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This paper addresses the problem of learning dynamic models of hybrid systems from
demonstrations and then the problem of imitation of those demonstrations by using
Bayesian filtering. A linear programming-based approach is used to develop nonpara-
metric kernel-based conditional density estimation technique to infer accurate and con-
cise dynamic models of system evolution from data. The training data for these models
have been acquired from demonstrations by teleoperation. The trained data-driven mod-
els for mode-dependent state evolution and state-dependent mode evolution are then used
online for imitation of demonstrated tasks via particle filtering. The results of simulation
and experimental validation with a hexapod robot are reported to establish generaliza-
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1 Introduction

Traditionally, plant models of intelligent systems are developed
based on the knowledge of underlying physics. As the system
complexity grows, physics-based modeling and the associated
task of decision and control synthesis become increasingly diffi-
cult, if not infeasible. However, advancements in statistical learn-
ing theory [1] allow to handle various complex dependencies that
can be used for synthesis of decision and control laws. This paper
aims to investigate this alternative technique of learning dynamic
data-driven models [2] and controllers for hybrid systems by
making use of density estimation techniques [1,3].

Based on the data from several demonstrations by an
expert using teleoperation for robotic systems, statistical models
are inferred for imitating the tasks with the objective that these
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models finally learn the expert-level decision and control laws.
The models developed in this work are represented as nonpara-
metric conditional probability density functions using ratios of
kernel-based mixture models. Unlike parametric approaches for
density estimation, these nonparametric models have no restric-
tion of structure of the relationship between states and modes and
require no assumptions about the noise statistics. The density
modeling approach in Refs. [3] and [4] is only suitable when the
conditioning variable is a discrete random variable. In contrast,
the conditioning variable associated with the dynamic model is
continuous-valued in this work. Thus, using Ref. [4] with a special
type of product kernel, a dynamic modeling framework has been
developed for hybrid systems. The optimal dynamic policy for
mode selection is obtained by using Bayesian filtering with a data-
driven model of plant dynamics for prediction and a measurement
model for correction.

1.1 Prior Work. Learning from demonstration (LFD) is a
class of machine learning algorithms, where a teacher provides
examples or trajectories for the robot to perform specified tasks
[5]. In this context, an example is a sequence of observation—
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action pairs that are recorded during a demonstration. Learning
from demonstration is closely related to reinforcement learning
[6], as model learning or direct policy search algorithms are com-
monly used in both these areas [5]. Model learning techniques use
examples to learn a model of the environment (or of its own
dynamics) to find a policy for controlling the robot (e.g., see Refs.
[7-9]). The notion of direct policy search is to learn the policies
directly and bypass the associated model learning and policy syn-
thesis steps (e.g., see Refs. [10-12]). However, reinforcement
learning algorithms are very difficult to optimize for composite
tasks which are easily solved by expert humans. Thus, the idea in
LFD is to be able to learn the policy used by the expert supervisor
directly. Unlike reinforcement learning, usually in LFD algo-
rithms the robot does not receive any reward for performing any
action, rather it attempts to infer the policy being followed by the
supervisor (assuming it is the optimal policy) using a classification
or regression algorithm. In this paper, an LFD technique is pre-
sented where the robot is shown demonstrations by teleoperation
[13]. The data from these demonstrations are used to learn a tran-
sition model over a finite set of predefined modes using a novel
conditional density estimation technique. A particle filter is then
used with these data-driven dynamic models to track the states as
well as select an operation mode, which most likely imitates the
actions used by the human supervisor.

Classification-based LFD approaches [5,10] learn a mapping
using supervised learning approaches, such as K-nearest neighbor
(KNN) or Gaussian mixture models (GMM), to predict the mode
using only the current observation. However, the proposed
method uses a filter that is built upon the history as well as current
measurements of the states to predict and switch the mode of a
robotic system. Moreover, in contrast to the classification or
regression-based approaches for LFD in robots, the theme of the
current paper is to infer the transition model, which was used by
the supervisor, for deciding an optimal mode-selection strategy
for the robot. Such an approach has the advantage that the under-
lying structure present in the training data can be exploited, which
may not be available directly in the classification approach. For
example, a human can make decisions for a task during the train-
ing based on certain environmental features that may not be
directly available from the state information of the robot. Finding
the transition model for making these decisions can improve the
accuracy of imitation actions, which is demonstrated in this work
through an experiment.

