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Abstract—This paper addresses the problem of target detec-
tion in dynamic environments in a semi-supervised data-driven
setting with low-cost passive sensors. A key challenge here is
to simultaneously achieve high probabilities of correct detection
with low probabilities of false alarm under the constraints of lim-
ited computation and communication resources. In general, the
changes in a dynamic environment may significantly affect the
performance of target detection due to limited training scenarios
and the assumptions made on signal behavior under a static envi-
ronment. To this end, an algorithm of binary hypothesis testing
is proposed based on clustering of features extracted from mul-
tiple sensors that may observe the target. First, the features are
extracted individually from time-series signals of different sen-
sors by using a recently reported feature extraction tool, called
symbolic dynamic filtering. Then, these features are grouped as
clusters in the feature space to evaluate homogeneity of the sensor
responses. Finally, a decision for target detection is made based
on the distance measurements between pairs of sensor clusters.
The proposed procedure has been experimentally validated in
a laboratory setting for mobile target detection. In the experi-
ments, multiple homogeneous infrared sensors have been used
with different orientations in the presence of changing ambi-
ent illumination intensities. The experimental results show that
the proposed target detection procedure with feature-level sensor
fusion is robust and that it outperforms those with decision-level
and data-level sensor fusion.

Index Terms—Decision-making in dynamic environments,
feature-level sensor fusion, target detection.

I. INTRODUCTION

DETECTION of moving targets in uncertain and dynamic
environments is of utmost importance for intelligence,

surveillance, and reconnaissance systems (e.g., Secure Border
Initiative by the Department of Homeland Security). To this
end, large distributed networks of passive sensors are often
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attractive because they can provide coverage of wide areas
at a moderate running cost. Every sensor in the network
is provided with communication and computing capabilities
for the collective intelligent behavior. A key requirement for
cost-effective operation of such distributed sensor networks
is to maintain reliable sensing performance, while limiting
the amount of communications required for reliable decision
fusion and situation awareness across the network [1], [2]. In
addition, limited computational capabilities of the individual
sensors require low-complexity data-processing algorithms for
information extraction from the time series of sensed signals.
Decision-making with passive sensing in a dynamic envi-
ronment is an algorithmically challenging problem as these
sensors (e.g., acoustics, seismic, and infrared) are often sen-
sitive to the environmental uncertainties and these effects, in
general, are difficult to model using the fundamental principles
of physics.

While maintaining reliable sensing performance, the follow-
ing research challenges need to be simultaneously addressed
as key requirements for operating distributed sensor networks
in a cost-effective way.

1) Constrained communication at sensing nodes, which
would require a feasible framework for information
compression and distributed information fusion to
reduce the communication overhead.

2) Limited computational capabilities at sensing nodes,
which would require low-complexity algorithms for
information extraction and decision analysis.

3) Operation under dynamic environments, which may sig-
nificantly compromise the performance of supervised
algorithms for object and situation assessment.

If a large field of passive sensors is deployed, the deci-
sion parameters of the individual sensors need to be tuned
for accurate detection, classification, and tracking. Most
of this paper on distributed decision fusion, which has
been based on threshold rules, use decision rules such as
voting, Bayes criterion, and Neyman–Pearson methods [3]
by using a priori knowledge on the probability of target
presence [4]–[6].

The above methods rely on available sensor models that
often do not include the effects of background noise in
the operating environment. However, it is very likely that a
dynamic environment would interfere with the sensor data that
correspond to the events of interest (e.g., a mobile target);
hence, the decision rules based on thresholding of signal vari-
ables may not hold in a different background environment.
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A more efficient way of event (e.g., target) detection is
usage of the pattern matching concept that may require fea-
ture extraction, followed by classification of sensor data for
event detection. Duarte and Hu [7] evaluated several classifi-
cation algorithms for vehicle detection and tracking, and other
types of implementation can be found in [8]–[11]. However,
most of the classification-based detection schemes require sig-
nificant computational resources for signal conditioning and
feature extraction; these techniques may also require scenario-
specific training to initialize the classifier. Furthermore,
changes in the boundaries of classification decision could lead
to erroneous predictions if the background environment is
dynamic.

In spite of a large volume of work on collaborative tar-
get detection in sensor networks, a majority of the algorithms
reported in this paper are not robust relative to environ-
mental changes, especially with the usage of low-fidelity,
passive sensors. The rationale is that the passive sensors, used
in a network, are sensitive to the background noise of the
environment.

In many state-of-the-art techniques, the environmental dis-
turbance is modeled as an additive noise, which is a com-
promising simplification because the environment is usually
nonlinearly coupled with the event of interest. It is also noted
that noise in a dynamic environment, albeit being different
from high-frequency additive noise, may generate a similar
texture in the time series, which could be treated as a pos-
sible event of interest in the same time scale. Consequently,
false interpretations could be derived based on the hard deci-
sion boundaries that are learned in the training phase. The
decisions made by using thresholds based on sensed data or
classification boundaries trained for identifying target classes
may lead to false interpretations during the actual opera-
tion. Even if the final decisions are made by collaboration
between different nodes [12], they could be significantly
inaccurate.

From the above perspectives, a distributed framework for
feature-level fusion of sensor time series has been proposed
for target detection in dynamic environments [13]; the under-
lying theory is built upon a recently reported tool of feature
extraction, called symbolic dynamic filtering (SDF) [14], [15].
The compressed information in the extracted features is then
clustered in an unsupervised fashion for target detection via
statistical hypothesis testing. Because of their different spatial
locations and orientations, the sensors have different degrees
of influence from an event (e.g., a mobile target) of interest.
The key idea here is to capture different levels of the target’s
influence on the individual sensors for fusion by clustering of
the collected information. A decision rule is then formulated
for target detection based on the behavior of a pair of clusters
in the feature space.

