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Abstract: To optimise ground supporting and mitigate ground instability, a 
proper understanding of the ground conditions is critical. The concept of 
monitoring drilling parameters of a bolter for ground characterisation, which 
refers to identifying geological features included locations of joints and 
strengths of rock layers, has been studied in the past few decades. Several 
intelligent drilling units have been developed for joint detection but have 
limited capabilities. For instance, the existing systems fail to discriminate joints 
with the aperture of less than 3.175 mm and tend to generate false alarms. The 
objective of this research was to develop more efficient and sensitive detection 
programs for joint detection. To achieve this objective, a series of full-scale 
drilling tests with various simulated joint conditions have been conducted, and  
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new detection programs have been proposed based on pattern recognition 
algorithms. Moreover, wavelet analysis has been applied to pre-process data to 
further promote detection programs. [Received: July 15, 2017; Accepted: 
November 18, 2017] 

Keywords: wavelet analysis; cumulative sum algorithm; CUSUM algorithm; 
roof bolter; drilling parameters; joint detection; ground support optimisation. 
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1 Introduction 

Ground instability, including roof and rib failure, has been one of the persistent safety 
issues in tunnelling and underground mining (i.e., coal mining, industrial minerals) and 
construction. Despite much advances in the equipment and automation of various 
processes in underground mining, ground instability still causes damages to equipment, 
personnel injuries, and even fatalities every year. Especially in underground coal mining 
industry, ‘fall of ground’ is one of most fatal incidents (NIOSH, 2015a, 2015b). The 
existence and frequency of joints and voids are critical properties of rock masses that 
control ground instability. Accurately characterising the ground conditions, and 
developing a better understanding of the rock mass properties, is the key component to 
effectively optimise ground support design and mitigate the risk of ground instability. 
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Various techniques, including back mapping, bore scoping, and geophysical logging 
have been applied for generating the input parameters for rock mass classification as part 
of quantifying ground characteristic pertinent to the stability analysis. These techniques 
also experience various shortcomings and suffer different degrees of limitations that 
cannot be widely applied in the field. For instance, bore scoping where a camera is used 
to observe the borehole walls offers visual observation of geological features along a bore 
hole. However, skilled operators are required to run bore scoping to precisely recognise 
certain geological features. Given the restriction of working under the supported roof, 
bore scoping cannot be applied in unsupported areas where ground support is being 
installed and may need improvements. Other ground characterisation methods have also 
been found to suffer from similar issues (Rostami et al., 2015) 

Drilling into the roof and/or ribs is a routine part of ground support installation in 
underground construction and mining such coal mines. As such it is an integral part of the 
operation cycle. Therefore, the possibility of real-time detection of joints by monitoring 
the drilling parameters collected during the routine drilling process is an intriguing and 
attractive feature to have on roof bolting units. 

This paper reviews previous studies related to ground characterisation and the 
practical issues in their application, and presents modified programs used for pattern 
recognition to improve the joint detection rates and reduce false alarms. Here the basic 
theory for statistical analysis of data is similar to the cumulative sum (CUSUM) 
algorithm used in an earlier publication (Bahrampour et al., 2015; Liu et al., 2016, 2017). 
However, according to the characteristics of collected data, statistical methods, including 
running average and autoregressive model, are also applied to update this algorithm. 
Furthermore, latest modifications in the program involve the application of wavelet 
analysis for pre-processing of the data, which yields better detection results will be 
discussed. The result of applying the new program and performance of related joints 
detection algorithms for analysis of drilling parameters, specially feed and rotation 
pressures, will be reviewed. 

It should be noted that all the tests for this study were performed at the 
manufacturer’s testing facility with the real drilling units, with actual drill bits and rods in 
large samples of rock and concrete. The same system has been deployed in the field and 
the data stream is identical to what was measured in the lab, with the exception of the 
acoustic and vibration sensors. Thus the result of this study is fully adoptable to field 
applications by the machine manufacturer, when they switch the control system to a more 
computationally powerful system that can implement the calculations and use the AI 
programs for real time analysis of data. 