1.2 Contributions. The major contribution of this paper is
development and validation of a data-driven method of modeling
behavior of hybrid systems using kernel-based mixture models.
This paper presents an extension of the density estimation tech-
nique developed in Ref. [4] to solve the problem of learning
dynamic models for state-dependent mode evolution and mode-
dependent state evolution for hybrid systems. Another contribu-
tion of this work is the dynamic mode-selection policy for
imitation, which is based on Bayesian filtering and estimation.
The particle filter is used for tracking states as well as for predic-
tion of modes using the joint state—-mode evolution models that
are learned from demonstrations.

The proposed procedure of learning theory-based decision and
control has been validated via both simulation and laboratory
experimentation. In example 1, a simulated one-dimensional (1D)
robot learns to slow down at points of interest in a pipeline inspec-
tion scenario. In example 2, a walking hexapod robot, which is an
over-actuated high-dimensional robotic system, learns to inspect a
power plant by following demonstrations given by a human opera-
tor using teleoperation. The experimental results have been com-
pared with classification-based a2pproaches. A few videos from the
experiment are available online.

2https://goo.gl/g7cgHs
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The paper is organized as follows: Section 2 formulates the
learning and imitation problems mathematically. In Sec. 3, the
justification for using Bayesian filtering and the technical
approach, including density estimation, data-driven modeling, and
particle filtering, is explained in detail. Section 4 illustrates the
proposed framework with a 1D simulation example. The experi-
mental setup for validation and the associated results have been
described in Sec. 5. Section 6 provides “Concluding Remarks”
and future research directions.

2 Problem Formulation

The system of interest is a discrete-time switched system with
few distinct modes. Each mode of the system activates an atomic
dynamic behavior, which is already programmed into the system.
A task (e.g., completing an inspection routine in a power plant for
a walking robot) is modeled as a sequence of state-dependent and/
or observation-dependent mode transitions. The objective is to
learn a dynamic model for the system from demonstrations and
then use the dynamic model to imitate that demonstration autono-
mously. These two problems are formulated ahead.

2.1 Problem of Model Learning From Demonstrations.
Let X, be a continuous random variable denoting the state of the
system at a time step ¢ € N, which can take values from a state
set X C R”. The state of the system can be observed using sen-
sors, and let Z, be a continuous random variable for the observa-
tion obtained at a time step ¢ € IN, which can take values from an
observation set )) C R™. The true underlying state of the system
is not needed in this approach, so the observation need not capture
the full state. The discrete set of operating modes of the system
are given by a finite set M, and a discrete random variable M,
denotes the mode at time step ¢, which takes values from the set
M. The state evolution dynamics of this switched system are
mode-dependent; thus, the conditional density p(X,+1|X;, M,) cap-
tures the state evolution dynamics. The mode-switching behavior
is represented by the state-dependent mode-evolution model
p(M,1]X;, M), which is encoded in the sequence of teleoperation
commands given by the operator to the system. Since the state
evolution model can be assumed to be independent of the mode at
the next time step, we get p(X;i.1[X;, M) = p(Xyi1 Xo, My, My ).
Thus, using the chain rule of probability, we obtain the joint state
and mode evolution model as follows:

P(Xr+l7Mt+1 ‘XtaMt) = P(Xt+1 \Xan)p(Mm |Xr7Mr)7 (D

which is learned using the training data from demonstrations. The
demonstrations are recorded and are made available as a sequence
of tuples of observations z/ and an input mode from the user m! as
d' = ({zy,m\},{zh,mb}, ..., {2, ,mi }) for the ith demonstration,
where 7; is the length of that demonstration. The finite set of all
recorded successful demonstrations from the teacher is given by
D. Thus, the objective is to solve the conditional density estima-
tion problem from estimation of the models p(X,.|X,,M,) and
p(M,41]X;, M,) from the demonstration sequences given in set D.