In contrast to the conventional notion of probabilistic data
association filtering that relies on a dynamic model of the
physical process (see [16], [17], and references therein), this
paper focuses on symbolic-dynamic-based fusion of the infor-
mation derived from time series of different sensors for target
detection in a dynamic environment. Major contributions of
the work reported in this paper, which belongs to a class of

Fig. 1. Underlying concept of FSA.

dynamic data-driven application systems [18], are outlined as
follows.

1) Development of a feature-level sensor fusion algorithm
in a distributed setting, which can be executed in real
time for target detection in dynamic environments.

2) Experimental validation of the target detection algorithm
in a laboratory setting, which demonstrates its supe-
rior performance relative to equivalent decision-level and
data-level fusion scheme.

This paper is organized in seven sections including the
current section. Section II briefly describes the underlying
principles of SDF that is used for feature extraction of the (pos-
sibly preprocessed) time-series signal from sensors. Section III
presents the statement of the addressed problem along with a
list of major assumptions. Section IV elaborates the proposed
approach adopted in this paper. Section V briefly presents the
details of the experimental facility and procedure. Section VI
presents the results of experimental validation of the proposed
concept. Finally, this paper is summarized and concluded in
Section VII along with recommendations for future research.

II. SIGNAL FEATURE EXTRACTION

This section briefly describes the underlying concept of
feature extraction from time series data, upon which the
proposed sensor-data-driven tool of target detection is con-
structed [14], [15]. The following standard definitions are
recalled.

Definition 1 (FSA [19], [20]): A finite state
automaton (FSA) G, having a deterministic algebraic
structure, is a triple (�, Q, δ), where:

1) � is a (nonempty) finite alphabet with cardinality |�|;
2) Q is a (nonempty) finite set of states with cardinality |Q|;
3) δ : Q × � → Q is a state transition map.
Fig. 1 illustrates the concept of constructing (deterministic)

FSA from time series, which forms the algebraic structure of
probabilistic FSA (PFSA) as defined as follows.

Definition 2 (PFSA): A PFSA is a quadruple K =
(�, Q, δ, π), where:

1) the alphabet � of symbols is a (nonempty) finite set;
2) the set Q of automaton states is (nonempty) finite;
3) the state transition function δ : Q × � → Q;
4) the morph function π : Q × � → [0, 1], where∑

σ∈� π(q, σ ) = 1 for all q ∈ Q. The morph function
π generates the (|Q| × |�|) morph matrix �.

A. Symbolization of Time Series

This step requires partitioning (also known as quantization)
of the time series data of the measured signal. The signal space
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is partitioned into a finite number of cells that are labeled as
symbols, i.e., the number of cells is identically equal to the
cardinality |�| of the (symbol) alphabet �. As an example for
the 1-D time series in Fig. 1, the alphabet � = {0, 1, 2, 3},
i.e., |�| = 4, and three partitioning lines divide the ordi-
nate (i.e., y-axis) of the time series profile into four mutually
exclusive and exhaustive regions. These disjoint regions form
a partition, where each region is labeled with one symbol from
the alphabet �. If the value of time series at a given instant
is located in a particular cell, then it is coded with the symbol
associated with that cell. (Details are reported in [21].) Thus,
a (finite) array of symbols, called a symbol string (or symbol
block), is generated from the (finite-length) time series data.

The ensemble of time series data are partitioned by using a
partitioning tool [e.g., maximum entropy partitioning (MEP)]
that maximizes the entropy of the generated symbols; there-
fore, the information-rich cells of a data set are partitioned
finer and those with sparse information are partitioned coarser
[i.e., each cell contains (approximately) equal number of
data points under MEP]. The choice of alphabet size |�|
largely depends on the specific data set and the allowable
loss of information (e.g., leading to error of detection and
classification) [15].

B. D-Markov Modeling

For both algorithmic simplicity and computational effi-
ciency, the D-Markov machine structure [14], [15] has been
adopted for construction of PFSA. It is noted that D-Markov
machines form a proper subclass of hidden Markov mod-
els and have been experimentally validated for applications
in various fields of research (e.g., anomaly detection and
robot motion classification [22]). A D-Markov chain is mod-
eled as a statistically locally stationary stochastic process
S = · · · s−1s0 · · · s1 · · · , where the probability of occurrence
of a new symbol depends only on the last D symbols, that is

P
[
sn | · · · sn−D · · · sn−1

] = P
[
sn | sn−D · · · sn−1

]
.

Given a finite-length symbol string over a (finite) alpha-
bet �, there exist several PFSA construction algorithms
to discover the underlying irreducible PFSA model, such
as causal-state splitting reconstruction [23] and D-Markov
machines [14], [15]. These algorithms start with identifying
the structure of the PFSA K � (Q, �, δ, π). Then, a |Q|×|�|
count matrix C is initialized to the matrix, each of whose
elements is set to 1.

Let N(σj|qk) denote the number of times that a symbol σj

is generated from the state qk as the symbol string evolves.
The maximum a posteriori probability (MAP) estimate of
the morph probability (see Definition 2) for the PFSA K is
estimated by frequency counting as

π̂
(
σj|qk

)
�

C
(
σj|qk

)

∑
� C(σ�|qk)

= 1 + N
(
σj|qk

)

|�| + ∑
� N(σ�|qk)

. (1)

The rationale for initializing each element of the count
matrix C to 1 is that if no event is generated at a state q ∈ Q,
then there should be no preference to any particular symbol
and it is logical to have π̂MAP(q, σ ) = (1/|�|) ∀σ ∈ �

(i.e., the uniform distribution of event generation at the
state q). The above procedure guarantees that the PFSA, con-
structed from a (finite-length) symbol string, must have an
(elementwise) strictly positive morph map π .