2 Background 

The issue of characterising ground while drilling boreholes has been a subject of interest 
in mining, petroleum, and civil engineering for decades. The objective of these studies 
has been the identification of certain features in the ground relative to the performance of 
the underground workings. For example, in mining and civil engineering, the main goal 
has been to use this information for evaluation of the ground stability and optimisation of  
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ground support for improved safety. Researchers at the Spokane Research Center of the 
United States Bureau of Mines (USBM) conducted a research project to collect and 
analyse data from many drilling tests using a roof bolter. The drilling parameters used in 
their studies included thrust, torque, penetration rate, and rotational speed of the bit. King 
et al. (1993) updated an instrumented roof bolter with an unsupervised learning 
technique, as well as an expert system to detect critical geological features to improve 
support design. The updated system could calculate the specific energy of drilling (SED) 
based on measured drilling parameters. Field tests in an underground coal mine proved 
the capability of this updated system to identify the roof strata using SED values (Frizzell  
et al., 1992; Signer and King, 1992; King et al., 1993). As a part of their research project, 
a new drill monitoring system, which was proposed by Parvus Corporation of Salt Lake 
City of Utah, was installed on a Bureau model roof-bolting drill (Takach et al., 1992; Hill 
et al., 1993). While the findings of these studies have been critical, there is no operating 
unit using this system in the industry. 

Itakura et al. (2001) instrumented a pneumatic rock bolt drill to detect locations of 
fractures in the ground by monitoring drilling parameters. In order to evaluate the 
capability of this instrumented drilling unit, laboratory tests were conducted with 
controlled geological conditions and field tests in a coal mine. Drilling parameters, 
including torque, thrust, rotational speed, and stroke were monitored by this instrumented 
drilling unit for joint detection. Despite the ability to identify location of discontinuities 
in rock mass, the system was unable to sense discontinuities of small size and aperture. In 
a follow-up study, a measurement while drilling (MWD) System was developed which 
could detect discontinuities in the rock mass along the borehole by analysing collected 
data including torque, thrust, revolution, and stroke. Field tests were also performed in 
Taiheiyo Coal Mine in Japan to evaluate the performance of the MWD system. This 
system also failed to detect discontinuities with small aperture. Thus, they concluded that 
discontinuities with small sizes (such as hairline cracks) were difficult to be identified by 
monitoring the drilling data (Itakura et al., 1997, 2001; Itakura, 1998). 

A research team at West Virginia University (WVU) has worked on the 
characterisation of the roof strata in underground coal mines by monitoring drilling 
parameters of an instrumented roof bolter. In their research, a roof bolter, developed by 
the J.H. Fletcher & Co., was employed. Intelligent drilling systems were equipped on the 
roof bolter for the purpose of detecting geological features, such as locations of voids, 
joints, and bed separations. Drilling parameters including rotational speed, thrust, torque, 
and penetration rate, were recorded and analysed for mine roof characterisation. The 
SED, which is an indicator that can be calculated from drilling parameters, was applied 
toward identification of fractures as well as rock type/strength in rock mass. SED 
provided certain capabilities for joint detection, but it showed dramatic variations in the 
same material, and still could not identify joints with apertures smaller than 3.175 mm. 
Moreover, the WVU research team proposed the concept of ‘thrust valley’ through 
pattern analysis of recorded drilling parameters. The phenomenon of ‘thrust valley’ can 
be observed in the collected thrust (or feed pressure) data while the drill bit encounters a 
geological discontinuity during the drilling process. Figure 1 shows an example of ‘thrust 
valleys’ associated with simulated fractures in a concrete block (Finfinger et al., 2000; 
Finfinger, 2003). 
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Figure 1 An example of ‘thrust valleys’ associated with simulated fractures in a concrete block 

 

The WVU research team continued their research by developing a Real-Time Detection 
System, and installed it on a J.H. Fletcher & Co. roof bolter for joint and/or void 
detection. This instrumented roof bolter was tried in many underground coal mines to 
monitor several drilling parameters. However, it still could not identify joints and/or 
voids with smaller apertures (Peng et al., 2003; Collins et al., 2004). This was followed 
by updating the system to detect anomalies in real-time while drilling. The updated 
system still could not detect joints with smaller apertures that were clearly shown in bore 
scoping images (Anderson and Prosser, 2007). 

