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Bayesian Nonparametric Regression Modeling of
Panel Data for Sequential Classification

Sihan Xiong, Yiwei Fu, and Asok Ray, Fellow, IEEE

Abstract— This paper proposes a Bayesian nonparametric
regression model of panel data for sequential pattern classifica-
tion. The proposed method provides a flexible and parsimonious
model that allows both time-independent spatial variables and
time-dependent exogenous variables to be predictors. Not only
this method improves the accuracy of parameter estimation for
limited data, but also it facilitates model interpretation by iden-
tifying statistically significant predictors with hypothesis testing.
Moreover, as the data length approaches infinity, posterior con-
sistency of the model is guaranteed for general data-generating
processes under regular conditions. The resulting model of panel
data can also be used for sequential classification. The proposed
method has been tested by numerical simulation, then validated
on an econometric public data set, and subsequently validated
for detection of combustion instabilities with experimental data
that have been generated in a laboratory environment.

Index Terms— Bayes factor, Bayesian nonparametric,
conditional tensor factorization, panel data, posterior consistency,
regression model, thermoacoustic instability.

I. INTRODUCTION

STATISTICAL analysis of panel data has evolved as a
subdiscipline in pattern analysis with applications to both

scientific and social disciplines, such as ecology, meteorology,
and health economics. Panel data may contain observations of
multiple phenomena over multiple time periods for the same
set of units (e.g., experimental conditions), naturally arising
from complex systems, where the key variables may interact
with each other and evolve with time. Several methods have
been proposed to model panel data in econometric literature.
Cross-lagged structural equation model [1] facilitates investi-
gation of causal relationships between two variables through
regression on the lagged score of both variables, includ-
ing fixed-effects model [2] and random-effects model [3].
These developments are aimed for continuously varying
data from the perspectives of frequentist estimation methods
(e.g., maximum likelihood estimation and generalized methods
of moments). Often these methods have relatively poor per-
formance for small-size data and hence restrict the underlying
models to be of low order.
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In the machine learning discipline, there exists a plethora of
methods for pattern classification of high-dimension variables,
such as support vector machines (SVMs) [4], deep neural
networks [5], and extreme learning machines [6]. Even though
these algorithms may achieve good accuracy in prediction
tasks, it is often difficult for users to interpret the results.
Recently, Bayesian nonparametric methods have received
much attention from the research community. For example,
Dirichlet process priors are assigned on latent variables for
classification of ordinal or categorical variables [7], [8].
However, these methods are only suitable for independent
identically distributed (IID) data and lack systematic hypoth-
esis testing methods.

Sarkar and Dunson [9] have proposed a Bayesian non-
parametric modeling of high-order ergodic Markov chain,
which facilitate calculation of Bayes factors [10] for a vari-
ety of hypotheses of interest. Since large-sample properties
(e.g., consistency [11]) of this method are not guaranteed in
general for panel data, they are not suitable for modeling
of data generated from systems under different experimen-
tal conditions. To alleviate the above limitations, this paper
proposes a Bayesian nonparametric regression model of cate-
gorical panel data for applications to pattern classification in
dynamic data-driven application systems [12]. The merits of
the proposed method compared with [9] are delineated in the
following.

1) Development of a flexible model containing multiple
time-independent spatial variables and time-dependent
exogenous variables, which is capable of capturing
spatio-temporal characteristics for sequential classifica-
tion (e.g., detection of combustion instabilities [13]).

2) Theoretically rigorous guarantee of posterior consis-
tency for general (e.g., nonstationary) data-generating
processes under regular conditions.

3) Numerical and experimental validation of the proposed
method in various applications, which shows supe-
rior performance compared with [9] for a real-time
application.

This paper is organized in seven sections including this
section. Section II develops the model and establishes the
results of posterior consistency. Section III presents the Gibbs
sampling algorithm for posterior computation and Bayes
factor analysis for hypothesis testing. Section IV describes
the sequential classification method based on the proposed
model. The algorithms of the proposed method are tested by
numerical simulation in Section V and with a public data
set in Section VI, while Section VII validates the proposed
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method with experimental data, generated on a swirl-stabilized
lean-premixed laboratory-scale combustor, for early detection
of combustion instabilities. Finally, Section VIII concludes
this paper along with a few recommendations for the future
research.

II. MODEL DEVELOPMENT FROM PANEL DATA

This section first describes the procedure of data collection
and the development of a regression model for panel data.
Then, algebraic and statistical specifications of the proposed
model are elaborated. Finally, the posterior consistency of the
proposed model is presented.

A. Construction of a Regression Model

Let ψ ≡ (ψ1, . . . , ψN ) represent time-independent spatial
variables having K possible combinations, each of which
denotes an experimental condition. For the kth experiment

ψ (k) ≡ (ψ
(k)
1 , . . . , ψ

(k)
N ), the collected categorical time-

series data are represented as: {y(k)t , θ
(k)
t }Tk

t=1, where y(k)t is
the response variable at time instants t ranging from 1 to Tk ,

and θ
(k)
t = (θ

(k)
1,t , . . . , θ

(k)
M,t ) represents the time-dependent

exogenous variables for the kth experiment. Let F (k)
t−1 =

σ({y(k)τ }t−1
τ=1, {θ (k)τ }t

τ=1,ψ
(k)) and Ft−1 = σ({F (k)

t−1}K
k=1) be the

filtration of interest.
The steps for constructing a regression model of categorical

panel data are as follows. Given the external variables and the
most recently generated D response variables, the distribution
of the current response variable is independent of all other
variables, that is

p
(
y(k)t |Ft−1

) = p
(
y(k)t |y(k)t−1, . . . , y(k)t−D, θ

(k)
t ,ψ (k)

)
. (1)

Essentially, given the spatial variables, {y(k)t }Tk
t=1 is modeled

as a Markov chain of order D, whose transition probability
may be time-varying and is determined by the exogenous
variables {θ (k)t }Tk

t=1. If there is no spatial variable, the proposed
model reduces to a time-series model that can be used to
represent the nonstationary Markov chain. Similarly, when
there is no time-dependent exogenous variable, the proposed
model becomes the most basic spatio-temporal model, for
which time series {y(k)t }Tk

t=1 is a time-homogeneous Markov
chain under each spatial condition ψ(k).

Remark 1: Given θ
(k)
t ,ψ (k), the important time lags in

determining the distribution of y(k)t could be an arbitrary
subset of (y(k)t−1, . . . , y(k)t−D) and the maximal order (always
less or equal than D) is the minimum order beyond which
the lags are not important.