Having computed the probabilities π̂(σj|qk) for all σj ∈ �

and qk ∈ Q, the estimated emission probability matrix of the
PFSA is obtained as

�̂ �

⎡

⎢
⎣

π̂(σ1|q1) . . . π̂
(
σ|�||q1

)

...
. . .

...

π̂
(
σ1|q|Q|

) · · · π̂
(
σ|�||q|Q|

)

⎤

⎥
⎦. (2)

The stochastic matrix �̂, estimated from a symbol string,
is then treated as a feature of the times series data that rep-
resents the behavior of the dynamical system. These features
can then be used for different learning applications, such as
pattern matching, classification, and clustering. The estimated
stochastic matrices �̂ are converted into row vectors for fea-
ture divergence measurement by sequentially concatenating
the |Q| rows [i.e., the |Q| × |�| matrix �̂ is vectorized as
a (1 × |Q||�|) vector].

This completes the signal feature extraction step. It is noted
that the only selectable parameters of the feature extrac-
tion technique described above are the alphabet size |�| and
memory (depth) D [24].

III. PROBLEM STATEMENT

This section formulates the problem of target detection in
a dynamic environment. The presence of a target is deter-
mined by analyzing the ensemble of time series data generated
from a number of sensors on a network. To this end, a set of
sensors is deployed in a local region of the sensor network.
The observation ensemble Y = {Y1, Y2, . . . , Yn} represents the
set of time-series data generated by the ensemble of sensors
L = {L1,L2, . . . ,Ln}.

Target detection in this paper is based on a binary hypothesis
test of H0 versus H1 that represent the hypotheses correspond-
ing to “environmental disturbances only” (i.e., absence of a
target) and “presence of a target,” respectively. That is, H0
is referred to as the null hypothesis and H1 as the alternate
hypothesis. In this setting, the problem of target detection in a
dynamic environment is to find a decision rule for H0 versus
H1 by a synergistic combination of the data collected by the
sensor set L under the following assumptions.

1) The sensors are homogeneous, i.e., all sensors are of the
same modality.

2) Even though the sensors have the same modality, their
deployment is heterogeneous in the sense that they are
not co-located and that their orientations are different;
therefore, different sensors may yield different outputs
in the presence of a single target.

3) Within a given time span of observation, there is at most
one (moving) target. In other words, the observed time
series outputs of the sensors correspond to the same
event (i.e., the same target if it is present).

4) The time scale of environmental changes is largely sim-
ilar to that of event occurrence (e.g., target motion).
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In other words, the environment is dynamically changing
during the observation of a local event.

The Assumptions 1)–4), stated above, are often encountered
in distributed sensing applications. The usage of homogeneous
sensors is cost-effective and placing them noncolocated with
different orientations provides heterogeneity that allows a vari-
ety of views of the target and environment. Furthermore, the
sensors are usually looking for hard-to-find targets, which gen-
erally means only one will appear in a field-of-view within a
short time span, or else the field of view would be too large
to detect a faint target. Finally, the time scale of encounter-
ing hard-to-find targets could be similar to that of dynamically
varying environmental changes. Thus, the above assumptions
are consequences of phenomena that may naturally occur at a
sensor-network node in real-life situations.

IV. PROPOSED TECHNICAL APPROACH

For collaborative decision-making, it is necessary to con-
struct a framework for information fusion at appropriate levels
of granularity or details. From this perspective, the decisions
are mostly characterized in terms of information levels at
which the fusion takes place. Based on the level of information
details, sensor fusion models are classified as the well known
triplet: data-level, feature-level, and decision-level [25].

Even though data-level fusion entails maximum details,
communication of raw data (i.e., symbols in the proposed
approach) may require tight clock synchronization in individ-
ual network nodes and high communication overhead, which
are expensive to implement. On the other hand, decision-
level fusion requires relatively less communication overhead
at the expense of loss of vital information, which may lead to
incorrect interpretations in a dynamic operating environment.
Therefore, the focus of this paper is to formulate an algorithm
for feature-level information fusion for target detection.

Each time series Yi of the observation ensemble Y is first
individually processed (at the sensor site) and then compressed
into a low-dimensional feature, as explained in Section II. The
symbolic dynamics-based feature extraction method is used to
create generative models of the sensed data and also to serve
as compact representations of the events that generate the data.
Hence, each time-series Yi for the sensor Li is now statistically
represented by a unique PFSA.

The set of PFSA, corresponding to the set of sensors L, is
denoted as G ≡ {G1, G2, . . . , Gn}. The cardinality of the set
of states in each PFSA Gi in G is constrained to be identical
(so that they can be compared in the same space). This is
further facilitated by having an identical alphabet size |�| for
all PFSA Gi ∈ G.

Fig. 2 presents a qualitative illustration of the feature evo-
lution in a dynamic environment for a small sensor network.
Sensors with local environment-only information (i.e., in the
absence of a target) should have similar features at any par-
ticular instant of time; however, this information at a given
location might be different at two different time instants
as well as at different locations at the same time instant.
Hence, when compared in the feature space, the sensors with
environment-only information should be lumped together as

Fig. 2. Feature-space illustration in a dynamic background environment.

a single cluster. If a target is present, response of sensors
and thus, the features extracted from the same sensors with
target information should be significantly different from the
features of sensors with environment-only information. From
this perspective, two definitions are introduced to quantify the
divergence between the extracted features and the clusters.