The research proposed in this paper is conducted with the objective of addressing the 
issue of joint and/or void detection by analysing drilling parameters recoded while 
drilling. A J.H. Fletcher drill unit was employed for full scale drilling tests for this study, 
but with the addition of vibration and acoustic sensors, mounted on the drill to monitor 
other parameters in addition to drilling data that was monitored in the past. New joint 
detection algorithms have been developed based on pattern recognition algorithms and 
have been discussed in previous publications (Bahrampour et al., 2013; Rostami et al., 
2014, 2015; Kahraman et al., 2016; Liu et al., 2016, 2017). Additional laboratory tests 
have been conducted with simulated joints with various aperture and angles relative to 
the borehole axis. New joint detection algorithms developed in this study offers improved 
capabilities to identify joints with apertures less than 3.175 mm. These algorithms failed 
to identify all joints and/or voids along the borehole, and generated false alarms during 
the detection process. Therefore, the testing and development of new algorithms has been 
continued as part of this study to address the noted shortcomings, and new pattern 
recognition and artificial intelligent systems have been examined to address the issues. 
This includes using new algorithms, pre-processing of data using wavelets, and using 
composite indices where multiple drilling parameters have been combined to represent 
drilling behaviour. The main objective has been to improve the ability of the system for 
identify tighter joints and joints at various angles along the borehole. This paper discusses 
the recent changes in the pattern recognition programs and their results relative to 
accurate and reliable detection of the joints in the rock mass. 
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3 Laboratory testing setup 

For this study, laboratory tests were carried out at a testing facility of J.H. Fletcher & Co. 
in Huntington, WV. A drill control unit (DCU) is installed on the smart drilling units by 
Fletcher and was used to monitor the drilling process and collect data from various 
sensory systems on the drill during laboratory tests. These tests included data from the 
additional vibration and acoustic sensors, in addition to the standard drilling parameters 
including feed pressure (controlling thrust), rotation pressure (representing torque), 
rotational speed or RPM, penetration rate, vacuum pressure (used to flush the hole while 
drilling), and drill bit position. Vibration data was monitored by a 3D accelerometer and 
acoustic signal was generated by a specialised piezoelectric – flat microphone to 
complement the drilling parameters. Figure 2 is the picture of the J.H. Fletcher full-scale 
roof-bolt drill unit as well as a tested concrete specimen with a pattern of drilled 
boreholes. 
Table 1 Various combinations of concrete blocks to build different testing specimens 

Order Combination of concrete blocks Joint condition Top Bottom 

Testing 
specimens 

1 S S A simulated joint 
with the size less 
than 3.175 mm 
located at the 

depth of 76.2 cm. 

2 S M 
3 S H 
4 M S 
5 M M 
6 M H 
7 H S 
8 H M 
9 H H 

Notes: *strengths of concrete blocks. 
*S, ~20 MPs; *M, ~50 MPa; *H, ~70 MPa. 

In order to simulate joints in various conditions, a set of concrete blocks were poured and 
cured for more than 28 days. These concrete blocks had three different prescribed 
strengths; namely, low (S, ~20 MPa), medium (M, ~50 MPa), and high (H, ~70 MPa). 
The dimensions of each concrete block were around 0.5 m  0.5 m  0.75 m in height. To 
build a testing specimen, one concrete block was placed on top of another, and the gap 
simulated a joint with an aperture less than 3.175 mm. Thus, the simulated joint was the 
target of joint detection in each specimen which was at the depth of 76.2 cm. There were 
nine entirely different testing specimens, as shown in Table 1 (Liu et al., 2016, 2017). 
Additional details about the testing, block combinations, data collection and initial 
analysis can be found in Rostami et al. (2014), and Bahrampour et al. (2013, 2014). 