2.2 Problem of Imitating the Demonstrations. Assuming
that the first problem of model learning can be solved, this second
problem can use the joint state—-mode evolution dynamics to
obtain a predictive model for the mode in the next time step. In
essence, the problem is to learn an observation-feedback dynamic
mode-selection policy u = (g, : p,(I,) = g1, My € M'(I))),
where [, is the information vector denoting all previous modes and
observations, i.e., I, = (I,_y,z,m;) and Iy = (mg). Here, the
information-dependent admissible mode set is given as

ML) = {/%1

iftm, =

otherwise

@
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where (J implies that the task has been completed; hence, mode
selection is not needed. The completion of task is determined by
the operator or when the state enters a predefined goal set. The
overall objective of this LFD approach is to solve an optimization
problem, which minimizes the total expected cost over the set of
all admissible policies, in order to determine the optimal policy
w*. This optimization problem is stated as

i = arg min{ZEn,,+.~,;<<‘,,)<ﬂ<u,<1f> £m)| G

puell €N

where E is the expectation operator, 1(-) is the indicator function,
IT is the set of all admissible policies, and p(-|/;) is probability
distribution representing the uncertainty/variability over the
modes in the next time step in the demonstrations after the infor-
mation /, was observed. If the teacher would have shown the dem-
onstration of the task in several different ways, then variability
would be high; whereas if the demonstrator was confident about
the next mode, then variability at that time step would be low.
Since we want to obtain the policy being executed by a human
operator, the expectation in the cost function is computed over the
distribution induced by that operator over the modes in the next
time step. Although this distribution is not directly available to
solve this optimization problem, it is captured in the demonstra-
tions shown by the teacher. The objective here is to learn the
underlying distribution from data, so that an imitation policy can
be obtained by the aforementioned optimization. This optimiza-
tion problem is solved in Sec. 3.

3 Technical Approach

This section presents the technical approach by first giving an
overview of the proposed approach and then explains the
optimization-based density estimation process to learn the dynamic
models from data. The Bayesian filtering-based state tracking and
mode prediction process is also explained in Sec. 3.1.

3.1 Overview. The training and the operation phases of the
problem address the learning and imitation tasks, respectively.
During training, the data from demonstrations are used to obtain
the dynamic model p (X1, M, 1|X;, M,) by nonparametric density
estimation [3,4]. The observation model p(Z;|X;) is assumed to be
given; else, it can also be learned from data [14]. The optimization
problem, as given in Eq. (3), is simplified and restated as

W= argmin{Z(l = pMp1 = (L)1)
kell | eN

Since the sequence of mode estimates from the policy can be cho-
sen independently at every time step, the optimal estimate for any
t € N should satisfy

My = argmin(l — p(M,y = m|l,))
meM' (1)
_ _ “)
= s = argmax p(Myer = mll,)
meM'(I,)

Thus, the optimal policy which minimizes the cost in Eq. (3) is
given by the most likely next mode that would have been executed
by the teacher. Although the distribution p is not directly available
to obtain the optimal policy, that distribution has been encoded in
the demonstrations shown by the teacher. Now, an estimate of this
probability distribution is obtained by using state—mode evolution
model, sequential update from Bayesian filtering, and observa-
tions. Assuming that initially a prior distribution is available at
time ¢, i.e., p(X,, M,|I;), prediction with the state—mode evolution
model yields
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Fig.1 Schematic for proposed model learning and imitation

P(Xr+17Mt+l|1r) = J Z P(Xt+1,Mr+1‘Xmmt)P(Xnmr‘Ir)dxt
xEeX meM

(&)

This predicted state—-mode distribution yields the posterior density
with the new observation by using the Bayes’ rule in the correc-
tion step as

P(Z|X)p(Xi, Mi|1, 1)

Z P(Zilx)p (s myl 1) dx,
xEX meM

pXi, Mi|L) =

The prediction and correction steps of Bayesian filtering will be
used sequentially to obtain the posterior density and the predicted
density as shown earlier. The predicted density from Eq. (5) will
also used to obtain the predicted mode density

(ML) = J p(Xoss = 5 My [1)dr ©)

xex

which is an estimate of the desired probability distribution to
obtain the mode selection policy as shown in Eq. (4). The pro-
posed overall learning and task execution process is shown in
Fig. 1, which shows the Bayesian filter for state estimation and
mode prediction during execution. The learning and imitation
problems are explained in Sec. 3.2.

3.2 Model Learning. The problem of model learning from
demonstration data uses nonparametric density estimation, since it
does not restrict the structure of the relationship or the noise statis-
tics. The kernel-based density estimation framework used in this
work has been developed in Ref. [4] and it is succinctly explained
here for completeness. This density estimation framework is then
used to obtain the relevant data-driven models.