Definition 3 (Feature Divergence): Let �̂i be the feature
extracted for the PFSA Gi corresponding to the sensor Li, and
let �̂j be the feature extracted for the PFSA Gj corresponding
to the sensor Lj. Then, the (scalar) feature divergence between
these two sensors is expressed as

m
(Li,Lj

)
� d

(
�̂i, �̂j

)
(3)

where d is a suitable metric and popular choices of a
metric [14], [26] are as follows.

1) Euclidean distance, d2(a, b) � (a − b)(a − b)′.
2) City block distance, d1(a, b) �

∑n
j=1 |aj − bj|.

3) Cosine distance, dc(a, b) � 1−(ab′/
√

(aa′)(bb′)), where
a and b are two row vectors having the same dimension
and the column vector a′ is the transpose of a.

Definition 4 (Proximity Matrix): Let Cr and Cs be two
nonempty clusters, i.e., each of them contains at least one
sensor. Let Lri be the ith sensor in Cr. Let nr be the num-
ber of sensors in Cr. Then, the proximity matrix A� = [a�

rs]
between any two clusters is obtained elementwise as

a�
rs � �(Cr, Cs) (4)

where the cluster distance is expressed as

�(Cr, Cs) � 1

nrns

nr∑

i=1

ns∑

j=1

m
(Lri,Lsj

)
. (5)

In the following, we present details of three different clus-
tering methods, namely k-means, agglomerative hierarchical,
and spectral, that have been used to make collaborative tar-
get detection. Each of these three clustering methods has been
used to analyze the topological similarity of the PFSA set G

corresponding to the ensemble of observation Y. In all these
three methods, we assess the structure of the set G under the
two possible hypotheses, H0 and H1. A decision rule is reached
by finding the discriminative features in the PFSA set G for
maximum separability of the null and the alternate hypothesis.
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The idea is to use the gap statistics [27] of the clusters to
learn whether the attributes of the set G belong to either the
environment-only or the target-present scenario.

A. k-Means Clustering

The k-means clustering [28]–[30] is used to group the ele-
ments of G into k = 2 mutually exclusive clusters. After
initiating the positions of cluster centroids, each Gi is assigned
to the closest cluster according to a predefined distance mea-
sure (e.g., cosine similarity). The cluster centroids are then
updated by minimizing the sum of the distance measures
between every Gi and its corresponding cluster centroid. The
cluster assignment and distance minimization processes are
iteratively repeated until the algorithm converges and there is
no further change in assignment of the elements of G to the
clusters. The positions of cluster centroids are initialized by
randomizing from the set G. To avoid local minimum due to a
bad initialization, ten replicates with individual random initial
starts have been used in parallel to ensure that the algorithm
returns the lowest sum of distance measures. The outputs of
k-means clustering are locations of centroids of the two clus-
ters and element indices of each cluster. The gap (i.e., cluster
centroid distance) statistics can be used to design a threshold
for declaration of target.

B. Agglomerative Hierarchical Clustering

Agglomerative hierarchical clustering [29] is a bottom-up
method that generates a sparse network (e.g., a binary tree) of
the PFSA set G by successive addition of edges between the
elements of G. Initially, each of the PFSA G1, G2, . . . , Gn is
in its own cluster C1, C2, . . . , Cn, where Ci ∈ C, which is the
set of all clusters for the hierarchical cluster tree. In terms of
the distance measured by (3)–(5), the pair of clusters that are
nearest to each other are merged and this step is repeated till
only one cluster is left. Fig. 3 presents two examples of binary
trees obtained from environment-only and target-present sce-
narios as an example to make the visualization easier (details
of the corresponding experiments are presented in the next sec-
tion). In both examples, the sensor number 3–5 are grouped
together as a single cluster (i.e., they are subjected to high
ambient illumination level compared to others). However, the
distance between the cluster, consisting of sensor 3–5, and
others is significantly larger than that of the environment-only
case. This tree structure displays the order of splits in the net-
work, which can be used to find the expected behavior of the
network for environment-only and target-present scenarios.

C. Spectral Clustering

Spectral clustering, in general, performs a dimensionality
reduction by using spectral properties (i.e., eigenvalues and
eigenvectors) of the similarity matrix generated from the fea-
ture set (extracted from the sensed data). The PFSA set G is
modeled as a fully connected weighted graph, i.e., every Gi

is a node of the graph and the weight for a edge between
i and j is calculated from the attributes (or features) of the
PFSAs Gi and Gj. In particular, the graph properties are ana-
lyzed using two commonly used similarity functions: 1) cosine

(a)

(b)

Fig. 3. Examples of binary tree structure formed by multiple sensors. Binary
tree of: (a) environment-only and (b) target-present scenarios.

similarity function sc(·, ·) and 2) the Gaussian kernel similarity
function sg(·, ·), both expressed in the following equation:

sc(ak, a�) �
aka′

�

‖ak‖‖a�‖ and sg(ak, a�) � e
− ‖ak−a�‖2

2σ2 (6)

where the (1×|Q||�|) vectors ak and a� are vectorized forms

of the matrices �̂k and �̂�, respectively; the column vector
a′
� is the transpose of a�; the Euclidean norm of the vector ak

is denoted as ‖ak‖; and σ is a nonzero real parameter.
Once an n × n similarity matrix A (i.e., Ac � [sc(ak, a�)] or

Ag � [sg(ak, a�)]) is constructed, which is symmetric-positive-
definite, it is normalized to obtain the graph Laplacian as

L = I − M−1/2AM−1/2 (7)

where M is a positive-definite diagonal matrix and is com-
puted as

Mii =
∑

j

Aij. (8)

By the Rayleigh–Ritz theorem [31], the clustering results
are obtained in terms of the |Q|-dimensional eigenvector f
corresponding to the second smallest eigenvalue of the (posi-
tive semi-definite) Laplacian matrix L. The graph partition in
clusters is constructed by using the sign of the elements of the
eigenvector f as an indicator function, that is

