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Learning From Multiple Imperfect Instructors in Sensor Networks
Nurali Virani , Shashi Phoha, and Asok Ray , Fellow, IEEE

Abstract— This paper presents a sequential learning framework for
sensors in a network, where a few sensors assume the role of an
instructor to train other sensors in the network. The instructors provide
estimated labels for measurements of new sensors. These labels are
possibly noisy, because a classifier of the instructor may not be perfect.
A recursive density estimator is proposed to obtain the true measurement
model (i.e., the observation density conditioned on the label) in spite of the
training with noisy labels. Specifically, this paper answers the question
“Can a sensor train other sensors?”, provides necessary conditions for
sensors to act as instructors, presents a sequential learning framework
using recursive nonparametric kernel density estimation, and provides a
convergence rate for the expected error in an observation density. The
underlying concepts are illustrated and validated with simulation results.

Index Terms— Information fusion, kernel density estimation,
label noise, sequential learning.

I. INTRODUCTION

SENSORS are used for monitoring of complex systems to assess
the underlying state of the system, such as health monitoring

in physical systems or target detection/classification in surveillance
systems. Some of these sensors (e.g., cameras) are easy to train with
supervised learning approaches, such as neural networks and support-
vector machines, due to abundance of labeled training data. However,
for other sensing modalities (e.g., geophones), which do not have
adequate training data or which are more sensitive to the operating
conditions of the environment, it is necessary to collect and label in
situ training data to obtain the corresponding measurement models.
In this paper, an alternative approach to obtain generative models
for new sensors is presented by using the measurements from those
sensors along with labels generated by existing sensors in the sensor
network. The sensors which contribute (possibly incorrect) labels to
educate the new sensor are called imperfect instructors. The objective
of this paper is to enable the sensors to learn true measurement
models even after being trained with noisy labels from a few sensors.

The relationship between observations/features and states can be
represented as the conditional probability p(Y |X), where Y is the
measurement from the sensor when the system state is X . This
conditional probability is called the measurement model of the sensor
and it does not assume any specific structure of the relationship and
noise characteristics. This paper presents a sequential online learning
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framework to estimate the true measurement model for a new sensor
by using measurements and estimated labels of discrete states from
multiple (possibly heterogeneous) sensors in a network. The concepts
of probabilistic graphical models and conditional independence given
the state have been used to develop a linear relationship between
observation densities conditioned on the labels from instructors and
the (true) measurement model. If the underlying linear operator is
invertible, then it is implied that the existing sensor is qualified to be
an instructor and that the (true) measurement model can be inferred
eventually. This paper builds upon the theory of recursive density
estimation [1], [2] to develop a sequential estimator of the conditional
observation density using the observed feature and estimated labels
from several sensors acting as instructors.

A. Motivation
Let us consider an example of a border surveillance network with

cameras, geophones, and microphones. If more geophones are added
to reduce the probability of false alarms and eventually reduce the
computation and power used by cameras, then it might be necessary
to train the target models for geophones. However, geophones are
known to be sensitive to various soil conditions [3] and thus perform
better with in situ training data [4]. Due to high sampling rate and
persistent usage, abundant in situ data can be acquired; however,
providing training labels to those samples manually may not be fea-
sible. In the paradigm of dynamic data-driven application systems [5],
where data are often used during operation to improve models, it is
of interest to explore if the existing sensors can be used to train
the target models online for the new sensors. Moreover, the high-
fidelity sensors might not be used frequently after the new sensors
are calibrated to the environment, which should reduce long-term
operating cost of the network.

B. Prior Work
Frénay and Verleysen [6] have discussed several sources of label

noise and have also reviewed several learning methods that are
robust to label noise. The source of label noise in the current
framework is due to imperfect classification performance of the
sensors that assume the role of instructors for the new sensors.
The problem of learning with label noise has been addressed in the
literature for one-step classification problems using batch processing
approaches [7]. In addition, in [8] and the references therein, a few
different approaches to learn with noisy labels using deep learning
is presented for convolutional neural networks. However, in most
of the existing approaches (including [7]–[9]), the noise-corrupted
training set is available at the outset. Hua et al. [10] have developed
a collaborative active learning framework that uses labels for different
images from multiple (possibly imperfect) human instructors to create
a discriminative model using ensemble of classifiers. The proposed
method relies on a sequential approach with streaming data to update
the generative measurement models and to mitigate the effects of
label noise. Scott et al. [9] have addressed a classification problem
in which the class-dependent label noise is estimated from the training
data and measurement models are recovered by maximal denoising.
Unlike [9], the class-dependent label noise statistics are assumed to be
known in this paper, because the measurement models and classifiers
of sensors acting as instructors are assumed to be known a priori.