B. Conditional Tensor Factorization

For simplicity of notations, predictors zt ≡ (z1,t , . . . , zq,t )
are substituted for (yt−1, . . . , yt−D, θ t ,ψ), where the first D
predictors represent the time lags of response variable y and
the rest stand for external variables. Let yt have C0 categories
and z j,t have C j categories for j = 1, . . . , q . Because the
response variables y and its time lags have the same number
of categories, it follows that C0 = C1 = · · · = CD . The
quantity p(yt |zt ) is treated as a (q + 1)th order tensor in the

C0 × C1 . . . × Cq dimensional space, called the conditional
probability tensor. It was first reported in [8] that every
conditional probability tensor has the following higher order
singular value decomposition (HOSVD) as:

p(yt |zt ) =
k1∑

s1=1

· · ·
kq∑

sq=1

λs1,...,sq (yt )

q∏

j=1

ω
( j )
s j (z j,t) (2)

where 1 ≤ k j ≤ C j for j = 1, . . . , q . Moreover, the parame-
ters λs1...sq (yt ) and ω( j )

s j (z j,t) are all nonnegative and satisfy
the following constraints:

C0∑

yt=1

λs1,...,sq (yt ) = 1, for each (s1, . . . , sq ) (3)

k j∑

s j=1

ω
( j )
s j (z j,t ) = 1, for each ( j, z j,t). (4)

Because the factorization in (2) exists for every conditional
probability tensor, the above-mentioned constraints are not
restrictive but it is ensured that

∑C0
yt=1 p(yt |zt ) = 1.

C. Bayesian Nonparametric Modeling

To construct a statistically interpretable and parsimo-
nious (i.e., low dimensional) model, the tensor factorization
in (2) is converted to a Bayes network by introducing latent
allocation class variables and assigning sparsity-inducing pri-
ors. More formally, T pairs of response variable and predictors
are collected and the data set is arranged as {yt , zt }T

t=1, where
t does not represent time but an index ranging from 1 to T .
For later use, let us denote y ≡ {yt }T

t=1 and z ≡ {zt }T
t=1.

The conditional probability p(yt |zt ), factorized as in (2),
is rewritten in the following form:

p(yt |zt ) =
∫

x1,t

· · ·
∫

xq,t

p(yt |xt )

q∏

j=1

p(x j,t |z j,t ) (5)

where xt ≡ (x1,t , . . . , xq,t ) denotes the latent class allo-
cation variables, and x ≡ {xt }T

t=1. For j = 1, . . . , q and
t = 1, . . . , T , it follows that:

x j,t |ω( j ), z j,t ∼ Mult(ω( j )(z j,t )) (6)

yt |λ̃, xt ∼ Mult(λ̃xt ) (7)

where Mult denotes multinomial distribution and ω( j ) ≡
{{ω( j )

s (c)}k j
s=1}

C j
c=1 is the mixture probability matrix such that

the cth row ω( j )(c) ≡ {ω( j )
s (c)}k j

s=1 is a probability vector.
Moreover, λ̃ ≡ {λs1,...,sq }(s1...sq ) is a conditional probability
tensor such that λs1,...,sq ≡ {λs1,...,sq (c)}C0

c=1 is a probability
vector for each combination (s1, . . . , sq).

The above hierarchical reformulation of HOSVD illustrates
how the proposed method enables the model structure to
converge toward a low dimension.

1) It follows from (6) that soft clustering is implemented
for each predictor z j ≡ {z j,t }T

t=1 to inherit statistical
strength across different categories.
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2) It follows from (7) that the distribution of yt is
determined by a reduced-order conditional probability
tensor λ̃.

3) The clustering assignments x j ≡ {x j,t}T
t=1 are used

to capture the interactions among the predictors in an
implicit and parsimonious manner by allowing the latent
populations indexed by (s1, . . . , sq) to be shared among
the various state combinations of the predictors.

Remark 2: It is important to distinguish between the num-
ber of clusters k̃ j formed by the latent allocation variables x j

and the dimension k j of the mixing probability vector ω( j )(c).
The former refers to the number of groups formed by the
data, and is always smaller than the latter. It is noted that
k̃ j determines the inclusion of the predictor z j in the model,
because p(yt |zt ) does not vary with z j,t if z j has only
one latent cluster. Therefore, the significance of a particular
predictor can be tested based on k̃ j , which is elaborated later
in Section III-B.

In real-life applications, the tensor λ̃ may have more compo-
nents than required, because

∏q
j=1 k j could be very large even

for moderate values of q and C j . To alleviate this difficulty,
λ̃ is clustered among different combinations of (s1, . . . , sq )
in a nonparametric way by imposing Pitman–Yor process
prior [14] on it. Thus, by employing the stick-breaking repre-
sentation of Pitman–Yor process [15], it follows that:

λl |γ ∼ Dir(α), for l = 1, . . . ,∞ (8)

Vk |a, b ∼ Beta(1 − b, a + kb), for k = 1, . . . ,∞ (9)

πl = Vl

l−1∏

k=1

(1 − Vk), for l = 1, . . . ,∞ (10)

where Dir and Beta denote uniform Dirichlet and beta distrib-
utions, respectively, and λl ≡ (λl(1), . . . , λl (C0)). Moreover,
0 ≤ b < 1 and a > −b. For each combination (s1, . . . , sq )

φs1,...,sq |π ∼ Mult(π) (11)

where π ≡ (π1, π2, . . .). For t = 1, . . . , T

yt |λ,φ, xt ∼ Mult(λφxt
) (12)

where λ ≡ {λl}∞l=1 and φ ≡ {φs1,...,sq }(s1,...,sq ).
Next, priors are assigned on the mixture probability

matrix ω( j ). Unlike the tensor λ̃, the dimension of ω( j ) grows
linearly as k j increases. Thus, it is not necessary to further
cluster ω( j ), and hence independent priors are assigned on
the row of ω( j ) for j = 1, . . . , q as follows:

ω( j )(c)|k j , β j ∼ Dir(β j ), for c = 1, . . . ,C j . (13)

Finally, priors are assigned on the dimension of the mixture
probability vector k j , for j = 1, . . . , q

p(k j = k|μ j ) ∝ exp(−μ j k), for k = 1, . . . ,C j (14)

where μ j ≥ 0 and k ≡ {k j }q
j=1.

Remark 3: The exponential prior in (14) assigns increasing
probabilities to smaller values of k j as the parameter μ j

becomes larger, and it is a uniform prior on {1, . . . ,C j } when
μ j equals to zero. To reflect the prior belief that increasing
time lags will have vanishing impact on the distribution of

Fig. 1. Graphical representation of the Bayes network. The quantity enclosed
by a rectangle represents a deterministic hyperparameter. The quantities
enclosed by transparent circles denote unobserved random variables, while
those enclosed by shaded circles denote observed random variables.

the current response variable, one can assign larger μ j to
more distant time lags. If one has no prior information of
a particular predictor (e.g., an external predictor), then setting
the corresponding μ j = 0 is appropriate.

Combining equations from (6) to (14) yields a Bayes net-
work representation of the model. Fig. 1 shows its dependence
structure.

D. Posterior Consistency

In Bayesian paradigm, the posterior distribution is obtained
by updating the prior distribution with observed data and it
contains all the information for statistical inference. In this
context, posterior consistency implies that if the data are
indeed generated from a fixed true model, then the posterior
should concentrate around it as the data length approaches
infinity. Although it is an asymptotic property, posterior con-
sistency plays a central role in Bayesian analysis for the
following two reasons [11].

1) The information contents in priors are eventually domi-
nated by those in the data.

2) It is ensured that two Bayesians starting with different
priors will ultimately have very close predictive distrib-
ution for given sufficiently long data.