{
Li ∈ C1, if fi ≥ 0

Li ∈ C0, if fi < 0
(9)

where C1 and C0 represent the two clusters in the set G.
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D. Hypothesis Testing With Feature-Level Sensor Fusion

The two most dissimilar clusters in the PFSA set G are
obtained for each clustering algorithm; for example, see the
two clusters at the top of the hierarchical trees in Fig. 3.
A decision on the presence of target is made based on the
divergence (or gap) between these two clusters. In the presence
of a target, the PFSA set G should be more heterogeneously
partitioned into two clusters, one carrying largely the informa-
tion on the environment-only scenario and the other carrying
largely the information on the target-present scenario. It is
noted that sensors with environment-only information are
always present because the presence of a target is spatially
sparse. For the environment-only scenario, even the two maxi-
mally separated clusters (e.g., the ones with maximum cluster
divergence in the hierarchical cluster tree) should be close
to each other in comparison to the target-present scenario.
Hence, the maximum cluster divergence for the cluster set
C1 would be higher as compared to that for the set C0, where
the subscripts 0 and 1 represent the null hypothesis H0 of
environment-only (i.e., no target) scenario and the alternate
hypothesis H1 of target-present scenario, respectively. It is
concluded from these observations that the maximum cluster
divergence, �(· , · ), which is achieved for the top two clusters
in the hierarchical clustering tree, should be strongly influ-
enced by the presence or absence of a target. Spatial sparsity
of the event implies that the cluster divergence should be larger
in the presence of a target, that is

max
Cr, Cs∈C1

�(Cr, Cs) > max
Cr, Cs∈C0

�(Cr, Cs). (10)

A decision for target presence could be made with appro-
priate boundaries to distinguish the cluster gap statistics in the
absence and presence of targets. To this end, the distribution
of cluster divergence �(· , · ) (e.g., divergence between the two
clusters as seen at the top of the hierarchical tree in Fig. 3) for
each hypothesis could be obtained during a training process.
Then, the target detection problem is formulated as a binary
hypothesis test in terms of the hypothesis pair as

{
H0 : X ∼ P0

H1 : X ∼ P1
(11)

where X is the range space of the random variable repre-
senting the divergence between the two clusters in the PFSA
set G; and the probability measures P0 and P1 represent
the cluster divergence under the null hypothesis H0 (i.e.,
environment-only scenario) and the alternate hypotheses H1
(i.e., target-present scenario), respectively. Decision bound-
aries can then be obtained by choosing a threshold η on the
likelihood ratio 
, which is obtained for (11) as follows:


(x) = dP1(x)

dP0(x)
for x ∈ X (12)

where it is assumed that the probability measure P1 is
absolutely continuous [3] with respect to the probability mea-
sure P0, i.e., for any event E belonging to the σ -algebra
of X, if P0(E) = 0, then it is implied that P1(E) = 0.
Under this condition, the likelihood ratio 
 in (12) is the
Radon–Nikodym derivative of P1 with respect to P0 and is
denoted as (dP1/dP0).

Sensor networks are designed to satisfy certain perfor-
mance requirements (e.g., not exceeding a maximum allow-
able false alarm probability). Under such constraints, the
Neyman–Pearson hypothesis testing procedure [3] maximizes
the probability of correct detection PD, while the false alarm
probabilities PF are not allowed to exceed a specified bound α,
where α ∈ (0, 1) is called the significance level. From this per-
spective, an appropriate choice of the decision rule δ is made
to maximize the detection probability as

max
δ

PD(δ) subject to PF(δ) ≤ α. (13)

A threshold η for rejecting the null hypothesis H0 in the
favor of the alternate hypothesis H1 could be identified by
using the following equation:

P0({x ∈ X : 
(x) > η}) = α. (14)

It follows from (13), (14), and the Neyman–Pearson
lemma [3] that there exists a unique optimal decision rule
δ� with an associated threshold parameter η > 0, which is
dependent on the significance level α, such that:

δ�(x) =
{

Select H1 if 
(x) > η(α)

Select H0 if 
(x) ≤ η(α)
for almost all x ∈ X.

(15)

V. DESCRIPTION OF THE EXPERIMENTS

The experimental apparatus consists of a small sensor
network, a moving target, and ambient light. The sen-
sor network is a ring of nine TCRT5000 infrared sensors.
A computer-instrumented and computer-controlled Khepera III
mobile robots [32] serves as a single moving target, the
dynamic environment, and the associated disturbances are
emulated as variations in the daylight intensities on partially
cloudy days.

These sensors embed an infrared light emitter and a receiver.
The current experiments make use of the ambient light mea-
surements and the performance of environmental surveillance
is inherently dependent on the maximum sensor updating rates.
The update time between measurements of all nine sensors
is 33 ms. During this 33 ms interval, the nine sensors are
read in a sequential way every 3 ms. The central worksta-
tion is linked with sensor nodes via Bluetooth. After receiving
each new measurement, the station converts and stores the
sensor readings before collecting new data. Due to the process-
ing and communication delays, the average interval between
two readings is ∼65.3 ms with standard deviation of 5.2 ms,
which makes the average updating frequency as ∼18.5 Hz
with standard deviation of ∼2.9 Hz.

This paper considers two types of scenarios for multisensor
target detection under dynamic environments. Fig. 4 depicts
the layout of experimentation. The sensor network is placed
at the center of a square room in which only one wall has open
windows that are exposed to the sun. During the experiments,
the moving target travels at a constant speed in straight lines
between the sensor network and the ambient light source. The
infrared readings of sensors oriented toward the moving tar-
get are subjected to disturbances when the target is moving
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Fig. 4. Experimental setup for target detection in a dynamic environment.