2162-237X © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-4124-0230
https://orcid.org/0000-0003-2473-663X


IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 5167

Since multiple heterogeneous sensors act as instructors, the label
noise statistics are modeled to be sensor-dependent (i.e., instructor-
dependent). In order to develop a sequential estimator, this paper has
used the classical work in statistics on recursive density estimation
from [1], [2], and [11], which extends the kernel density estimators
developed by Rosenblatt et al. [12] and Parzen [13] for recursive
estimation, and the results of consistency and convergence in these
works have been leveraged in the proposed approach.

C. Contributions

This paper considers the case in which an expert may not be able
to provide adequate labels to observations, and therefore one must
rely on other sensors to aid in learning the measurement model and
classifier for a new sensor. This perspective is fundamentally different
from most of the work reported in the open literature and has not
yet been explored to the authors’ knowledge. Specifically, this paper
derives a recursive density estimation approach to sequentially learn
the true measurement model by using measurements, labels estimated
from several sensors, and their corresponding state-dependent sensor-
dependent label noise statistics. In this paper, we prove the consis-
tency of the derived estimator and provide the necessary and sufficient
conditions for the sensors to act as instructors, and the convergence
rate is derived as a function of the number of updates and instructor-
dependent label noise statistics. In addition, the performance of the
proposed learning method for intelligent student is compared with
those of two extreme cases—blessed student, where the correct labels
are provided by an oracle and naïve student, where the new sensor
may incorrectly assume that it always obtains the correct labels from
its instructors. The performance evaluation is shown by means of
simulations with synthetic data in order to compare the errors relative
to the ground truth.

II. LEARNING PROBLEM FORMULATION

This section formulates the sequential learning problem. Let X =
{1, 2, . . . , L} be the finite set of hypotheses on the random state X
of the system, which one wishes to estimate through observations.
The hypothesis set X is known a priori. We have a classification
problem in this paper, where the state is to be assigned to one of
the L possible classes. Let S = {1, 2, . . . , M} be the finite set of
all existing sensors. Let Ys be the random observation of the state X
from sensor s ∈ S and let ̂Xs be the estimated state from sensor s ∈ S
using a deterministic mapping hs from the measurement space Ys to
the state set X . The measurement model p(Ys |X) and the classifier hs
are assumed to be known for all sensors s ∈ S ; thus, the conditional
probability p(̂Xs |X) = p(hs(Ys)|X) characterizing the performance
of the sensor s is also known. It is noted that if the probability
p(̂Xs |X) is directly available, then the measurement model of the
instructor is not needed.

Let Y0 be the random observation or feature from the new
sensor which takes the value yt

0 ∈ Y0 at the sampling instant
t ∈ N. At every sampling instant, the new sensor has access to
zt = (yt

0, {x̂ t
1, x̂ t

2, . . . , x̂ t
M }), which includes the measurement yt

0
and the estimated labels from all other sensors. It is noted that
x̂ t

s ∈ X ∪ {φ}, where φ is the null value implying that the label from
sensor s was not available at the instant t ; the provision of null value
allows the existing sensors to say “I don’t know” and also allows
the sensors to have different sampling frequencies. The objective of
this paper is to use the sequence {zt } to obtain a consistent estimate
p̂(Y0|X = x) of the measurement model of the new sensor for all
states x ∈ X . It is assumed that measurements are independent
conditioned on the state, and the sequence of measurements from
each sensor is also independent. Furthermore, the sensors are assumed

Fig. 1. Probabilistic graphical model showing dependences.

to be collocated in the sense that the same state affects all these
measurements at all time instants. The probabilistic graphical model
in Fig. 1 exhibits dependences among the random variables of state,
observations, and state estimates.

III. TECHNICAL APPROACH

This section first considers a single instructor (i.e., M = 1) to
obtain the relationship between conditional densities for a given
estimated label, and then derives the sequential estimator of the
measurement model. This framework of a single instructor is then
extended to allow multiple instructors.