Denoting P as the space of all conditional probability
tensors in the form P(yt |yt−1, . . . , yt−D, θ t ,ψ), a metric is
defined on the space P as the following norm:

||P− P0||=
C0∑

s0=1

· · ·
Cq∑

sq=1

|P(s0|s1, . . . , sq)− P0(s0|s1, . . . , sq )|.

(15)

Let P0 ∈ P be the true conditional probability tensor
and let p0 be the corresponding probability law of the true
data-generating process. Let 
 be the prior on P induced
by the proposed model, and let 
(•|DT ) denote the cor-
responding posterior distribution given the observed data
set DT = {{y(k)t , y(k)t−1, . . . , y(k)t−D, θ

(k)
t ,ψ(k)}Tk

t=1}K
k=1. Having

T ≡ (T1, . . . , TK ), we say T → ∞ if Tk → ∞ for any
k ∈ {1, . . . , K }.

Before establishing the posterior consistency, it is noted
that the proposed model is different from those in usual
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cases studied in the literature [16] from the following two
perspectives.

1) The collected data are not IID.
2) Since the distribution of external variables may not be

known, the analysis is based on only partial information
of the data-generating mechanism.

The statistical inference in this setting has been developed
from the frequentist perspective to study the consistency of
maximum partial likelihood estimator [17]. In this context,
Theorem 4 [18] is relevant.

Theorem 4: Suppose F1, F2, . . . is a sequence of increasing
σ -fields such that Rt = ∑t

τ=1 rτ is measurable with respect
to Ft for every t . Let it = E(rt |Ft−1), It = ∑t

τ=1 iτ and jt =
Var(rt |Ft−1), Jt = ∑t

τ=1 jτ . If there exist constants δ > 0,
γt → ∞ such that

p(It/γt > δ) → 1 (16)

Jt/γ
2
t

p→ 0 (17)

then |Rt − It | p→ 0.
To apply Theorem 4 in the present setting, the following

notations are introduced for each k :

r (k)t (P) = log
p0

(
y(k)t |Ft−1

)

p
(
y(k)t |Ft−1

) , R(k)t (P) =
t∑

τ=1

r (k)τ (P)

i (k)t (P) = E
(
r (k)t (P)|Ft−1

)
, I (k)t (P) =

t∑

τ=1

i (k)τ (P)

j (k)t (P) = Var
(
r (k)t (P)|Ft−1

)
, J (k)t (P) =

t∑

τ=1

j (k)τ (P).

It is noted that R(k)t (P) is the logarithm of the partial
likelihood ratio. Conditioned on Ft−1, the discriminatory
information between P0 and P contained in y(k)t is obtained
as i (k)t (P); therefore, the sum I (k)t (P) is the accumulated
Kullback–Leibler information [19]. Based on these concepts,
Assumption 5 is made.

Assumption 5: Three regular conditions of the assumption
are stated in the following.

1) p(δ(k)1 (P) < I (k)Tk
(P)/γ (k)Tk

< δ
(k)
2 (P)) → 1 uniformly

on any compact subset of P\P0 for any k, where δ(k)1 (P)
and δ(k)2 (P) are positive continuous functions of P , and
γ
(k)
Tk

→ ∞.

2) J (k)Tk
(P)/γ (k)Tk

p→ 0 uniformly on any compact subset of

P \ P0 for any k.
3) Let Bε = {P ∈ P : ||P − P0|| < ε}, Uε = {P ∈

P : δ(k)2 (P) < ε for any k}, and Lε = {P ∈ P :
δ
(k)
1 (P) < ε for any k}. Then for any ε > 0, there exits

0 < η2 < η1 such that Uη2 ⊂ Lη1 ⊂ Bε .
Remark 6: Condition 1 in Assumption 5 requires that the

accumulated Kullback–Leibler information tends to infinity
when P 
= P0, and the divergence rate can be estimated.
Condition 2 in Assumption 5 implies that the conditional
variance does not grow too fast; and Condition 3 determines a
relationship between the information concepts and the topol-
ogy of P . All three conditions in Assumption 5 are satisfied if

{y(k)t }Tk
t=1 are generated by an ergodic Markov chain for each k.

Further details on verification of these conditions in various
generalized linear models are reported in [18].

Theorem 7 establishes the posterior consistency of the
proposed model under Assumption 5 by showing that 
(·|DT )
concentrates in arbitrarily small neighborhoods of P0
as T → ∞.

Theorem 7: If the true data-generating process p0 satis-
fies (1) and all three conditions in Assumption 5, then

∀ε > 0, 
(Bc
ε |DT )

p→ 0 with respect to p0 as T → ∞.

Proof: Based on the first two conditions in Assumption 5
and Theorem 4, it follows that:

∣
∣
∣
∣
∣

K∑

k=1

R(k)Tk
(P)−

K∑

k=1

I (k)Tk
(P)

∣
∣
∣
∣
∣

p→ 0

uniformly on any compact subset of P \ P0. Because of the
third condition in Assumption 5, one may choose 0 < η2 < η1
such that Uη2 ⊂ Lη1 ⊂ Bε for any ε > 0. Then


(Bc
ε |DT ) =

∫
Bc
ε

exp
(
− ∑K

k=1 R(k)Tk
(P)

)
d
(P)

∫
P exp

(
− ∑K

k=1 R(k)Tk
(P)

)
d
(P)

=
∫

Bc
ε

exp
(
η3γT − ∑K

k=1 R(k)Tk
(P)

)
d
(P)

∫
P exp

(
η3γT − ∑K

k=1 R(k)Tk
(P)

)
d
(P)

≤
∫

Lc
η1

exp
(
η3γT − ∑K

k=1 R(k)Tk
(P)

)
d
(P)

∫
Uη2

exp
(
η3γT − ∑K

k=1 R(k)Tk
(P)

)
d
(P)

≡ N(DT )

D(DT )

where η2 < η3 < η1 and γT ≡ ∑K
k=1 γTk .

For N(DT ), since
∑K

k=1 R(k)Tk
(P)

p→ ∑K
k=1 I (k)Tk

(P) uni-

formly on Lc
η1

, and
∑K

k=1 I (k)Tk
(P) > η1γT for sufficiently

large T , it follows that
∑K

k=1 R(k)Tk
(P) > η1γT as T → ∞.

Thus, the integrand of N(DT ) is less than exp(η3γT −
η1γT ) → 0 as T → ∞. Hence, lim supT→∞ N(DT ) = 0.

Similarly for D(DT ), because
∑K

k=1 R(k)Tk
(P)

p→
∑K

k=1 I (k)Tk
(P) pointwise on Uη2 , the limit inferior of

the integrand of D(DT ) is infinity. Because the prior 
 has
full support on P , 
(Uη2) > 0. By Fatou’s lemma, we obtain
that lim infT→∞ D(DT ) = ∞. Now, it is concluded that
∀ε > 0 
(Bc

ε |DT )
p→ 0 as T → ∞. �

III. ESTIMATION AND INFERENCE

This section develops an algorithm for posterior computa-
tion and Bayes factor analysis for hypothesis testing.