(a)

(b)

Fig. 5. Typical profiles for collected data. (a) Environment-only (no target).
(b) Target-present.

in and out, which causes intermittent blocking of the ambient
light source. Fig. 5 presents examples of sensor readings for
both environment-only and target-present scenarios.

All experiments have been conducted during days under
partially cloudy conditions, where the sunlight is intermit-
tently blocked by clouds. This situation affects the readings
of infrared sensors, as depicted in Fig. 5, specially for those
sensors that are oriented toward the windows. Sensor nos. 3–5
(that are subjected to stronger ambient illumination) and the
remaining sensors, i.e., nos. 1, 2, 6, 7, 8, and 9 (that are
subjected to weaker ambient illumination) are respectively
grouped together as two single clusters (see the top rows in
two plates of Fig. 3). However, although these two clusters
appear to be exactly the same for both scenarios, the distance
between them is significantly larger in the target-present sce-
nario than that in the environment-only scenario (5). The tree
structure in Fig. 3 displays the order of splits in the network,
which is gainfully used to identify the behaviorial difference
of the network for the afore-said two scenarios.

In total, 50 experiments with environment-only
(i.e., absence of a target) and another 50 experiments
in the presence of a target have been conducted. For each
experiment, nine sensors record synchronized data for about
65 s. Due to the orientation of sensors, the effects of the
environment are different for those of the individual sensors.
Sensors which are facing the windows (i.e., the ambient light
source) would have different levels of reading when compared
with the rest of the sensors. When a target is moving in,
ambient light sources are partially blocked for some of the
sensors, which increases their readings temporarily. As shown
in Fig. 5, changes in the ambient light affect the moving
target as the readings of some of the sensors fluctuate more
significantly. Thus, it becomes difficult to correctly detect a
target by simply using a thresholding method on the sensor
readings under environmental changes.

VI. RESULTS AND DISCUSSION

This section presents the experimental results of multisensor
fusion at both decision and feature levels for target detection
in a dynamic environment. For decision-level fusion, decisions
of target detection are made by voting based on the time series
of individual sensors. On the other hand, target detection by
feature-level fusion is based on the hypothesis testing of the
proposed clustering algorithms. Features are generated from
sensor time series based on SDF (see Algorithm 2) with the
choice of alphabet size |�| = 10 and PFSA model depth (i.e.,
memory) D = 1.

Time series data, used for target detection, are first normal-
ized by subtracting the mean and then dividing by the standard
deviation; this step ensures that the algorithm is not just pick-
ing up local spikes in mean or variance for decision-making.
For robust performance evaluation of both decision-level and
feature-level fusion, cross validation is performed by using
multiple combinations of training and test data. For each iter-
ation, the experimental data of both environment-only and
target-present cases are randomly divided into training and
test data sets: 80% of each scenario (i.e., 40 sets) are assigned
to the training set, while the remaining 20% (i.e., 10 sets)
are assigned to the test set. The results are generated as the
average over 100 such combinations of training and test sets.

In this paper, two different pattern classifiers have been
used such as support vector machine (SVM) and k-nearest
neighbors (k-NN) that are among the well-known and most
frequently used standard tools [33]. The parameter of neigh-
borhood size for k-NN algorithm is chosen as k = 3; and
a linear kernel is used for SVM classification. The results
obtained by usage of these two classifiers could be different
due to the inherent structure of the extracted features.

A. Target Detection by Decision-Level Fusion

Decision-level fusion consists of learning and test phases.
During the learning phase, each sensor is trained by features
extracted from labeled training data. In the testing phase, each
sensor reports the results obtained from pattern classification
of the features extracted from its test readings. Accordingly,
a central workstation declares a positive target detection if
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TABLE I
AVERAGE CONFUSION MATRICES OF CROSS VALIDATION FOR DECISION-LEVEL TARGET DETECTION

the total number of sensors reporting the presence of a target
satisfies the detection criterion.

The results of target detection with decision-level fusion
and using SVM and k-NN are shown as confusion matrices
in Table I, which shows that both classifiers yield decreas-
ing false alarm rates as the requirement on the total num-
ber Ntg of sensors reporting the presence of a target is
increased. However, the positive detection is severely com-
promised when the requirement on Ntg is greater than 2. As
the requirement for correct detection becomes more critical
(e.g., Ntg ≥ 4), the detection performance suffers from low
successful detection, even though the near-zero false alarm
rate is achieved. The target detection problem, addressed
in this paper, is not sensitive to these two different classi-
fiers, SVM and k-NN. It appears that the poor performance
of decision-level fusion is not dependent on the choice of
classifiers.

B. Target Detection by Data-Level Fusion

This section presents the technical approach and results of
a data-level fusion scheme for target detection. The data sets
used in the training and testing phases are the same as those
used for decision-level fusion. However, features are extracted
from the ensemble of all sensors instead of being generated
individually.

To apply feature extraction on the time series of multiple
sensor nodes, a multidimensional symbolization method has
been developed. The steps of the feature extraction algorithm
are as follows.

1) Step 1 (Preprocessing): The time series data of each
sensor is transformed as a zero-mean and unit-variance
manner (i.e., subtract its mean and then divide by its
standard deviation).

2) Step 2 [MEP (Section II-A)]: Individual processed time
series data are partitioned to obtain the symbol sequence
for each sensor.

3) Step 3 (Application of PCA [33]): The time series
data from multiple sensors are treated as a multidi-
mensional observation vector that is decomposed into
linearly independent components using principal com-
ponent analysis (PCA).

4) Step 4 (k-Means Clustering [33]): It is applied on
the reduced-dimension PCA feature vectors based on a
predefined set of clusters.

