acid bat-
tery, which has been used in the experiments, was charged and
discharged according to the specified input (current) profiles at
the room temperature. An ensemble of synchronized time-series
of the input charge/discharge current and output voltage responses
has been collected at the sampling frequency of 1 Hz. Fig. 4 exhi-
bits typical profiles of long-term experimental data, namely, input
current, output voltage, and battery SOC; and Fig. 5 presents short-
term profiles of the corresponding experimental data. The input
data set consists of fluctuating (with repeated ‘‘Hotel-Pulses”



(a) Input current (b) Output voltage

(c) Battery SOC

Fig. 4. Typical profiles of long-term data: input current, output voltage, and battery SOC.

(a) Input current (b) Output voltage

(c) Battery SOC

Fig. 5. Examples of dynamic zone and steady-state zone in the experimental data.
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cycles) discharging/charging current, where each individual
‘‘Hotel-Pulse” cycle (with a duration of �120 s) consists of a ‘‘hotel”
load (i.e., relatively steady discharge due to ‘‘hotel” needs like
lighting and other electrical appliances) and a discharge pulse fol-
lowed by a charge (i.e., regeneration) pulse. The amplitude of the
‘‘hotel” load and the discharging & charging pulses are fluctuating
in the experiment, which made each cycle different from others.
This pattern of input cycles largely simulates a real-time working
condition for an electric vehicle.

In Fig. 5, the highlighted zones are selected as analysis windows
for the SOC estimation algorithm. The data length for one dynamic
zone (i.e., analysis window) is 50 on the fast time-scale in the unit
of seconds.

4.2. Results and discussion

There are, in total, 25 experiments that have been conducted for
this research, where the nominal battery maximum capacity is
assumed to be the same for all experiment data.

In order to evaluate the robustness of the proposed approach,
cross validation is performed in this paper. One round of cross-
validation involves partitioning the data set randomly into comple-
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mentary subsets, training the algorithm on one subset (training
set), and testing the algorithm on the other subset (testing set).
The size of the training and testing sets are taken to be in the ratio
of 4:1. To reduce variability, multiple rounds of cross-validation
are performed using different partitions, and the estimation results
are averaged over the rounds. In this paper the estimation results
are obtained by averaging over 100 random partitions of the data
set into training and testing sets.

The chosen values of the parameters in the data-driven mea-
surement model and system state-space model are as follows:

� Sampling time for the fast time scale Dt ¼ 1 s ; slow-scale time
window length n ¼ 50, i.e., consisting of 50 consecutive fast-
scale time instants.

� The parameter for (Gaussian) radial basis function kernel:
c ¼ 1

2 	 ð0:03Þ2
ð18Þ

� Maximum capacity of the battery during the kth window = ini-
tial battery capacity
Ck ¼ Cinital ð19Þ

� Standard deviation for process noise wk ¼ 10% of the ratio of
DOD Wk and capacity Ck:
tk ¼ 0:1�Wk

Ck
ð20Þ

In this section, the performance of hybrid recursive Bayesian fil-
tering (RBF) is compared with that of data-driven estimation via
�D-Markov modeling. The minimum mean-square error (MMSE)
estimation is chosen as the criterion for the RBF at each step, while
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Fig. 6. Examples of recursive SOC estim
the maximum a posteriori (MAP) estimation is used for the data-
driven estimation:

� SOC estimation by hybrid recursive Bayesian filtering:
x̂MMSE
kjk ¼ E½xkjY1:k� ð21Þ

� SOC estimation by solo data-driven �D-Markov modeling:
x̂MAP
kjk ¼ arg max

xk

p xkjY1:k; fU1:k;W1:kgð Þ ð22Þ

Fig. 6 depicts the performance of the hybrid SOC estimation
algorithm for different alphabet sizes: jRj ¼ 4;6 and 8. For
jRj ¼ 4, the �D-Markov morph-matrix features are unable to cap-
ture the dynamic characteristics of the battery in the high range
(e.g., �75–80%) and low range (e.g., �60–65%) of SOC. The execu-
tion time of the recursive estimation algorithm for convergence
is in the order of one hour � 30 analysis windows. However, as
the alphabet size is increased to jRj ¼ 6, the �D-Markov morph-
matrix features improve their distinguishing capability at a low
SOC range (e.g., �60–65%), while the convergence time is signifi-
cantly reduced to �20 analysis windows on the average. The ratio-
nale for this performance enhancement is explained below.

As the alphabet size is modestly increased from jRj ¼ 4 to
jRj ¼ 6 and then to jRj ¼ 8, the resulting �D-Markov machines
capture more information of the dynamics of the time series; con-
sequently, the corresponding morph-matrix features obtained
under different operating conditions are more distinctive (i.e., well
separated in the feature space); the effects are observed in Fig. 6.
However, due to the finite length of the time series (i.e., finite
length of the analysis window) under consideration, jRj cannot
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ation for different alphabet size jRj.
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Fig. 7. Root-mean-square (RMS) error of SOC estimation for different alphabet size
jRj.