A. Posterior Computation

Although the posterior distribution has no analytic form,
the inference of the associated Bayes network can be accom-
plished by Gibbs sampling, i.e., sampling each variable from
its full conditional in turn. Since the dimension of ω( j ) varies
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with k j , it is hard to construct a stationary Markov chain
using the plain Gibbs sampling. A common analytical tool
to infer a variable-dimension model is reversible jump Monte
Carlo Markov chain [20], which performs the transdimen-
sional exploration in the model space. The difficulties of
transdimensional modeling can be circumvented by product
partition model [21], [22] that allows the construction of
a stationary Markov chain on the clustering configuration
space. In this paper, the varying dimension ω( j ) is integrated
out to sample k j directly from p(k j |x j , z j ), which forms a
partially collapsed Gibbs sampler [23] that alternates between
the space with all variables and the space with all variables
but ω = {ω( j )}q

j=1.
To compute the posteriors of the Pitman–Yor process,

the infinite dimensional π and λ at Lth component are
truncated, as presented in [15] to achieve the desired accuracy
by choosing an appropriate L, which is chosen in this paper
to be 100 to satisfy the accuracy requirements. Posterior
sampling of other variables is straightforward. The details are
summarized in Algorithm 1, where ξ collects the variables that
are not explicitly mentioned.

To execute Algorithm 1, several hyperparameters need to
be chosen. The implication and determination of μ j and
L have been addressed earlier and those of other hyperpa-
rameters are discussed here. The hyperparameters a and b
determine the clustering ability of the Pitman–Yor process.
A grid search for b = 0, 0.25, 0.5, 0.75 and a = 1, 5, 10, 100
has been made. It turns out that a = 1 and b = 0
suffice for all applications in this paper, which renders the
Pitman–Yor process be a Dirichlet process. However, for other
applications where power law is important, the Pitman–Yor
process may provide more flexibility. It is noted that α and
β j are hyperparameters of Dirichlet distribution and serve as
pseudocounts. Their determination is dependent on the users’
prior belief and often they are chosen to be small values
when no additional information is available. In this paper,
they are chosen to be: α = 1 and β j = 1/C j for all
applications.

B. Bayesian Hypothesis Testing

This section performs hypothesis testing on the importance
of a particular predictor for interpreting the underlying model
in many applications, as shown in Section VII. It is also
a better utilization of computational resources for sequen-
tial classification by excluding the unimportant predictors.
As mentioned earlier, a particular predictor z j is important
if and only if the number of clusters k̃ j formed by the
corresponding latent class allocation variables x j is greater
than 1. Therefore, to perform Bayesian tests for the hypoth-
esis described above, one only needs to compute the Bayes
factor [10] in favor of H1 : k̃ j > 1 against H0 : k̃ j = 1
given by

B F10 = p(H1| y, z)/p(H1)

p(H0| y, z)/p(H0)
(18)

where p(H0| y, z) and p(H1| y, z) are equal to the proportions
of samples in which the k̃ j values conform to H0 and H1,

Algorithm 1 Gibbs Sampling for Proposed Model

Input: Dataset {yt , zt }T
t=1, hyperparameters a, b, α, {μ j }q

j=1,
{β j }q

j=1, truncating components L, number of samples N ,
and the initial sample (0)φ, (0)π , (0)λ, (0)ω, (0)x, (0)k

Output: Posterior samples {(n)φ, (n)π , (n)λ, (n)ω,
(n)x, (n)k}N

n=1
1: for n = 1 to N do
2: For each (s1, . . . , sq ), sample φs1,...,sq from its multino-

mial full conditionals

p(φs1,...,sq = l|ξ ) ∝ πl

C0∏

c=1

{λl(c)}ns1, . . . , sq (c)

where ns1,...,sq (c) = ∑T
1 1{x1,t =s1,…,xq,t =sq , yt =c}.

3: For l = 1, . . . , L, update πl as follows:
Vl |ξ ∼ Beta(1 − b + nl , a + lb +

∑

k>l

nk), l < L

VL = 1, πl = Vl

l−1∏

k=1

(1 − Vk)

where nl = ∑
(s1,...,sq )

1{φs1,...,sq = l}.
4: For l = 1, . . . , L, sample λl from their Dirichlet full

conditionals

λl |ξ ∼ Dir{α + nl(1), . . . , α + nl(C0)}
where nl(c) = ∑

(s1,...,sq )
1{φs1,...,sq = l}ns1,...,sq (c).

5: For j = 1, . . . , q and c = 1, . . . ,C j , sample

ω( j )(c)|ξ ∼ Dir{β j + n j,c(1), . . . , β j + n j,c(k j )}
where n j,c(s j ) = ∑T

t=1 1{x j,t = s j , z j,t = c}.
6: For j = 1, . . . , q and for t = 1, . . . , T , sample the x j,t

from their multinomial full conditionals

p(x j,t =s|ξ , xi,t =si , i 
= j) ∝ ω
( j )
s (z j,t )λφs1,…,s,…,sq

(yt )

7: For j = 1, . . . , q , sample k j using their multinomial full
conditionals

p(k j = k|ξ ) ∝ exp(−μ j k)

C j∏

c=1

n
−kβ j
j,c ,

k j = max
t

{x j,t}, . . . ,C j

where n j,c = ∑T
t=1 1{z j,t = c}.

8: end for

respectively; and the prior probabilities p(H0) and p(H1) are
obtained based on the following probability:

p(k̃ j = 1) =
C j∑

k=1

p(k j = k)
k∑

l=1

p(x j,t = l ∀ t|k j = k)

=
⎛

⎝
C j∏

r=1

γ
(n j,c)
j

⎞

⎠

⎛

⎝
C j∑

k=1

p(k j = k)k
∏C j

k=1(kγ j )
(n j,c)

⎞

⎠

where the pertinent parameters are defined in Algorithm 1.
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IV. SEQUENTIAL CLASSIFICATION

This section proposes a classification algorithm for complex
dynamical systems comprised of an off-line training phase and
an online testing phase. Let there be C classes of dynamical
systems of interest, from each of which a training data
set (i)DTi = {(i)yt ,

(i) zt }Ti
t=1 is collected. It is required that

all the data are categorical (e.g., quantized from continuous
data), and the number of categories of predictors and response
variables are identical for each class.

In the training phase, the data set (i)DTi is used to com-
pute posterior samples {(i)(n)φ, (i)(n)λ, (i)(n)ω}N

n=1 for each class i ,
as described in Algorithm 1. In the testing phase, a test data
set DT needs to be classified to belong to one of the C classes.
For this purpose, the conditional probability p(DT |(i)DTi ) is
computed by the following equations:
p(DT |(i)DTi )

=
T∏

t=1

p(yt |zt ; (i)DTi ) (19)

p(yt |zt ; (i)DTi )

≈ 1

N

N∑

n=1

⎛

⎝
k1∑

s1=1

· · ·
kq∑

sq=1

(i)
(n)λ(i)

(n)φs1,...,sq
(yt )

q∏

j=1

(i)
(n)ω

( j )
s j (z j,t )

⎞

⎠.