TABLE II
AVERAGE CONFUSION MATRICES OF CROSS VALIDATION FOR

DATA-LEVEL TARGET DETECTION WITH NUMBER

OF CLUSTERS NC = 3

The symbol sequences are compressed representations of
the information contents in the ensemble of time series
from all sensor nodes, where the PCA serves the role of
dimension reduction. In the analysis based on the original
high-dimensional time series ensemble over all experimental
data sets, top three principal components are chosen for PCA;
these three principal components contribute to more than 95%
of the variance (i.e., total energy of all principal components).

A major role of data-level fusion is to obtain the correla-
tion among time series data from different sensor nodes in
two different scenarios: 1) no target and 2) target present.
The data-level fusion yields better performance relative to the
decision-level fusion, because more information is available.
In data-level fusion, there are three information compression
steps during the symbolization process: 1) partition for indi-
vidual time series from each sensor; 2) projection on top PCA
principle components; and 3) final symbolization from cluster-
ing of PCA feature sequence. This information compression
could be helpful for communication and computation effi-
ciency, and the reported results are promising for this particular
application of target detection under dynamic environments.

The results of target detection have been optimized with
appropriate choices of cluster number in the k-means clus-
tering algorithm for PCA feature sequence. In this paper,
the results are obtained with the number of cluster chosen
to be 3. Similar to decision-level fusion, two pattern classi-
fication tools, namely SVM and k-NN [33], are applied and
Table II lists the results data-level fusion.

C. Target Detection by Feature-Level Fusion

This section presents performance evaluation of target
detection by feature-level fusion using the three different tech-
niques of clustering, namely k-means, agglomerative hierarchi-
cal, and spectral, discussed earlier. In each of these approaches,
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(a) (b) (c)

Fig. 6. Distribution of cluster distances for environment-only (H0) and target-present (H1) scenarios in the feature space with cosine distance (similarity).
(a) k-means clustering. (b) Agglomerative hierarchical clustering. (c) Spectral clustering.

(a) (b) (c)

Fig. 7. ROC curves for feature-level target detection. (a) k-means clustering. (b) Agglomerative hierarchical clustering. (c) Spectral clustering.

a decision on target detection is made based on a threshold
on the divergence (or gap) between the two most dissimi-
lar (i.e., maximally separated) clusters in the PFSA set G.
Since the attributes (i.e., features) of multisensor data are, on
the average, more similar to each other in the environment-
only scenario than in the target-present scenario, a target is
declared to be present if the divergence between the two
clusters of interest is higher than a specified discriminating
threshold T .

Fig. 7 depicts the receiver operating characteristic (ROC)
curves to illustrate the performance of hypothesis testing for
target detection using the entire data set. For all three proposed
clustering algorithms, the performance of cosine distance (or
similarity) measure significantly exceeds those of other feature
divergence measures. For Euclidean and city block divergences
in k-means and hierarchical clustering, the former provides
better true positive rates for the same false positive rate along
the entire ROC curve. From the ROC curve obtained for spec-
tral clustering, it is seen that the spectral properties of the
Laplacian matrices (with cosine similarity measure) obtained
for the features can separate detect targets without any confu-
sion (or error). To see this more clearly, the statistics of cluster
divergence (or gap) which are obtained for all three approaches
by using the different metrics are approximately fitted with the
most-likely Gaussian distribution. The separability of the dis-
tributions with cosine distance (similarity) function for the two
scenarios are visualized in Fig. 6.

To obtain the probability distributions, first the character-
istics of the divergence (or gap) among the members of the
PFSA set G are generated for all the 100 cases using the three

clustering techniques. Then, the gap statistics between the two
most dissimilar members of G are obtained and fitted with
a Gaussian distribution for both environment-only and target-
present scenarios. The distribution obtained for cosine distance
(or similarity) for all three clustering methods is distinctly sep-
arable. The difference in the mean cluster divergence of the
two events is greater than at least twice the standard devia-
tion of the respective distributions, as seen in the histogram
and estimated distributions of Fig. 6 for cosine measurement
cases.

Both k-means and hierarchical clustering are applied with
distance measurements, while spectral clustering uses simi-
larity measurements. Hence, the cluster distance for spectral
clustering represents the negative similarity measurements,
which are presented as negative real values.

It is observed that the variance parameters in the probabil-
ity distribution of cluster divergence for both environment-only
and the target-present scenarios are approximately similar in
most cases (except for the cosine distance function under
k-means clustering), and that the mean value for target-present
is always larger than that for environment-only. With Gaussian
distribution models for both hypotheses H0 and H1, it follows
from (11) that:

{
H0 : X ∼ N (

μ0, σ
2
)

H1 : X ∼ N (
μ1, σ

2
) (16)

where the hypotheses H0 and H1 share same variance σ 2 and
different expected values μ1 > μ0. It is noted that the variance
σ 2 is obtained by averaging the variances of the distributions
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TABLE III
AVERAGE CONFUSION MATRICES OF CROSS VALIDATION FOR FEATURE-LEVEL FUSION TARGET DETECTION

corresponding to the two hypotheses. Then, the likelihood ratio

 in (12) is expressed in a closed form as


(x) = exp

((
μ1 − μ0

σ 2

)(

x − μ1 + μ0

2

))

∀x ∈ R. (17)

Since 
 in (17) is a continuous and strictly increasing func-
tion, the decision threshold η for likelihood ratio 
 in (15) can
be converted to the decision threshold T for observation x as

T = 
−1(η). (18)