3.2.1 Kernel-Based Density Estimation. In nonparametric
regression techniques, such as support vector regression and regu-
larization networks [15], the estimate of the unknown function f'is
obtained as

N
FO) = mK(y,y:) (7
i=1

where K(-,-) is the kernel function. In the problem of probability
density estimation, the training dataset includes only the measure-
ments {y;, Y2, ..., yn}, with y; € Y for all i, and the desired regres-
sion output is unknown. However, from the Glivenko—Cantelli
(GC) theorem of statistical learning theory [1], it is known that
the empirical cumulative density function (CDF) uniformly
converges almost surely to the true CDF as N — oo. That is,
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supyey [F(y) — Fx(y)| — 0 almost surely, for all CDFs F, where
Fy is the empirical CDF with N measurements, which is defined
by Fn(y) = 30 (T 1oy (0) for all y = (y',...,y") € V.
Here, 1g(-) is the indicator function on a set S, and y; =
(v}, ...,y fori = 1,..., N. Recall that the CDF of a random vec-
tor F(y) =f(Y <y) is computed by considering the inequality
elementwise [1]. Although the original GC theorem assumes that
the measurement sequence is i.i.d., generalization of the GC theo-
rem for strictly stationary measurement sequences [16], and for
data coming from uniformly ergodic Markov chains [17], is also
available in the literature. In order to leverage the GC theorem,
the problem of density estimation is formulated as that of CDF
estimation, where an empirical CDF is used in place of the true
CDF [1,3). Thus, the regression function is estimated as f (y) =
Sy K (3, i) where K(y,y;) = [' K(,y)dy for y €Y and
fori = 1,...,N. The set of tuples {(y1, Fx (1)), (on, En(yn))} is
then used as the training set to obtain 7y, ..., my. Here, the require-
ment is that the kernel function should satisfy [|K(y,y)dy’ =1
(integration to 1) and 0 < K(-,y) < k < oo (boundedness) for any
y € V. An example of kernel function that satisfies this require-
ment is the Gaussian probability density function.

The optimization problem for density estimation is formulated
next. Let y = [Fy(y1).. FN(yN)}T and 7w = [m; - - }T be column
vectors with N elements. Let K = [K (y;,y;)] be the N x N matrix
whose entry (i,/) is equal to K(y,,y,) fori,j=1,..., N and K; is
the ith row of K. The optimization for density estimation is then
formulated as a constrained empirical risk minimization problem
as: = argmingey (1/N) 321 max(0, |y; — Kn| — &), where the
constrained hypothesis set H = {me R : SV = 1,7 >0}
satisfies that each estimate is a well-defined density function.
However, the acceptable error margin ¢ in the hinge loss function
need not be known a priori for a general dataset; thus, the follow-
ing problem is formulated [4]:

(m,0) = argmin vo +— Emax (0,15, — K| —a)  (8)

neH,0>0 i=

where v € (0, 1] is the given weight for the error margin ¢. The
cost function includes a penalty on the size of margin ¢ and a loss
term which penalizes the absolute error in estimation only if it is
larger than that margin. This constrained optimization problem is
convex, but nonlinear, due to the presence of max(-,-) and |- |
functions in the cost function. However, it can be converted to a
linear program (LP) by adding more optimization variables. The
LP for density estimation [4], corresponding to Eq. (8), is given as

(T(7‘77£+7é?) = argmin vo+ — Z 6++£ ) )
neHo>o

(¢¢) e

where the convex set Z = {(¢7,¢7) e RY —~Kin<o+¢&,
i+ Kim<a+ &8 >0,8 >0,Vi=1,2,...,N}. This LP
can be efficiently solved using the interior point method [18]
available in standard LP solvers. The computational complexity
for learning the model using the interior point method (Karmakars
algorithm) is O(N3L), where N is the number of observations
and L is the number of bits of input to the solver [18]. This linear
program generates sparse mixture models; thus, the resulting mod-
els are concise [4]. An upper bound (o) of the error in estimation
is also available from the optimization; thus, accurate models can
be obtained by selecting appropriate kernel parameters by using
cross-validation.