A. Relation Between Conditional Densities

Although the probability density of observation of a new sensor
conditioned on the label provided by an instructor can be computed,
we are interested in the observation density conditioned on the
true label. Hence, the relation between these observation densities
conditioned on the estimated label and the true observation density
is derived using the factorization shown in Fig. 1. Using marginal-
ization, chain rule of probability, and conditional independence of
Y0 and ̂X1 given X (as shown in Fig. 1), the following relation is
obtained:

p(Y0|̂X1 = i) =
L

∑

j=1

p(Y0, X = j | ̂X1 = i)

=
L

∑

j=1

p(Y0 | X = j,̂X1 = i)p(X = j | ̂X1 = i)

=
L

∑

j=1

p(Y0 | X = j)p(X = j | ̂X1 = i)

=
L

∑

j=1

α1
i j p(Y0 | X = j) (1)

where the constants α1
i j are obtained by using Bayes’ rule as

α1
i j = p(X = j |̂X1 = i) =

c1
i j w j

∑L
k=1 c1

ikwk
. (2)

These constants depend on prior probabilities {w j = p(X = j)} and
classification performance {c1

i j = p(̂X1 = i |X = j)} of sensor 1. It is
noted that, in (1), the observation density conditioned on an estimated
label is a mixture model of true measurement densities with known
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mixture weights but unknown components. The objective here is to
identify the components of the mixture model.

Let us denote p(y|X = i) by pi (y) and p(y|̂X1 = i) by p̃i (y; 1)
for brevity. Then, (1) is rewritten for all i ∈ X and for each y ∈ Y0
in a matrix form as follows:

⎡

⎢

⎣

p̃1(y; 1)
...

p̃L(y; 1)

⎤

⎥

⎦
=

⎡

⎢

⎣

α1
11 · · · α1

1L
...

. . .
...

α1
L1 · · · α1

L L

⎤

⎥

⎦

⎡

⎢

⎣

p1(y)
...

pL(y)

⎤

⎥

⎦

˜P = A1 P.

Here, for each observation y, ˜P is a column vector of label-
conditioned observation densities that can be estimated, and P is
a column vector of true observation densities that are the desired
outputs. The matrix A1 consists of all values [α1

i j ] from (2). If A1
is invertible, then

P = A−1
1

˜P = B1 ˜P . (3)

Matrix A1 depends on prior state probabilities and classification
performance of Sensor 1; thus if A1 is invertible, then Sensor
1 can be an instructor for the new sensor. The implication of
the invertibility requirement is discussed further in Section III-C.
Using (3), the measurement model is obtained as a linear combination
of the probability densities conditioned on the estimated labels as

pi (y) =
L

∑

j=1

β1
i j p̃ j (y; 1) (4)

where the constant β1
i j is an element of the matrix B1 and the equality

holds for each y ∈ Y0. Thus, if p̃ j (y; 1) is estimated for all j ∈ X
using the sequence zt = (yt , x̂ t

1), then (4) can be used to estimate
the true measurement model for each state i ∈ X . In Section III-B,
a sequential estimator for the measurement models is derived.

B. Recursive Density Estimation

In this part, a recursive density estimator is used to sequentially
estimate p̃ j (y; 1) for all j ∈ X and an estimator is derived for pi (y)

using (4). All the observation-label pairs zt , where the label from
instructor x̂ t

1 is j are used sequentially to estimate the conditional
density p(Y |̂X1 = j). Using the recursive density estimator from [1],
the observation density conditioned on a label is updated as

p̃t
j (y; 1) =

nt
j − 1

nt
j

p̃t−1
j (y; 1) + 1

nt
j h

(

nt
j

)d
K

(

y − yt

h
(

nt
j

)

)