4 Initial analysis of collected data and effectiveness of joint detection 
program 

In the preliminary analysis of the testing data for joint detection, new joint detection 
algorithms were developed to effectively increase the precision of joint detection and 
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decrease the number of false alarms (Rostami et al., 2015; Bahrampour et al., 2013, 
2014). According to the theory of ‘thrust valley’, the phenomenon of ‘valley’ was also 
observed in the recorded data of rotation pressure (or torque). Figure 3 illustrates an 
example of collected rotation pressure (torque) and feed pressure (thrust) data that 
demonstrate a ‘valley’ at the moment that the drill bit encountered the artificial joint. 
Thus, the CUSUM algorithm, which is a sequential analysis technique typically applied 
to monitoring changes in streaming data (Page, 1954; Basseville and Nikiforov, 1993), 
has been updated and used to develop new joint detection algorithm in this research. 

Figure 2 The J.H. Fletcher & Co. drill control unit (top) and a tested concrete specimen 
(bottom) (see online version for colours) 

 

 

In the initial analysis, individual drilling parameters, including feed pressure, rotation 
pressure, acoustic signals, and vibration signals, were processed for joint detection. A 
brief review of trends in recorded feed pressure and rotation pressure data showed that 
the drilling machine did not reach steady state at the beginning and ending stages of the 
drilling process. Therefore, to eliminate the noise generated in these stages, the data 
recorded within the first 12.7 cm and last 12.7 cm were cut out of the analysis. The 
improved (current) joint detection algorithms were further updated in the follow up 
studies to accurately identify tight joints. Table 2 lists the pertinent results of performance 
of joint detection programs, obtained by analysing drilling parameters for feed pressure 
and rotation pressure for all nine specimen combinations, Table 3 summarises the results 
of joint detection by using acoustic signals and vibration signals for all nine concrete 
block combinations. 
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Table 2 Summary of the joint detection results by monitoring feed pressure and rotation 
pressure data on all concrete settings 

Concrete 
settings 

Feed pressure  Rotation pressure 

Detection rate (%) False alarms 
(157 holes) 

 Detection rate (%) False alarms 
(157 holes) 

S-H 87 1  93 6 
H-S 88 1  77 4 
M-H 100 0  100 5 
H-H 94 1  83 1 
H-M 100 2  95 16 
M-S 100 2  100 17 
S-M 89 2  89 19 
M-M 78 1  89 10 
S-S 100 2  100 22 
Overall 93 12  92 100 

Table 3 Summary of joint detection results by monitoring acoustic and vibration signals on all 
concrete settings 

Concrete 
settings 

Acoustic signal  Vibration signal 

Detection rate (%) False alarms 
(157 holes)  Detection rate (%) False alarms 

(157 holes) 
S-H 60 4  40 4 
H-S 82 3  53 2 
M-H 100 4  77 9 
H-H 83 0  78 2 
H-M 95 4  81 7 
M-S 100 13  89 10 
S-M 89 2  67 14 
M-M 72 0  83 16 
S-S 81 7  88 16 
Overall 85 37  73 80 

As can be seen from these two tables, the performances of these four individual drilling 
parameters on joint detection show the superior performance of the feed pressure (or 
thrust) in the nine different concrete block combinations. The feed pressure offers the 
most accurate joint detection rate and the minimum number of false alarms with an 
average detection rate of 93% and 12 false alarms for the 157 holes drilled. As for 
rotation pressure, the average detection rate is 92%, but the total number of false alarms 
is 100 when the algorithm was used for all the specimen combinations. The acoustic and 
vibration signals were initially added to the system with the objective of improving the 
detection by independent sensory systems to complement the four major drilling 
parameters monitored in previous studies. However, they showed much inferior 
performances in comparison to the feed pressure and rotation pressure; with average 
detection rates of 85% and 73% for acoustic and vibration signals, respectively. Also, 
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they generated 37 and 80 false alarms, respectively. Some attempts were made to 
combine the drilling parameters and acoustic/vibration signals to improve the detection 
rate but the early trials did not yield notable improvements over the use of feed or 
rotation pressure. 