3.2.2 Nonparametric Data-Driven Models. Using the chain

rule and marginalization from probability theory, the state evolu-
tion model is represented as

030906-4 / Vol. 140, MARCH 2018

p(X,+1,X,|M,)

J p(xt+17Xt‘Mt)dxt+l
X1 €X

pPXe1 X, M) =

and the mode evolution model is represented as

P(Xi| M1, M)p(My1|M;)

Z p(Xilmer, Me)p(my1|M,)
m EM

p(Mt+1|Xt7Mt) =

The densities p(X,.1,Xi|M,), p(XM:1,M,), and p(M,.1|M,) are
estimated from the training data available in the set of all success-
ful demonstrations D. The density estimation approach described
in Secs. 3.2 and 3.2.1 is used to obtain the density estimates
for p(Xip1,Xi|M,), p(XilMiy1,M;). Whereas Ty, = p(Myy =
m|M, =) is estimated by counting the occurrences of mode m
after mode /, i.e., by frequency counting and normalization, which
is the maximum likelihood estimate [19] of that density.

Trammg sets Vo = {y) = (4] Zoa), Vi€ {12, i}, Vd e
D :m,=m} are constructed using all demonstratlons for all
modes in the mode set, i.e., m € M. An estimate of the density
p(Xi+1,X,|M, = m) is obtained by solving the LP in Eq. (9) using
the training set ), and a special type of product kernel

K" (20152 " (2105 2)") = K3 (201520 )KT (21, 2)
where both K" and K%' individually satisfy the integration to 1
and the boundedness requirement. The obtained density estimate
is given as

N

= AWK (X2 KT (X, )

i=1

P(Xes1, Xi|M; = m)

where n,, < || is the number of nonzero coefficients in ="
The marginalization of this density is trivial, due to the special
choice of kernels, which gives

Ny

= K (X))
i=1

In Ref. [14], it was proven that the ratio of joint density and mar-
ginal density estimates, obtained as shown previously, are
bounded and well-defined everywhere, if K}'(-,z) > 0 for all z in
the domain of the problem. Using this result, the data-driven state
evolution model is given as

P(Xr|Mt = m)

Ny
mprm i m i
E T Ky <Xt+1vzr+l>K1 (X,,Zt)

P(Xr+l X, M, = m) = o

T _
m m 1
T Ky (Xh Zt)
i=1

On the other hand, the training set for mode evolution model is
obtained using all the demonstrations as: YV, = {y! = (7)),
Vie{l,2,...m},VYd € D:m =I,m,, =m}. This training
set and a kernel function K*"(-,-) are used to solve the LP in
Eq. (9). The resulting density estimate has n;,, < |V;,,| number
of nonzero coefficients in 7/, This density is used to obtain the
mode evolution model, which is a probability mass function given
as follows:

Nm

Tiw y_ m"K"" (X, 2))

pMpy =mX, M, =1) = =

Mg

Z TlmznlmK]m Xh t)

mem i=
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where T}, is the mode transition probability from mode / to mode
m. Since all terms in the numerator and denominator are positive,
it is readily verified that the probability mass function estimate is
well defined, i.e., non-negative and adds up to 1, if K*"(-,z) > 0
for all z in the domain of the problem.

This part shows the procedure to derive the nonparametric data-
driven models of state evolution and mode evolution. As shown in
Eq. (1), the product of these two models serves as the desired
dynamic model for joint evolution of state and mode for the
system under consideration.

3.3 Bayesian Filtering-Based Imitation. We know from
Sec. 3.1 that the predicted mode density can be obtained from
data-driven model and observations using sequential updates of a
Bayesian filter. We also know that the optimal policy u* selects
the mode with the highest probability from the predicted density.
The dynamic motion model is available as a nonparametric den-
sity function in this paper, which can only generate point esti-
mates and do not have a representation as a deterministic function
with additive noise. Thus, one cannot directly use the Kalman fil-
ter and its variants for sequential updates and filtering. The parti-
cle filter [20] is an appropriate choice for working with density
models. The implementation of this Bayesian filter for imitation
using the concept of particle filtering is presented ahead in this
section.

Algorithm 1: Particle Filter with Mode Prediction

1 Initialize by distributing N, particles in the domain
2fort=1: MAX do
fori=1:N,do
Calculate p(z|x!) for measurement z,
L Update Weights: wi = wi_ p(z|x!)