(20)

Based on the conditional probability p(DT |(i)DTi ), the pos-
terior probability of the observed data DT belonging to the
class i is denoted as p(Ci |DT ) and is given as

p(Ci |DT ) = p(DT |(i)DTi )p(Ci )
∑C

r=1 p(DT |(r)DTr )p(Cr )
(21)

where p(Ci ) is the prior probability of the class i . Then,
the classification decision is made by the rule

Dclass = arg max
i

p(Ci |DT ). (22)

The prior probability p(Ci ) can be chosen to reflect user’s
subjective beliefs or designed to optimize certain objective
criterion. This detection algorithm is sequential, because
the conditional probability p(DT |(i)DTi ) could be evaluated
sequentially, as shown in (19). For fast implementation,
the values of p(yt |zt ; (i)DTi ) in (20) can be precomputed and
stored for different values of (yt , zt ).

For binary classification, the likelihood ratio test [24] is
constructed as follows:

p(DT |(1)DT1)

p(DT |(0)DT0)

1
≷
0
� (23)

where � is the threshold. One criterion to choose the
threshold � is the receiver operating characteristic (ROC).
The ROC curve is obtained by varying �, and provides
a tradeoff between the probability of detection pD =
p(decide 1|1 is true) and the probability of false alarms pF =
p(decide 1|0 is true). Based on the ROC curves, it is possible
to select an optimal combination of pD and test data length for
a given pF , which would lead to a choice of the threshold �.

TABLE I

TRANSITION PROBABILITIES FOR yt

V. NUMERICAL EXAMPLE

This section evaluates finite-sample performance of the
proposed method with simulated data generated from a nonsta-
tionary Markov model, which is a special case of panel data.
The underlying Markov model for data generation is known
and is used as the ground truth for performance evaluation.
The data generation process is described next.

In this numerical experiment, sequences of binary sym-
bols yt are generated from a nonstationary Markov model
p(yt |Ft−1) = p(yt |yt−1, yt−2, yt−5, θt ), where only the time
lags yt−1, yt−2, yt−5 and the exogenous variable θt are impor-
tant predictors. The exogenous variable θt itself is binary and
is generated by a first-order Markov chain with the following
transition probability matrix:

[
0.75 0.25
0.08 0.92

]
.

The transition probabilities for yt are listed in Table I. In this
table, whenever θt = 0, the probability of yt = 0 is 0.5, which
corresponds to a white noise.

To estimate p(yt |Ft−1), 506 samples of {yt }506
t=1 and

500 samples of {θt }506
t=7 are collected, respectively. Based

on the assertion that yt−D is not important for predicting
yt if D is greater than 6, the predictors are set for yt as
zt ≡ (yt−1, yt−2, . . . , yt−6, θt ). To compute posteriors using
Algorithm 1, j/2 is assigned to μ j for j = 1, . . . , 6, and 0 is
assigned to μ7.

Upon performing 70 000 iterations of Gibbs sampling (with
initial 20 000 samples discarded as a burn-in period),
the remaining 50 000 after-burn-in samples are downsampled
by taking every fifth sample to reduce the autocorrelation.
Fig. 2 summarizes the Gibbs sampling results based on the
downsampled after-burn-in samples. Fig. 2(a) exhibits the
log likelihood of the model for 10 000 iterations. Fig. 2(b)
shows the ability of the proposed method to identify the
important predictors. In this case, the important predictors
are 1, 2, 5, 7, and the resulting prediction coincides with the
ground truth yt−1, yt−2, yt−5 and θt . Fig. 2(c) shows rela-
tive frequency of how many predictors are important. The
proposed method also leads to parsimonious representations,
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Fig. 2. Gibbs sampling results for the numerical example. The
horizontal (solid red line) indicates the threshold = 3. (a) Log likelihood of
model. (b) Inclusion proportions of different predictors. (c) Relative frequency
distribution of the number of important predictors. (d) Relative
frequency distribution of the number of clusters of the tensor λ̃.
(e) Relative frequency distribution of possible combinations of (s1, . . . , sq ).
(f) Bayes factors of different predictors.

as shown in Fig. 2(d) and (e). As discussed in Section II-C,
the tensor λs1...sq (yt ) has much more components than required
but they can be clustered nonparametrically to significantly
reduce the needed number of components. Fig. 2(f) shows
the Bayes factors as computed in Section III-B for different
predictors. Bayes factor B F10 in (18) can be interpreted as the
evidence against H0, and a threshold of t = 3 indicates that
this evidence is positive [25], which is used in the sequel.
Furthermore, B F10 > 150 indicates very strong evidence
against H0 [25]. If the inclusion proportions in Fig. 2(b) equal
to 1, then the corresponding Bayes factors in Fig. 2(f) tend to
infinity, as it is the case for the predictors 1, 5, 7. For the
predictor 2, the inclusion proportion is slightly smaller than 1,
thus the corresponding Bayes factor does not go to infinity
although it is large (>300).

In addition to correctly identify the model structure, the pro-
posed method estimates the transition probabilities. Fig. 3
shows two cases from Table I. When yt−1 = 0, yt−2 = 1,
yt−5 = 0, and θt = 1, it follows from Table I that the
true transition probability of yt = 0 is 0.9. Similarly, when
yt−1 = 0, yt−2 = 1, yt−5 = 1, and θt = 0, it also follows from
Table I that the true transition probability of yt = 0 is 0.5.
Fig. 3 exhibits the profiles of corresponding transition proba-
bilities, where the estimated transition probability per sample
is obtained with the running mean as well as the 95% and 5%
percentiles. It is seen in Fig. 3 that the running mean is close
to the true transition probability, and the proposed method
performs better than maximum likelihood estimation under the

Fig. 3. Transition probabilities for the numerical example.

Fig. 4. p(θt |y1:t ) using estimated and true models.

finite-sample settings. For example, the maximum likelihood
estimation of transition probability p(yt = 0|yt−1 = 0,
yt−2 = 1, yt−5 = 1, θt = 0) is 0, as the state yt−1 = 0,
yt−2 = 1, yt−5 = 1, θt = 0 has not even been visited even
once in the training data set. On the contrary, with limited
data, the proposed method not only estimates the transition
probability but also yields the uncertainty quantification in
terms of the quantiles.

Robustness of the proposed method is demonstrated by
comparing the estimated model with the true underlying model
in a hidden state estimation task. In this scenario, a sequence
of {yt} is generated from the true model and the task is to
estimate the unobserved exogenous variable θt . This is accom-
plished by a recursive Bayes filter (RBF) to obtain p(θt |y1:t )
for the estimated and true models, where the prediction and
update equations of the RBF are presented as

p(θt+1|y1:t) =
∑

θt
p(θt+1|θt )p(θt |y1:t)

p(θt+1|y1:t+1) = p(yt+1|y1:6, θt+1)p(θt+1|y1:t )∑
θt+1

p(yt+1|y1:6, θt+1)p(θt+1|y1:t)
.

The single plate in Fig. 4 compares the profiles of prob-
abilities p(θt = 1|y1:t) of the estimated model and the true
model, respectively, for 500 samples. It is observed that the
estimated model behaves very similar to the true model after
the initial transients are over. To classify θt , let us consider
a decision rule such that θt is classified to be 1 if the
p(θt = 1|y1:t) > t for a given threshold t , where an optimal
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TABLE II

RESULTS FOR RBF

threshold can be identified based on the misclassification rate.
The optimal threshold and minimum error rate for both the
estimated model and true model are listed in Table II. When
using the true model, the error rate is 22.75%, while the error
rate is 23.95% when the estimated model is used. Hence,
the proposed method performs almost as good as the true
model.