(5)

where nt
j is the number of observations that have been assigned

label j ∈ X in t time steps, K (·) is a kernel function, h(n) is
the kernel width after n updates, and d is the dimensionality of the
observation. The number of observations is updated by incrementing
nt

j = nt−1
j + 1. For all other labels i ∈ X \ j , the densities remain

the same p̃t
i (y; 1) = p̃t−1

i (y; 1) and observation counts remain the
same nt

i = nt−1
i . It is noted that if the label from an instructor is

unavailable, i.e., x̂ t
1 = φ, then all densities and observation counts

stay the same for that instructor.
Considering certain assumptions on kernel function K (·), ker-

nel width sequence {h(n)}, and assuming that measurements are
independent and identically distributed (IID) conditioned on state,
we leverage the results from [1] and [2] to show that p̃t

i (y; 1) is an
unbiased and consistent estimator of p̃i (y; 1). The assumptions and
relevant results are presented in Section III-C. Using all observation
densities conditioned on the estimated label, an estimate of the

measurement model is obtained by sequentially using (4) as

pt
i (y) =

L
∑

j=1

β1
i j p̃t

j (y; 1). (6)

C. Analysis

This section first presents the assumptions on the kernel (i.e.,
Assumptions 1 and 2) and the kernel bandwidth sequence (i.e.,
Assumption 3). These assumptions are used to leverage the results
from [1] to prove that the proposed density estimator is consistent
and to provide an upper bound of the error.

Assumption 1: Kernel K is a Borel-measurable function, which
is bounded, i.e., supy∈Y |K (y)| < ∞, absolutely integrable,
i.e.,

∫

y∈Y |K (y)| < ∞, and lim�y�→∞ |yK (y)| = 0.
Assumption 2: Let the function K have Fourier transform K ∗,

i.e., K ∗(u) = ∫ ∞
−∞ e−iuy K (y) dy. Then, for some r ∈ N,

limu→0{[1 − K ∗(u)]/|u|r } = kr is finite and the r th derivative of
the observation density, i.e., p̃(r)

i (y; s), exists for all s ∈ S .
Assumption 3: The kernel bandwidth sequence satisfies h(n) → 0

and nh(n) → ∞. More specifically, the sequence is considered to be
h(n) = bn−γ with γ ∈ (0, 1) and b > 0.

Assumption 4: The constant r ∈ N in Assumption 2 and the
constant γ ∈ (0, 1) in Assumption 3 satisfy the strict inequality:
rγ < 1.

Using these assumptions on the kernel and the kernel bandwidth
sequence, the error in conditional density given a label from instructor
becomes uniformly bounded based on the following lemma.

Lemma 5: If Assumptions 1, 2, 3, and 4 hold, then the density
estimation error satisfies the following relation:

sup
y∈Y0

∣

∣ p̃ j (y; 1) − E p̃t
j (y; 1)

∣

∣ = O
((

nt
j
)−γ r )

where E denotes the expectation and O is the big-O notation denoting
order.

Proof: The proof follows directly from [1, Th. 1(b)] for h(n) =
bn−γ ; further details are given in the Appendix.

The label-conditioned density can be computed if all error prob-
abilities are known, that is, p(̂Xs = i |X = j) is known for all
i, j ∈ X . A sensor may assume the role of an instructor if it is capable
of providing unique estimation of the true measurement density model
for the new sensor. The necessary and sufficient condition for a sensor
s ∈ S to be an instructor is that matrix As = [αs

i j ], where αs
i j is given

in (2), is invertible. The implications of the invertibility condition and
the approach to address the noninvertible case are given in the remark
as follows.

Remark 6 (Invertibility Condition and Noninvertible Cases): The
invertibility condition depends on the prior probability and the
instructor’s performance as described below.

1) Prior Probability: The matrix As is not invertible if the prior
probability of any class j is 0, i.e., w j = 0. In this case, the mea-
surement model p(Y |X = j) for all j with w j = 0 cannot be
obtained from this technique as the prior probability suggests that
the class j cannot occur. However, an estimate for models of other
classes can be obtained by removing the columns corresponding to
the zero probability classes from As to obtain matrix ˜As with full
column rank. The pseudoinverse of this nonsquare matrix ˜As is then
computed as Bs = (˜AT

s
˜As)

−1
˜AT

s .

2) Instructor’s Classification Performance: If all prior probabilities
are positive, then the matrix As is not invertible if the columns
are linearly dependent. Here, linear dependence implies that the
instructor is confused between certain states or performs poorly to
detect some specific states. For example, As = [0.5, 0.5; 0.5, 0.5]



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 5169

implies that the instructor is confused between states 1 and 2, and
As = [0.8, 0.8; 0.2, 0.2] shows that the instructor performs poorly to
detect state 2. The measurement model corresponding to these classes
cannot be recovered from this technique as the instructor more often
wrongly labels the observations. If the linearly dependent columns
are removed from As to obtain matrix ˜As , then the pseudoinverse of
˜As can be used to obtain the density estimates for other classes.