Table 1
SOC estimation error comparison.

Method RMS error (%)

Linear Model 1 in [32] 4.93
Linear Model 2 in [32] 5.04
Switched Model 3 in [32] 0.35
Switched Model 4 in [32] 0.20
Averaged Model 5 in [32] 10.00
The proposed method with jRj ¼ 7 2.08
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be increased beyond a certain limit as explained by Wen et al. [33]
and experimentally observed by Mukherjee and Ray [23].

Fig. 7 depicts the root-mean-square (RMS) error of SOC estima-
tion for the data-driven and the hybrid approaches. The proposed
hybrid approach performs better than the standalone data driven
approach for all alphabet sizes, as seen in Fig. 7. Based on a math-
ematical model [34] of an electrochemical lead-acid battery cell
developed earlier, Shen and Rahn [32] proposed five different mod-
els including two switched linear models that were linearized to
produce charge, discharge and averaged models. Table 1 compares
the performance of the proposed hybrid method of SOC estimation
with that of the five solely model-based methods [32]. With the
exception of both switched linear models (i.e., Model 3 and Model
4), the proposed method outperforms the (remaining three) regu-
lar linear models developed from an electrochemical cell model. It
is expected that the proposed hybrid method, if applied on
switched models instead of a single model in Eq. (9), would exceed
the performance of Model 3 and Model 4 in [32]; this task is sug-
gested as a topic of future research in Section 5.

The above discussion on comparison with other models evinces
that the proposed hybrid method has a potential of successful real-
life applications, where this method would provide competitive
performance with less computational resources. For example, Li
et al. [35] have recently reported the computation cost (i.e., execu-
tion time and memory requirements) of a dynamic data-driven
method for battery SOC estimation.
5. Summary, conclusions and future work

This paper presents a hybrid (i.e., a combination of dynamic
data-driven and model-based recursive) method for real-time esti-
mation of a critical battery parameter, namely, state of charge
(SOC). The underlying concept is built upon a measurement model
and prior history of estimation, which rely on synchronized time
series pair of (repeated-pattern) fluctuating input (i.e., charging/
discharging current) and output (i.e., battery voltage) data. The
SOC estimation algorithm has been validated on experimental data
of a commercial-scale lead-acid battery.

The pertinent conclusions drawn from the work reported in this
paper are delineated below.

(1) The proposed algorithm of dynamic data-driven and model-
based recursive method of SOC estimation advances the
state of the art of data-driven methods for both SOC estima-
tion [14] and SOH estimation [35] as an alternative to the
commonly used techniques (e.g., equivalent circuit model
[31]).

(2) The proposed method has two major contributions to the
current state of the art of battery technology:

� Development of a SOC measurement model via statistical

regression, which is based on symbolization of the (syn-
chronized) input and output time series.

� Real-time estimation of SOC with significantly reduced
computational complexity relative to the methods that
rely on physics and electro-chemistry-based dynamic
models of the battery system.
While there are several issues that need to be resolved by fur-
ther theoretical and experimental research before implementation
of the proposed method in real-life applications, the authors sug-
gest the following topics of future research:

� Validation of the proposed hybrid (i.e., combined dynamic
data-driven and model-based recursive) method of SOC esti-
mation for:
– Performance evaluation of the proposed method by

using switched models (e.g., Model 3 and Model 4 in
[32]) instead of a single model (e.g., in Eq. (9)).

– Performance comparison of the proposed method with
other recursive estimation algorithms (e.g., different
types of Kalman filtering and particle filtering).

– Validation of the proposed method on other types (e.g.,
Lithium-ion and Ni-MH) of battery with different input
current profiles, such as Federal Urban Driving Sched-
ule (FUDS) and US06 [36].

� Classification of input profile for efficient battery manage-
ment: For example, in electric vehicles where Lithium-
ion batteries are largely prevalent, the current input
depends on the user’s driving style, and the PFSA model
of input current could classify the driving style into differ-
ent categories.

� Theoretical and experimental research to investigate specific
advantages and disadvantages of the proposed method in
comparison with existing methods (e.g., [6–8]): One exam-
ple of an existing is an equivalent circuit model with
one RC pair. Another example is a conventional Kalman
filter having a linear (or linearized) model and additive
Gaussian measurement noise.

� Development of a stopping rule for sequential estimation:
After reaching the stopping point, the estimation accuracy
should be maintained at a specified level of SOC (e.g., by
filtering out the potential outliers in the future data).
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