Figure 3 An example of recorded rotation pressure (torque), feed pressure (thrust), RPM, and 
drill bit position data (see online version for colours) 

 

The results shown in these tables suggest that the joint detection algorithms can detect 
joints with apertures smaller than 3.175 mm. However, the sensitivity and precision of 
the proposed joint detection programs still needed to be further enhanced to improve their 
detection rate and reduce the number of false alarms. 

5 Use of wavelet analysis to improve joint detection algorithms 

The wavelet transformation process is well-known and suited for time-frequency analysis 
of non-stationary signals corrupted by noise and spurious disturbances. As for the signals 
collected from the drilling unit, new degrees of freedom have been introduced; 
specifically, scaling parameters and time-translations that can be used to extract desired 
information (or details) from the signal as a function of ‘t’ at some fixed scale value ‘s’. 
A detail is contained in the collected signal f(t) (Kaiser, 1994). Note, that a signal f must 
belong to the Hilbert space, H, to be admissible for wavelet analysis. Furthermore, 

approximations of the original signal become present by removing specified details, such 
as noise. The mother-wavelet, the function used in junction with the collected signal to 
perform the wavelet transform, is denoted by ψ0,0 ≡ ψ(u), which can be translated and 
scaled using the following equation 

,
p

s t
u tψ s ψ

s
 (1) 

where s is scale and t is central-time. The collected signal is f(t), and the resulting signal 
after wavelet transformation is ( , ).f s t  The equation to derive the resulting signal is 
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*
, , ,( , ) ( ) ( )s t s t s tf s t duψ u f u ψ f ψ f  (2) 

where *
,s tψ  is the adjoint of ψs,t. Since the material being drilled through may contain 

changes in rock strength, joints, cracks, voids, etc., the signal can be decomposed into 
two parts; the parts of the signal that pertain to the joints or voids, and all other factors 
which will be considered noise. Then, f can be expressed as 

joint noisef f f  (3) 

and f  can be expressed as 

*
, , ,( , ) ( ) ( )s t s t s tf s t duψ u f u ψ f ψ f  (4) 

Thus, through appropriate scaling, it becomes possible to de-noise the signal by 
extracting all details related to noise and simply removing them from the signal. 

The choice of the wavelet basis function and wavelet scales depends on the  
time-frequency characteristics of individual signals. Few properties need to be considered 
when selecting a wavelet basis. For time-frequency localisation, the analysing wavelet 
must be well localised either in time and/or frequency for the wavelet transform to exhibit 
locality. Note another property to consider is the vanishing moments. This property is 
beneficial for detecting anomalies since if the incoming signal is smooth and the wavelet 
has enough vanishing moments, it results in small wavelet coefficients at fine scales 
(finer anomaly detection). Lastly, there exists the property of support, which is 
proportional to the number of vanishing moments. An increase in vanishing moments 
may lead to enhanced anomaly detection, yet an increase in support leads to greater 
computational complexity. Therefore, Daubechies wavelets are optimal since they give 
minimal support for a given number of vanishing moments (Ray, 2004; Rajagopalan and 
Ray, 2006; Samsi and Ray, 2008). Furthermore, Daubechies wavelet db45 mimics a 
sinusoidal wave well enough, which is desired since the collected signal from the drilling 
unit is non-stationary with sinusoidal characteristics. According to aforementioned 
phenomenon of ‘thrust valley’, a sudden drop can be observed in the recorded feed 
pressure and rotation pressure data when the drill bit encountered the preset joint. 
However, the raw data also included a lot of noise that may confuse detection algorithms, 
and therefore generate more false alarms. For denoising of raw data, the db45 wavelet 
basis was used in this study, which would improve the performance of the detection 
algorithms. Figure 4 and Figure 5 show examples of using db45 to pre-process feed 
pressure and rotation pressure signals, respectively. The three sub-figures presented are 
the collected drill bit position data, raw signals of feed pressure or rotation pressure, and 
processed signals of feed pressure or rotation pressure while using db45. In addition, as 
shown in the two figures, the majority of the noise has been removed for further data 
analysis, and the phenomenon of valley became more apparent after using the wavelet 
analysis with a db45 wavelet. Thus, applying newly updated detection algorithms could 
effectively improve joint detection rate and reduce the number of false alarms. 
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Figure 4 An example of using db45 to pre-process feed pressure signal (see online version  
for colours) 