It is noted that if M = 1, then the invertibility condition would
also be the condition for identifiability of the unknown measurement
models, and that condition does not depend on the underlying true
observation densities.

Theorem 7 (Main Result): Suppose that Assumptions 1–4 hold.
If A1 = [α1

i j ], from (2), is invertible and the inverse is given by

B1 = [β1
i j ], and if the proposed estimator given in (6) is used to

estimate the conditional density p(Y0 | X = i) given as pi (y), then
the error in estimation is given by

sup
y∈Y0

∣

∣pi (y) − E pt
i (y)

∣

∣ = O

⎛

⎝

L
∑

j=1

∣

∣β1
i j

∣

∣

(

nt
j

)−γ r

⎞

⎠

where nt
j is the number of observations labeled as x̂1 = j after t

total updates.
Proof: Using the result from Lemma 5 and definition of big-O

notation, it follows that there exists a positive constant θ j ∈ R
+ and

a positive integer ñ j , such that:
sup

y∈Y0

∣

∣ p̃ j (y; 1) − E p̃t
j (y; 1)

∣

∣ ≤ θ j (nt
j )

−γ r (7)

holds for all nt
j ≥ ñ j for each j ∈ X . On the other hand, taking

expectation on (6) and using (4), we obtain

pi (y) − E pt
i (y) =

L
∑

j=1

β1
i j

(

p̃ j (y; 1) − E p̃t
j (y; 1)

)

.

Using Jensen’s inequality [14] for absolute value function, which is
known to be a convex function, we obtain

∣

∣pi (y) − E pt
i (y)

∣

∣ ≤
L

∑

j=1

∣

∣β1
i j

∣

∣

∣

∣ p̃ j (y; 1) − E p̃t
j (y; 1)

∣

∣.

Combining the above result with (7) and making use of θmax =
max j∈X θ j , we obtain

∣

∣pi (y) − E pt
i (y)

∣

∣ ≤
L

∑

j=1

∣

∣β1
i j

∣

∣ θ j
(

nt
j
)−γ r

∣

∣pi (y) − E pt
i (y)

∣

∣ ≤ θmax

L
∑

j=1

∣

∣β1
i j

∣

∣

(

nt
j
)−γ r

for some nt
j ≥ ñ j for all j ∈ X for any y ∈ Y0. Then using

multivariate big O notation, we obtain

sup
y∈Y0

∣

∣pi (y) − E pt
i (y)

∣

∣ = O

⎛

⎝

L
∑

j=1

∣

∣β1
i j

∣

∣

(

nt
j
)−γ r

⎞

⎠.

This theorem gives the error as a function of number of different
training labels from a particular instructor, the performance of classi-
fier of the instructor, and prior class probabilities. In this formulation,
a perfect instructor is modeled with the identity confusion matrix,
i.e., c1

i j = 1 for i = j and c1
i j = 0 otherwise. If the instructor is

considered to be perfect, then the following remark explains the error
relationship.

Fig. 2. Relative sample complexity for different misclassification rates.

Remark 8 (Oracle Instructor): If prior class probabilities
w j ∈ (0, 1), then the perfect instructor is modeled by using
the matrix A1 to be an identity matrix of size L . This implies that if
i = j , then β1

i j = 1, else β1
i j = 0. Using Theorem 7, it follows that

supy∈Y0
|pi (y) − E pt

i (y)| = O((nt
i )

−γ r ). This result agrees with
the known result for recursive density estimation and is an extreme
case of the proposed model for imperfect instructors.

The next remark addresses the number of examples needed from
an imperfect instructor to obtain an error of the same order as that
from an oracle.

Remark 9 (Relative Sample Complexity): Let us assume that we
have equal number of observations for all labels after N updates
from an imperfect instructor and after No updates from an oracle.
In order to have an error of the same order, the following relation
must hold for all i ∈ X from Remark 8 and Theorem 7:

(

No

K

)−γ r
=

K
∑

j=1

∣

∣β1
i j

∣

∣

(

N

K

)−γ r
.