VI. VALIDATION ON A PUBLIC DATA SET

This section presents test results of the nonparametric
regression model on (publicly available) German Health Care
Usage Data from NYU Panel Data Sets.1 This is a data set
of 7293 individuals for a varying number of observations for
each individual over a period of one to seven years. The raw
data have been preprocessed before their usage for testing
the proposed nonparametric model. The testing procedure is
briefly described in the following.

The categorical response variable yt is assigned to be the
NEWHSAT variable in the file, which represents the health
satisfaction value with coding error corrected. It ranges from
0 to 10, thus being a categorical variable with 11 possible val-
ues. A total of ten predictors z ≡ (z1, . . . , z10) are defined as:
z1 ≡ yt−1, which is the first-order time lag of the responsible
variable y; z2 is the FEMALE variable in the original data set,
with 0 representing male and 1 representing female; z3 is the
MARRIED variable in the original data set, with 1 representing
married and 0 otherwise; z4 is the discretized AGE variable,
with z4 = i if i ≤ (AGE − 25)/5 < i + 1 and it ranges
from 0 to 7; z5 is the discretized HANDPER variable which
represents the degree of handicap, with z5 = i if i − 1 <
HANDPER/10 ≤ i and it ranges from 0 to 10; z6 corresponds
to the HHNINC variable in the original data set, which is
the household nominal monthly net income in German marks
divided by 10 000, and z6 is round to HHNINC × 10 with a
maximum value of 5; z7 is a categorical variable representing
the degree in the original data set, with z7 = 5 if UNIV = 1,
z7 = 4 if ABITUR = 1, z7 = 3 if FACHHS = 1, z7 = 2 if
REALS = 1, z7 = 1 if HAUPTS = 1, and z7 = 0 otherwise;
z8 is a categorical variable representing the employment status
in the original data set, with z8 = 4 if BEAMT = 1, z8 = 3 if
SELF = 1, z8 = 2 if WHITEC = 1, z8 = 1 if BLUEC = 1,
and z8 = 0 otherwise (unemployed); z9 corresponds to the
sum of the doctor visits and hospital visits in the original data
set, with z9 = i if i −1 < (DOCVIS+HOSPVIS)/10 ≤ i ; and
z10 corresponds to the insurance status in the original data set,
with z10 = 2 if PUBLIC = 1, z10 = 1 if ADDON = 1, and
z10 = 0 otherwise (uninsured).

After data preprocessing, 2000 samples are randomly cho-
sen from the data set with 1500 of them as training set and the

1http://people.stern.nyu.edu/wgreene/Econometrics/PanelDataSets.htm

Fig. 5. Gibbs sampling results for German Health Care data. (a) Log
likelihood of model. (b) Bayes factors of predictors.

TABLE III

RESULTS FOR DIFFERENT MACHINE LEARNING METHODS

remaining 500 as the test set. This procedure is repeated five
times and the average test results are recorded. To compute
posteriors using Algorithm 1, the hyperparameters are set as:
μ j = 1 for j = 1, . . . , 10.

Gibbs sampling has been performed for 1 50 000 iterations,
where the initial 1 00 000 data points are discarded as burn-
in period and the after burn-in samples are downsampled by
taking every fifth data point to reduce the autocorrelation.
Fig. 5 shows the results of Gibbs sampling for this data
set. Specifically, important predictors are: z1 which represents
yt−1; z4 which represents age; z5 which represents degree of
handicap; z6 which represents household income; z8 which
represents employment status; and z9 which represents the sum
of hospital visits and doctor visits.

Table III presents the classification results of the test set
using the proposed nonparametric model versus various stan-
dard machine learning methods [26]. Two different kinds of
metrics are used to evaluate the results using the predictors
as features, i.e., accuracy and R2 score. Since the response
variable is categorical ranging from 0 to 10, it can be evaluated
either as a classification problem with accuracy being a
metric, or as a regression problem with R2 score being a
metric. In the proposed method, the maximum a posteriori
probability estimate is used as the predicted outcome when
calculating the accuracy while the posterior mean is used
when calculating R2 score. For the K-nearest-neighbor (KNN)
algorithm implementation, a value of K = 5 is used. For the
SVM algorithm, a grid search of parameters is performed and
the best results are recorded as a table using these parameters:
kernel of radial basis function with parameters γ = 0.001
and C = 10. For random forest and AdaBoost algorithms,
ten decision trees are used. For multilayer perceptron neural
network (MLPNN), two hidden layers each with five neurons
are used.
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Upon completion of these comprehensive tests, it is con-
cluded that the proposed nonparametric model outperforms the
existing regression methods in terms of both metrics: accuracy
and R2 score. Moreover, the proposed method provides a
more explainable model than most black box machine learning
algorithms by explicit identification of significant predictors.

VII. EXPERIMENTAL VALIDATION ON A COMBUSTOR

This section presents the results of experimental validation
of the nonparametric regression model on a swirl-stabilized
lean-premixed laboratory-scale combustor apparatus that is
described in detail in a recent publication [13]. As for the pro-
cedure for detection of combustion instability, current methods
often use an empirical threshold instead of taking advantage of
statistical detection theory (e.g., sequential testing). This paper
accommodates the usage of both temporal and spatial variables
in the proposed model and makes sequential classification of
combustion instabilities, as described in Section IV.

The quantized pressure measurement is chosen as a response
variable, denoted as yt at time instant t . The continuous time
series data of pressure oscillations are quantized via maximum
entropy partitioning [27] with a ternary alphabet � = {1, 2, 3}
for both stable and unstable pressure oscillations.

A. Training Phase

This section describes training of the nonparametric regres-
sion model, where 50 samples are used from the downsampled
ensemble of quantized pressure time series under each of the
62 operating conditions, of which 34 cases are stable and the
remaining 28 cases are unstable. Based on the experimental
observations, it is hypothesized that the relevant memory
of yt is limited to D, i.e., yt is not dependent on yt−D

and older data. In the experimental data, it is observed that
the memory D is limited to 8 for both stable and unsta-
ble time-series data. Hence, the predictors are set for yt

as zt ≡ (yt−1, yt−2, . . . , yt−8, ψ1, ψ2), where ψ1 and ψ2,
respectively, denote the categories of fuel equivalence ratio
and the percentage of pilot fuel. The different time lags of
pressure measurements represent the temporal part of com-
bustion process, while the external variables (e.g., ψ1 and ψ2)
model the spatial part, which form a spatiotemporal model of
combustion data. Since yt has three categories, it follows that
C0 = C1 = · · · = C8 = 3. Similarly, ψ1 can take four different
values and ψ2 can take 19 values, which implies C9 = 4 and
C10 = 19, respectively. To compute posteriors, we assign j/2
to μ j for j = 1, . . . , 8 and 0 to μ j for j = 9, 10.