Normalization: wi = wi/ 3" w for all particles
[{xi, mi, wj}ivz’l = Resample using Algorithm 2
fori=1:N,do o

Xiy1,M;,; =Move x;, m; using Algorithm 3
10 | Mode selection: 71,1 = mode({mﬁ}?ﬁl)

OO0 9 O L AW

Algorithm 2: Low-Variance Resampling Algorithm [21]
[Set!=1,c; =w}

2 Sample u; from U[0, N, ']

3forj=1:N,do

gl oL J=l
4 uj—u1+Np

5 | whileu; > ¢, do
6 Ll:l—l—l,c'/:c[,l—l-wf
7 | =i = i = &

8 return [{x/, i1}, ¥} };")]

Algorithm 3: Propagation via Importance Sampling

1 Generate N,, samples of ¥/ from B, (x!)

2 Generate N, samples of m? using p(ny.1|m!)
3forg=1:N,do o |
4 Evaluate p(m?|m}, x}) and p(x?|m., x})

) Calculate importance: p(X7, m?|m!, xi)
6 ¢* = argmax p (x4, m?|mi, x!)

7 return ¥4, m¥

In particle filtering, a set of particles is used to approximate the
representation of joint state and mode densities p(X;, M;). The
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prediction step propagates the particles to the next step, while the
correction step accounts for the measurement by performing
resampling of the particles to obtain the posterior density. The
state evolution model p(X,.|X;,M,), the measurement model
p(Z|X;), and the mode switching dynamics p(M,.|X,,M,) are
used along with all the previous information /, to obtain the poste-
rior density. The particle filter estimates the posterior filtered den-
sity by first dispersing a finite number of particles within the joint
domain of states and modes, i.e., X x M. Each particle is
assigned a state, a mode, and an associated uniform weight
{xi,mi, wi}, where i represents the ith particle and ¢ is the iteration
number representing the discrete time step. Here, nonuniform
weights can capture the effects of a specific prior distribution. It is
shown in Ref. [20] that the posterior filtered density can then be
approximated as

N
p(Xi, Mi|l,) ~ ZW;5(Xr —x,)0(M; —m;)

i=1

(10)

where w! is proportional to wi_p(z/|x’) and &(-) is the Dirac
measure.

The particle filter for prediction, as shown in Algorithm 1,
begins with the correction step (lines 3—7). In this step, the state
of each particle x/ and the measurement z, is used to obtain the
likelihood value from the measurement model, p(z|x}), which is
then used to update the particle weights. The particles with low
weights are eliminated and those with high weights are duplicated
by using resampling. The low-variance resampling algorithm
[20,21], as explained in Algorithm 2, is chosen in this work, since
it is among the most time-efficient methods for resampling.

The propagation step requires moving the particle according to
the learnt dynamics. The state and mode transition dynamics is
available only as a density function. Hence, importance sampling
is employed to propagate the particles using this model, as shown
in Algorithm 3. A sample of N, number of next states {x} is gen-
erated uniformly from a ball B, (x!) around the state x!, whereas a
sample of N, number of next modes {77} is generated randomly
from p(M+y |m;), for each particle (x;'7 m;) Here, the set
B,(x) & {x € X : d(x),x) < n}, where the function d(-,-) is a dis-
tance metric defined on the space X. An importance measure is
assigned to each candidate particle according to the probability
from the joint state—-mode dynamic model. The state—-mode pair
with the highest importance value is selected as the next state and
mode of that particle. This sampling is repeated for each of the N,
particles, as shown in line 8-9 in Algorithm 1. The set of propa-
gated particles represent the predicted state—mode density. In
order to obtain the predicted mode density, the state has to be
marginalized. This is achieved by counting the number of par-
ticles for each mode and then the most frequent mode is used as
the estimated mode. After execution of this mode, a new measure-
ment is sampled and the correction, prediction, mode estimation,
and execution steps are repeated.

It is noted that the time complexity of executing this filtering-
based imitation mode-selection policy depends upon the sparsity
of the data-driven models obtained from the proposed technique.
If the model with the highest number of components in the
mixture model has S components, then the time complexity is
governed by the propagation step as O(N,N,S), where N, is the
number of particles, N, is the number of next states explored for
each particle, and S is the highest number of components in the
data-driven model which is evaluated for each next state.