A rearrangement of this relation yields

˜β = N

No
=

⎛

⎝

L
∑

j=1

∣

∣β1
i j

∣

∣

⎞

⎠

1
γ r

.

Thus, the error introduced by imperfect instructions can be compen-
sated by the proposed estimator in (5) and (6) by using ˜β times more
observations.

For example, let us consider a binary state scenario, where one
sensor serves as the instructor with equal misdetection rate and
false alarm rate, and the prior probability of each class is 0.5,
then relative sample complexity from Remark 9 shows that ˜β ≈ 3,
if misclassification rate is 0.1; whereas, ˜β ≈ 1.7, if misclassification
rate is 0.05. Thus, learning from a noisy sensor is indeed feasible
according to this analysis. The value of ˜β for different values of
misclassification rates from [0.0, 0.5) is given in Fig. 2. It is noted
that as misclassification rate approaches 0.5, which is a noninvertible
case (Remark 6), we see that ˜β → ∞.

This section has developed a sequential estimator for the measure-
ment density of a single instructor (i.e., M = 1). The framework is
now extended for multiple instructors (i.e., M ≥ 2) in the following
part. The linear combination of unknown measurement densities in
(1) has been shown to be equal to the label-conditioned observation
densities, obtained from labels provided by an instructor. Since the
unknown measurement densities are the same irrespective of the
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instructor, the relation in (1) is generalized for M ≥ 2 as follows:
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

p̃t
1 (y; 1)

...

p̃t
L (y; 1)

p̃t
1 (y; 2)

...

p̃t
L (y; 2)

...

p̃t
1 (y; M)

...

p̃t
L (y; M)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

α1
11 . . . α1

1L
...

. . .
...

α1
L1 . . . α1

L L
α2

11 . . . α2
1L

...
. . .

...

α2
L1 . . . α2

L L
...

...
...

αM
11 . . . αM

1L
...

. . .
...

αM
L1 . . . αM
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˜P = A P

P = (ATA)−1AT
˜P = B ˜P .

If A has the full column rank, then B is well-defined and a linear
estimator of the measurement density is obtained as

p(Y0 | x = i) =
M

∑

s=1

L
∑

j=1

βs
i j p(Y0 | x̂s = j) (8)

where, for brevity, the elements of B are denoted as βs
i j instead of

βi,L(s−1)+ j .

It is noted that the coefficients βs
i j in the estimator may have nega-

tive values. Consequently, after finitely many updates, the estimate of
density at few values of y ∈ Y0 can be negative. Thus, for practical
usage, only the positive part is considered and the estimator could
be modified as

p(Y0 | x = i) = η

∣

∣

∣

∣

∣

∣

M
∑

s=1

L
∑

j=1

βs
i j p(Y0 | x̂s = j)

∣

∣

∣

∣

∣

∣

+
(9)

where η is a normalization constant and the notation |·|+ = max(0, ·).

IV. SIMULATION RESULTS AND DISCUSSION

In this section, the proposed sequential density estimator is vali-
dated by using a simulation example. In the example, we consider a
scenario in which two existing sensors with known models use a max-
imum likelihood classifier to generate state estimates. These estimates
serve as noisy training labels for a new sensor with a different and
unknown sensor model. Referring to Section I, the density estimator
for intelligent student is compared with that for naïve student (which
assumes that the estimated label is the true label), and also with that
for blessed student (which obtains the true label from an oracle) (see
Remark 8). The details of the simulation and the results are presented
ahead in this section.

A binary classification problem is considered, i.e., X = {0, 1} and
L = 2, with two instructors, i.e., S = {1, 2} and M = 2. The sensor
models in the simulation are chosen to have independent Gaussian
distributions. Specifically, p(Yi |X) ∼ N (μi

X , �i
X ), where �i

X = 1
for all i ∈ {0, 1, 2}, μ1

0 = μ2
0 = −1, μ0

0 = −3, μ1
1 = μ2

1 =
1, and μ0

1 = 3. It is noted that the unknown model p(Y0|X) is
less overlapping compared to those of the instructors p(Y1|X) and
p(Y2|X). The state estimates are generated by the instructor s ∈ S by
using the observation ys ∈ Ys ; and the maximum likelihood classifier
is obtained as

x̂s (ys) = argmax
x∈X

p(ys |x).

Fig. 3. Sequential update of density estimates for each state using different
approaches (40 updates).