Gibbs sampling has been performed for 50 000 iterations,
where the initial 30 000 data points are discarded as burn-
in period and the after burn-in samples are downsampled by
taking every fifth data point to reduce the autocorrelation.
Figs. 6 and 7 summarize the Gibbs sampling results for
stable and unstable cases, respectively. Figs. 6(a) and 7(a)
show the log likelihood of the model with different iter-
ations. Figs. 6(b) and 7(b) show the proposed method’s
ability to identify the important predictors of the regres-
sion model. Figs. 6(c) and 7(c) show relative frequency of
how many predictors are important. The proposed method
also leads to parsimonious representations as shown in

Fig. 6. Gibbs sampling results for stable pressure data. (a) Log likelihood
of model. (b) Inclusion proportions of different predictors. (c) Relative
frequency distribution of the number of important predictors. (d) Relative
frequency distribution of the number of clusters of the tensor λ̃.
(e) Relative frequency distribution of possible combinations of (s1, . . . , sq ).
(f) Bayes factors of different predictors.

Figs. 6(d) and (e) and 7(d) and (e). By comparing
Figs. 6(b) and 7(b), we find that the maximal order for unstable
case is 8 and is 6 for the stable case, which indicates a more
deterministic behavior of unstable pressure time series and is
line with previous work [13]. Another interesting observation
is that the predictor 9 (equivalence ratio) is only important
under the stable operating condition but not under the unstable
operating condition, while predictor 10 (pilot percentage) is
important in both cases. Figs. 6(f) and 7(f) show the Bayes
factors of the different predictors of the stable and unstable
case. The analysis of these figures is analogous to those
in Section V.

B. Sequential Classification

To evaluate the performance of sequential classification for
combustion instability, two instances of 50 samples (differ-
ent from training samples) are selected from downsampled
quantized pressure measurements under each operating con-
dition (124 test cases in total for 62 operating conditions).
Fig. 8 shows the posterior probability of each class as a func-
tion of the length of the observed data. It is seen in Fig. 8(a)
that the observed sequence is correctly classified as stable
because the posterior probability of the class 0 approaches one,
while class 1 approaches zero very fast. Similarly in Fig. 8(b),
the observed sequence is correctly classified as unstable.
Fig. 9 shows a family of ROC curves for the proposed
detection algorithm with varying lengths of test data. It is
observed that the ROC curve improves (i.e., moves toward the
top-left corner) considerably as the test data length is increased
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Fig. 7. Gibbs sampling results for unstable pressure data. (a) Log likelihood
of model. (b) Inclusion proportions of different predictors. (c) Relative
frequency distribution of the number of important predictors. (d) Relative fre-
quency distribution of the number of clusters of the tensor λ̃. (e) Relative
frequency distribution of possible combinations of (s1, . . . , sq ). (f) Bayes
factors of different predictors.

Fig. 8. Posterior probabilities for stable and unstable cases. (Class 0 rep-
resents stability and Class 1 represents instability.) (a) Posterior probabilities
for a test sequence from stable conditions. (b) Posterior probabilities for a
test sequence from unstable conditions.

from 10 to 50. This is reasonable since the longer the test data
length, the more information is there and thus better results
are expected.

The results from the proposed nonparametric Bayes method
are compared with those reported in the open literature,
specifically, the symbolic dynamics-based adaptive pattern
classification [28]–[30] (which is called an adaptive method
in this paper) and with a Markov chain method [9]. In the
adaptive method, each row of the transition probability matrix

Fig. 9. ROC curves for the proposed method.

of the Markov chain is independently assigned a Dirichlet
distribution as priors. The adaptive method cannot accom-
modate spatial variables, such as equivalence ratio and the
percentage of fuel; therefore a bank of Markov chains has
to be estimated for both stable, denoted as {M(s)

i }Ns
i=1, and

unstable, denoted as {M(u)
i }Nu

i=1, cases. Given a quantized
pressure sequence y1:t , the adaptive method classifies it to be
unstable if max

i
p(y1:t |M(u)

i ) > max
i

p(y1:t |M(s)
i ) and vice

versa. It is noted that average instead of maximum can also
be used, but they generate similar results.

To train the adaptive method, 1000 samples are selected
from downsampled quantized pressure time series under each
of 62 operating conditions, which are ∼ 20 times of the train-
ing data used for the proposed nonparametric Bayes method.
Two hyperparameters, namely, Markov chain order Du for
the unstable case and Markov chain order Ds for the stable
case, need to be chosen before training. However, there is no
coherent ex ante method to choose them; therefore an ex post
method is employed by comparing the ROC curves generated
under different combinations of Du and Ds to select the
best hyperparameters. In contrast, the proposed nonparametric
Bayes method automatically chooses the proper orders, which
saves a lot of efforts in the model selection step and is
universally applicable. The best Du and Ds for the adaptive
method are 8 and 6, respectively, which coincide with the
maximal order identified by the proposed nonparametric Bayes
method. The results from four of these combinations are shown
in Fig. 10 as examples.

To train the Markov chain models, 500 samples are selected
from downsampled quantized pressure time series under one
stable and one unstable condition, respectively. The orders for
both are set to be 8 and other hyperparameters are set similarly
as in the proposed method. Then, the two Markov chain mod-
els are used for sequential classification of the same 124 test
cases. These models do not take the operating conditions
(i.e., effects of exogenous variables) into consideration.

The results of the proposed method are compared with
the best adaptive method [Du = 8 and Ds = 6, as shown
in Fig. 10(c)], and with Markov chain models. The ROC curves
for these methods are shown in Fig. 11. It is seen that,
when testing with the same data set, even though the train-
ing samples are only small fractions of those used in the
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Fig. 10. ROC curves for classification using the symbolc dynamics-based
adaptive method, with different Du and Ds values. (a) Du = 1 and Ds = 1.
(b) Du = 4 and Ds = 3. (c) Du = 8 and Ds = 6. (d) Du = 9 and Ds = 9.

Fig. 11. ROC curves for performance comparison.

adaptive method, the nonparametric Bayes method not only
yields superior classification performance but also saves the
efforts for model selection than the adaptive method. The
Markov chain models yielded significantly deteriorated perfor-
mance as seen in Fig. 11, because they do not have information
about different operation conditions.

VIII. CONCLUSION AND FUTURE WORK

The proposed Bayesian nonparametric Bayes method pro-
vides a flexible and parsimonious model of categorical panel
data, which yields superior finite-sample performance with
guaranteed large-sample properties. It is demonstrated that the
proposed method outperforms: 1) various standard machine
learning methods, such as KNN, SVM, and MLPNN [26]
for econometric public tata and 2) symbolic dynamics-based
adaptive method of pattern classification [29], [30] and
Markov chain method [9] for a real-time application with
experimental data from a swirl-stabilized combustor apparatus.

While there are many directions in which the proposed
nonparametric Bayes method can be extended, the authors
suggest the following two topics for future research.

1) Development of a variational inference algorithm for the
proposed nonparametric Bayes method.

2) Characterization of the underlying assumptions in the
proposed method to achieve asymptotic properties.

3) Testing of the proposed method on n-gram models in
natural language processing to further examine flexibil-
ity of the Pitman–Yor process [31].