4 TIllustration With Simulation

A one-dimensional simulation case is presented to illustrate and
visualize the working concept of the proposed method. In this
example, a pipe inspection robot moves along a straight path with
high velocity except near points of interest (e.g., welded joints),
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Fig. 4 Probabilities of next mode as given by the particles and
the actual mode given as input during demonstration

where it slows down for better inspection. The simulated state
evolution is given as

X1 =X, + v(M)AT + &,

where M, € {1,2} is the mode, v(M,) is the mode-dependent
speed, X, is the displacement along the path, ¢, is the (additive)
process noise, and AT is the discretization time step. The demon-
stration has also been simulated using a statistical rule, which gen-
erates mode inputs. The points of interest are chosen to be x =2
and x=06. The dataset, consisting of observation-mode pairs, to
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Region of low

gait motion \

Fig. 5 Hexapod robot experiment setup

train the evolution models is obtained through multiple runs of
this simulated model.

Figure 2 shows the probability distribution of next state
p(Xi11|X;, M,) that peaks farther from X,, if M, = 1, and it peaks
closer to X,, if M, = 2, because the speed is higher in mode 1.
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Fig. 6 Visualization of state-to-mode mapping for KNN classifier

Thus, this model captures the dependence of state evolution
dynamics on the mode. The mode evolution model in Fig. 3 shows
the mode-switching behavior around the points of interest. The
robot initially starts in mode 1, and then around x = 1.5

PMyy =2|X, =x, M, = 1) > P(Myy = 11X, =x,M, = 1)

makes the robot switch to mode 2. Once it crosses x =2, it will
soon switch back to mode 1. Similar behavior can be seen
around x = 6. Thus, a predictive model of state-dependent mode-
switching is also obtained from the learning approach.

During imitation, the true motion of the robot is simulated for
the mode estimated from the Bayesian approach, as discussed in
Sec. 3.3, and a new measurement is generated from the measure-
ment model for the true state. Specifically, the particles are ini-
tially dispersed on the state space and the known mode. The
particles are propagated to obtain the predicted state—mode den-
sity using the dynamic state and mode evolution model. The
most-likely mode is chosen to be executed on the simulated sys-
tem. The marginal density over the modes is shown in Fig. 4 as a
heat map. The estimated mode is compared with the actual mode
from a recorded demonstration. It is seen that the proposed
method is able to correctly predict the next mode. Thus, the parti-
cle filter is capable of not only localizing the robot, but also ena-
bling mode selection with data-driven models. The code for
demonstration on the one-dimensional case is available at the
website.

5 Experimental Validation

This section presents experimental validation of the proposed
method. A simple inspection scenario, where a hexapod robot is
shown to move around an obstacle course via teleoperation, is
used to experimentally validate this method. The details of the
experiment setup and comparison of results with two reference
techniques are presented in this section.

5.1 Experimental Setup. Emulation of a power-plant inspec-
tion scenario with walls, overhead obstacles, and low-height
obstacles has been constructed in a laboratory setting. The inspec-
tion is to be carried out by an 18 degrees-of-freedom Hexapod
robot as seen in Fig. 5. Although the true state of the 18 degrees-
of-freedom robot would be higher, the state (x,y,0) was consid-
ered, which can be observed using a motion capture system, where
(x,y) is the location of the center of the mass of the robot in the
ground frame of reference, and 0 is the yaw angle of the robot.
The robot is 36 cm long and 33 cm wide, and it can stretch as long
as 45cm when walking under the tripod gait [22]. In the tripod
gait, it can walk straight, turn left, turn right, and switch between

3https://go0.g1/9zZDbd
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two heights. It is noted that the low-height mode is necessary to
go under the overhead obstacle. The mode set for the robot is
given as

M = {HS,HR,HF,LS,LF,LR,—1}

where H (respectively, L) means the robot is high (respectively,
low); similarly, S-walk straight, R-turn right, and F-turn left, and
—1 is the call for help mode. For example, the robot starts in
mode HS, which implies the robot is walking straight in high gait.
In this setting, the robot is instructed by a human operator using
joystick input over Bluetooth. For each input from human, the
robot would execute one step of the gait and then wait. It takes
about 4 s for the robot to finish one action after receiving an input.
The teaching process is repeated for ten times, and the information
about position, orientation, and mode has been used as training
data.