Accordingly, (14) can be reformulated for this particular
application as

P0({x > T}) = α (19)

and the parameter T is computed for Gaussian distribution
N (μ0, σ

2) as a function of the significance level α as

T(α) = σ Q−1(α) + μ0 for α ∈ (0, 1) (20)

where Q(θ) � (1/
√

2π)
∫ ∞
θ

dt e−(t2/2) ∀θ ∈ R.
It follows from (19) that an α-level Neyman–Pearson test

for this case yields the optimal decision rule as:

δ�(x) =
{

Select H1 if x > T(α)

Select H0 if x ≤ T(α).
(21)

To evaluate the robustness of the feature-level fusion, cross
validation is performed by different combinations of training
and test data. In the training phase, an ROC curve is con-
structed from 80 cases (40 from each of the environment-only
and target-present scenarios) of training data. The threshold
T is obtained from (20) so that the false-alarm probability
does not exceed the assigned significance level α = 0.05
for Neyman–Pearson criterion [3]. Then, this threshold value
is used for decision-making in the remaining 20 cases for
both scenarios to compute the confusion matrices in the
test phase. In total, 100 different combinations of train-
ing and test data are used and the results are summarized
in Table III.

While an arbitrary classifier could have chosen wildly dif-
ferent decision boundaries in a dynamic environment, the
proposed method achieves stable decision boundaries with
multisensor fusion. The results of cross validation show that
the performance of cosine distance (similarity) measure is

TABLE IV
CLUSTER PURITY FOR TARGET-PRESENT SCENARIOS

consistently good regardless of the choice of the clustering
algorithm. The false positive rates of cosine similarity in the
test phase are all below 5% as required, while other measures
fail to meet this criterion. The true positive rate for cosine mea-
sures are above 95% for all clustering algorithms, while the
other metrics show a rather poor performance for all clustering
algorithms.

Table IV presents the results of cluster purity [34] for 50
cases with a moving target. Due to spatial sparsity of the mov-
ing target, only a few sensors can detect targets while the rest
collect environment-only data. The nine sensors are clustered
into two groups as: 1) environment-only and 2) target-present.
Then, the clustering purity is measured by calculating the cor-
rect grouping of sensors in the two clusters. Among all metrics
(i.e., distance and similarity measures) used, the cosine dis-
tance (similarity) measure provides the highest cluster purity
for all three clustering algorithms. On an average, all three
algorithms misclassify only one or two sensor(s) out of nine
for each event. However, the performance difference is not that
profound under different combinations of similarity measures
and clustering algorithms.

The comparison between the cosine similarity measure and
a typical distance metric (e.g., Euclidean) has been reported
in the open literature [26], [35]. Although the characteristics
of feature vectors could be more favored by one measure than
the other [36], cosine measures usually outperform Euclidean
measure [37], [38] in clustering problems. The reason is that
distance metrics (e.g., Euclidean and City Block) are measures
of the distance between a pair of points in the space, while
cosine similarity is a measure of the angle between the pair of
vectors. For the clustering purpose, cosine similarity provides
the capability of distinguishing changes in the direction of the
feature vector in contrast to the absolute numerical difference
of individual elements of the feature vector.
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VII. CONCLUSION

This paper presents a generalized framework for robust
multisensor target detection in dynamic environments, where
low-dimensional features are extracted from different sensors
by making use of SDF [14], [15]. A data-driven method is pro-
posed for sensor fusion, which does not rely on availability of
sensor and process models. The tool of SDF [14] is applied for
feature extraction from time-series data, collected from differ-
ent sensors. The structure of the set of features is then assessed
using three different clustering methods while using different
metrics for them. Due to a dynamic background environment,
the structure of each of the clustered features changes at dif-
ferent time instants; however, within the time span of an event
of interest, all sensors share the same environment dynamics.
Under this observation, a decision on the presence of a tar-
get is made by first using the divergence between the two
most dissimilar clusters and then by learning the cluster gap
statistics for the binary hypothesis during the training process.
It is also shown how to use different criteria (e.g., maxi-
mum false-alarm probabilities) to calculate a threshold for the
deciding rule.

Performance of the proposed target detection method is
experimentally evaluated by hypothesis testing in a laboratory
setting for a single moving target, where detection is made
by multiple infrared sensors under fluctuating ambient light.
Results of experimentation show that the proposed feature-
level method outperforms a supervised decision-level fusion
scheme in uncertain dynamic environments. The robustness
of the performance is evaluated by a cross validation pro-
cess and the results show perfect positive detection with low
false alarm probabilities. The decision boundaries have been
obtained under the constraints of maximum allowable false
alarm probabilities by applying Neyman–Pearson decision cri-
terion [3]. The results (i.e., the decision boundaries) are found
to be stable with (almost) perfect accuracy for detection of
targets with appropriate choices of the distance function and
similarity matrix (i.e., cosine distance and cosine similarity).
Pertinent conclusions from the work reported in this paper are
summarized as follows.

1) The feature-level clustering scheme provides a semi-
supervised robust framework for target detection in a
dynamic background environment with limited commu-
nication capability.

2) SDF provides a reliable low-complexity feature-
extraction tool that can be used for information compres-
sion and fusion at the nodes (with limited computation
capabilities) of a sensor network.

3) The target detection method is robust relative to exact
placement of the sensors (i.e., there are no restrictions
imposed on sensor placement).

While there are several issues that need to resolved by fur-
ther theoretical and experimental research, the following topics
are recommended for future research.

1) Sequential Hypothesis Testing: A framework is required
for more complicated scenarios of target classifica-
tion when multiple homogeneous and/or heterogeneous
targets are present.

2) Enhancement of Feature Extraction: The parameters
(e.g., alphabet size and depth for stochastic modeling
for PFSA construction) of SDF need to be optimized.

3) Enhanced Experimental Validation: Further experimen-
tal work on a large-scale sensor network would increase
the credibility of the proposed method of target detection
in different applications.
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