ACKNOWLEDGMENT

Any opinions, findings, and conclusions or recommenda-
tions expressed in this publication are those of the authors and
do not necessarily reflect the views of the sponsoring agencies.

REFERENCES

[1] D. A. Kenny, Cross-Lagged Panel Design. Hoboken, NJ, USA: Wiley,
2005.

[2] P. D. Allison, Fixed Effects Regression Models, vol. 160. Thousand Oaks,
CA, USA: SAGE, 2009.

[3] N. M. Laird and J. H. Ware, “Random-effects models for longitudinal
data,” Biometrics, vol. 38, no. 4, pp. 963–974, 1982.

[4] S. Tong and D. Koller, “Support vector machine active learning
with applications to text classification,” J. Mach. Learn. Res., vol. 2,
pp. 45–66, Mar. 2001.

[5] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., 2012, pp. 1097–1105.

[6] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning
machine: Theory and applications,” Neurocomputing, vol. 70, nos. 1–3,
pp. 489–501, 2006.

[7] M. DeYoreo and A. Kottas, “Bayesian nonparametric modeling for
multivariate ordinal regression,” J. Comput. Graph. Stat., vol. 27, no. 6,
pp. 1525–1538, Nov. 2017.

[8] Y. Yang and D. B. Dunson, “Bayesian conditional tensor factorizations
for high-dimensional classification,” J. Amer. Stat. Assoc., vol. 111,
no. 514, pp. 656–669, 2016.

[9] A. Sarkar and D. B. Dunson, “Bayesian nonparametric modeling of
higher order Markov chains,” J. Amer. Stat. Assoc., vol. 111, no. 516,
pp. 1791–1803, 2016.

[10] H. Akaike, “Factor analysis and AIC,” Psychometrika, vol. 52, no. 3,
pp. 317–332, 1987.

[11] P. Diaconis and D. Freedman, “On the consistency of Bayes estimates,”
Ann. Stat., vol. 14, no. 1, pp. 1–26, 1986.

[12] F. Darema, “Dynamic data driven applications systems: New capa-
bilities for application simulations and measurements,” in Proc.
5th Int. Conf. Comput. Sci. (ICCS), Atlanta, GA, USA, 2005,
pp. 661–712.

[13] S. Sarkar, S. R. Chakravarthy, V. Ramanan, and A. Ray, “Dynamic data-
driven prediction of instability in a swirl-stabilized combustor,” Int. J.
Spray Combustion Dyn., vol. 8, no. 4, pp. 235–253, 2016.

[14] T. S. Ferguson, “A Bayesian analysis of some nonparametric problems,”
Ann. Stat., vol. 1, no. 2, pp. 209–230, 1973.

[15] H. Ishwaran and L. F. James, “Gibbs sampling methods for stick-
breaking priors,” J. Amer. Stat. Assoc., vol. 96, no. 453, pp. 161–173,
2011.

[16] S. Walker, “New approaches to Bayesian consistency,” Ann. Stat.,
vol. 32, no. 5, pp. 2028–2043, 2004.

[17] D. R. Cox, “Partial likelihood,” Biometrika, vol. 62, no. 2, pp. 269–276,
1975.

[18] W. H. Wong, “Theory of partial likelihood,” Ann. Stat., vol. 14, no. 5,
pp. 88–123, 1986.

[19] T. Cover and J. Thomas, Elements of Information Theory, 2nd ed.
Hoboken, NJ, USA: Wiley, 2006.

[20] P. J. Green, “Reversible jump Markov chain Monte Carlo computa-
tion and Bayesian model determination,” Biometrika, vol. 82, no. 4,
pp. 711–732, 1995.

[21] J. Pitman, “Exchangeable and partially exchangeable random partitions,”
Probab. Theory Rel. Fields, vol. 102, no. 2, pp. 145–158, 1995.

[22] J. W. Miller and M. T. Harrison. (Feb. 2015). “Mixture models
with a prior on the number of components.” [Online]. Available:
https://arxiv.org/abs/1502.06241

[23] D. A. Van Dyk and T. Park, “Partially collapsed Gibbs samplers: Theory
and methods,” J. Amer. Stat. Assoc., vol. 103, no. 482, pp. 790–796,
2008.



XIONG et al.: BAYESIAN NONPARAMETRIC REGRESSION MODELING OF PANEL DATA FOR SEQUENTIAL CLASSIFICATION 4139

[24] H. V. Poor, An Introduction to Signal Detection and Estimation.
New York, NY, USA: Springer-Verlag, 1994.

[25] R. E. Kass and A. E. Raftery, “Bayes factors,” J. Amer. Stat. Assoc.,
vol. 90, no. 430, pp. 773–795, 1995.

[26] C. Bishop, Pattern Analysis and Machine Learning. New York, NY,
USA, Springer, 2006.

[27] V. Rajagopalan and A. Ray, “Symbolic time series analysis via wavelet-
based partitioning,” Signal Process., vol. 86, no. 11, pp. 3309–3320,
2006.

[28] A. Ray, “Symbolic dynamic analysis of complex systems for anomaly
detection,” Signal Process., vol. 84, no. 7, pp. 1115–1130, 2004.

[29] K. Mukherjee and A. Ray, “State splitting and merging in probabilistic
finite state automata for signal representation and analysis,” Signal
Process., vol. 104, pp. 105–119, Nov. 2014.

[30] Y. Wen, K. Mukherjee, and A. Ray, “Adaptive pattern classifica-
tion for symbolic dynamic systems,” Signal Process., vol. 93, no. 1,
pp. 252–260, 2013.

[31] Y. W. Teh, “A hierarchical Bayesian language model based on Pitman-
Yor processes,” in Proc. 21st Int. Conf. Comput. Linguistics 44th Annu.
Meet. Assoc. Comput. Linguistics, 2006, pp. 985–992.

Sihan Xiong received the B.S. degree in mechanical
engineering from Shanghai Jiao Tong University,
Shanghai, China, in 2012, and the M.A. degree
in mathematics from Pennsylvania State University,
State College, PA, USA, in 2015, where he is
currently pursuing the Ph.D. degree in mechanical
engineering.

His current research interests include Bayesian
nonparametrics, deep learning and reinforcement
learning, and their applications to dynamical
systems.

Yiwei Fu received the B.S. degree in mechanical
engineering from Shanghai Jiao Tong University,
Shanghai, China, in 2014. He is currently pursuing
the M.S. degree in electrical engineering, currently
with the Ph.D. degree in mechanical engineering,
with Pennsylvania State University, State College,
PA, USA.

His current research interests include machine
learning, time series analysis, and robotics.

Asok Ray (SM’83–F’02) received the graduate
degrees in each discipline of electrical engineering,
mathematics, and computer science, and the Ph.D.
degree in mechanical engineering from Northeastern
University, Boston, MA, USA.

He joined Pennsylvania State University, State
College, PA, USA, in 1985, where he is currently a
Distinguished Professor of mechanical engineering
and mathematics, and a Graduate Faculty of elec-
trical engineering, and nuclear engineering. He has
authored or co-authored over 600 research publica-

tions, including over 300 scholarly articles in refereed journals and research
monographs. He is a fellow of ASME and the World Innovative Foundation.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