5.2 Model Training. The proposed Bayesian approach is com-
pared with two supervised learning methods—KNN and Gaussian
mixture model [19]. Both KNN and GMM classifiers make use of
the state (x,y,0) as input and next mode as the output. For KNN, the
distance metric is selected as the weighted ¢,-norm, due to the dif-
ferent units of the input features. If the distance of the nearest neigh-
bor is more than 1000, the mode output is given as —1. For GMM,
the component for each class is determined to be 25,19, 4, 36,8, 7],
respectively, according to the Akaike information criterion [19].
The output of —1 is assigned when the output mode probability is
less than 107", The KNN and GMM classifiers are visualized in
Figs. 6 and 7, respectively, as filled contour plots. These plots have
been generated for the X—Y domain with yaw angles at Orad and
n/2rad.

The system evolution model is learned in terms of
p(Xi1,X:|M;) and p(X;|M;1,M;) using the kernel-based density
estimation. The kernel parameter 7 and v are chosen to be
0.005 and 0.01, respectively, for solving the LP. The density
p(Xi1, XM, = 1) is trained with 558 observations and is repre-
sented by 138 components; similarly, the density p(M.; =
1|X;, M, = 1) is trained with 516 observations and represented by
254 components. The learning framework is capable of giving a
compressed model give a concise model; however, the compres-
sion is lower here as the runs are too few and dissimilar. In the
proposed approach, if less than 25% of the particles form the
majority, then the classifier outputs —1 mode to ask for human
intervention.

5.3 Results and Inferences. The experiments have been con-
ducted with the inputs being generated by the classifier/policy
instead of human input. Ten runs with each approach have been
considered for comparison. If the robot could finish without
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Table1 Performance comparison
Metric Result KNN GMM Bayesian
Number of runs Success 3 0 6
Collision 7 1 0
Call 0 9 4
Distance traveled (m) Success 2.15 — 2.44
Failure 2.03 1.29 1.72
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Fig. 8 Tracking and prediction by particle filters

collision or calling for help, the experiment is counted as success.
The results are shown in Table 1 and are discussed below.
Experiments with KNN and GMM classifiers have received a
low success rate probably due to scarcity of data. KNN has three
successful runs and the rest have failed due to collision. For
GMM, none of the ten experiments have succeeded and majority
of the runs ended up in the —1 mode. Furthermore, the Bayesian
approach travels more distance before failing than GMM, since
the robot asks for help whenever it enters a —1 mode region with
GMM classifier. The Bayesian technique is better than the other
approaches in this test, as six out of ten runs succeeded while the
other runs concluded with asking for help. One result of experi-
mentation in Fig. 8 shows how the particles track the measured
position closely and also select the mode to be executed. The
robot travels less before failing with Bayesian approach than with
KNN, since with Bayesian classifier it fails by inaction (due to
lack of information), whereas the failure in KNN is due to action
which result in collision. For successful runs, the robot travels a
larger distance with Bayesian than KNN. In the Bayesian method,
the robot was seen to apply corrective action to compensate for

030906-8 / Vol. 140, MARCH 2018

navigation errors. This shows better generalizability of the pro-
posed algorithm as compared to the other two classification tech-
niques. The videos for several of these runs are available online.*

6 Conclusion and Future Work

This paper presents a novel data-driven modeling technique for
switched systems from observation-mode data that are obtained
from demonstrations with the system. A kernel-based density esti-
mation framework is used to develop the state and mode evolution
models. These models are then used in a Bayesian framework for
tracking as well as for obtaining a dynamic observation-feedback
mode-selection policy, which enables the system to imitate the
demonstrations. The Bayesian framework for data-driven
models is implemented with particle filters, where an importance
sampling-based particle propagation has been used.

This paper has illustrated the developed approach with simulation
data showing that it can indeed represent dynamics and mode-
switching behaviors. The feasibility of the proposed method has
been tested with experiments of learning from demonstrations,
where the test with a hexapod robot shows that the method is com-
parable to or even better than existing classification-based methods.
As a topic of future research, the kernel bandwidth selection process
will be further explored to make the proposed method more suitable
for real-life systems. The incorporation of human feedback via
sequential learning is another topic of future research. Another
important topic of future research is to explore the proposed idea for
systems with discontinuous behavior which are difficult to be mod-
eled directly by a classification or regression-based approach [23].
The implementation of an alternative Bayesian filter, such as Rao-
Blackwellized particle filter [24], and the comparison with the pre-
sented particle filters should also be considered in future.
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