The normalized confusion matrix for the instructor’s classifier,
i.e., p(̂Xs |X), is computed either by sampling or by using the known
cumulative density function. Results of the sequential estimator for
the first 40 updates are shown in Fig. 3. The estimated model
after 40 and 1000 updates from different approaches is compared
in Fig. 4(a) and (b), respectively. It is noted that, for the naïve
student, the label noise leads to an incorrect measurement model
with spurious components as compared to that of the blessed student.
The intelligent student (in Fig. 3) removes the spurious components
after using more observations to be closer to the estimate of the
blessed student. Since the true model is known for the new sensor,
it is observed that the estimate after 1000 updates is closer to the true
model as compared to that after 40 updates. The estimated models are
compared with the true model by computing the maximum absolute
error over both states. The resulting plot is shown in Fig. 4(c). The
naïve student converges to a relatively poor model, whereas the
proposed approach keeps improving the estimate as more samples
become available; however, as expected, the improvement is slightly
less than learning from an oracle. The estimate from two instructors
is only slightly better than that from a single instructor, because the
proposed method computes a weighted average of the estimates from
each instructor and the weights depend on classification performance
of the individual instructor. In this simulation example, a noisy
sensor with overlapping classes has been used to successfully train a
sensor with relatively less overlapping classes. Since the generative
model for data in each class is obtained sequentially, the estimate
of the maximum likelihood classifier is obtained after each update.
In this way, the proposed method is validated to sequentially update
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Fig. 4. Comparison of errors in density estimation. (a) Density estimate
after 40 updates. (b) Density estimate after 1000 updates. (c) Average error
in density estimation.

the density estimate using a streaming sequence of labels from the
instructors along with the sensor’s own measurements/features.

V. SUMMARY AND CONCLUSION

This paper presents a new perspective of learning from other
sensors in a network and it is proven that existing sensors can
teach new sensors. The proposed framework has been developed by
using recursive density estimation and probabilistic graphical models
to obtain a sequential estimator for the measurement models. The
developed estimator uses estimated labels from existing sensors and

their state-dependent statistics of label noise to obtain a generative
model of true observation density. The estimation error bound is
obtained by using results from recursive kernel density estimation [1].

There are several areas of theoretical work to develop the pro-
posed method for real-life implementation. The authors suggest the
following topics for future research.

1) Incorporating the Effects of Number of Labels: The proposed
framework fuses the densities from each instructor based only
on their classification accuracy and does not consider the
number of labels contributed by each instructor. The number
of labels is expected to affect the uncertainty in the density
estimate. The framework can be extended to include the number
of labels contributed from each instructor.

2) Relaxation of IID and Conditional Independence Assumption:
This paper assumes that the sequence of measurements con-
ditioned on state is IID; however, consistency and asymp-
totic normality properties of recursive kernel estimators have
been shown under certain dependency conditions [15]. The
future research may address relaxation of the assumption of
conditional independence given state for measurements from
different sensors.

3) Estimation of Instructor’s Performance: This paper assumes
that the performance of the instructor is accurately known
at the outset, which for example may not be true for labels
obtained from annotations of web images [8]. The framework
can be updated to estimate the instructor’s performance for
incorporation in the sequential estimation.

4) Field Experimentation: The future research may demonstrate
the proposed learning method with heterogeneous sensors (e.g.,
training of geophones using cameras).

APPENDIX

The theorem used in the proof of Lemma 5 from [1] is given in
this appendix for completeness of this paper. The unknown density
is represented by f (y) = p̃i (y; s) and the recursive estimator from
(5) is f ∗

t (y).
Theorem 10 [1]: Let the kernel K satisfy the Assumptions 1

and 2, and let the kernel bandwidth sequence h(n) satisfy the
conditions: h(n) → 0 and nh(n) → ∞. Let nh(n)r → ∞ and
1/ (nh(n)r )

∑n
j=1 h( j)r converge to some γr ∈ R, where r is given

in Assumption 2. Then

E f ∗
t (y) − f (y)

h(n)r → γr kr f r (y).

It is noted that if the kernel sequence is chosen to be
h(n) = bn−γ (as in this paper), then γr = 1/(1 − γ r),
so E f ∗

t (y)− f (y) = O(n−γ r ), because � f r �∞ is bounded (Assump-
tion 2).
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