 

Figure 5 An example of using db45 to pre-process rotation pressure signal (see online version 
for colours) 

 

6 Statistical analysis of joint detection results by using updated joint 
detection algorithms 

The CUSUM algorithm is a sequential analysis technique, and it is usually applied for 
detection of abrupt changes in streaming data (Page, 1945). In this research, the 
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aforementioned sudden change can be considered as an abrupt change in collected 
drilling data, and an updated CUSUM algorithm has been used with the wavelet analysis 
using the db45 wavelet for joint detection in various conditions. The updated CUSUM 
algorithm is based on characteristics of de-noised feed pressure and rotation pressure 
signals. This assumes there is an unknown change at some time, ta, in a time series, yk (k 
= 1, 2, …), and the mean of yk before time ta is μ0, and the mean value after this change is 
μ1 = μ0 – v. Thus, the sufficient statistic, as shown as equation (5), is applied to process 
de-noised data, and therefore values of can be achieved along the data stream. 

1 0max , 0
2k k k
vg g y μ  (5) 

The detection alarm time can be defined as 

min :a kt k g h  (6) 

where h is the threshold, μ0 is the mean of time series, yk, before the change, v is the 
difference of mean values before and after the change, and g0 = 0. 

Therefore, the detection alarm time ta will be active once the value of gk is equal to or 
larger than the threshold value h which is preset at 40% of mean μ0, and a joint or a void 
is assumed to be identified at time ta. 

Figure 6 shows an example of improvements on joint detection results in S-H 
specimen by analysing the rotation pressure data. In this sample matrix, a pattern of  
14 boreholes were drilled, and blue points are identified joint information within the 
borehole; besides, red points represent false alarms that were generated while analysing 
the data. As can be observed, the detection results have been further improved with the 
lower number of false alarms. 
Table 4 Summary of joint detection based on de-noised feed pressure 

Concrete 
combinations S-H H-S M-H H-H H-M M-S S-M M-M S-S Overall 

Valid holes 15 17 17 18 21 18 18 17 16 157 
Holes missed 
joints 

0 0 0 0 0 0 3 2 0 5 

Detection 
rate 

100% 100% 100% 100% 100% 100% 83% 88% 100% 97% 

False alarms 0 1 0 0 3 4 4 2 4 18 

Table 4 shows the result of analysis of the feed pressure using wavelet analysis and the 
updated CUSUM algorithm. As shown in this table, the precision and accuracy of the 
updated algorithm using a db45 wavelet notably enhanced. The resulting average 
detection rate has increased to 97% with 18 false alarms in all 157 boreholes. Despite the 
current joint detection algorithm generating six more false alarms (increasing from 12 to 
18), the average detection rate has been increased by 4%. In addition, Table 5 shows the 
results of the rotation pressure data using the combination of wavelet analysis and the 
CUSUM algorithm. The average joint detection rate for the rotation pressure data 
remained at 92%. The total number of false alarms drops to from 100 to 62 in all 157 
drilling holes. 
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Figure 6 An example of improvements on joint detection results in S-H specimen by analysing 
the rotation pressure data (see online version for colours) 

 

 



   

 

   

   
 

   

   

 

   

   110 W. Liu et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Table 5 Summary of joint detection based on de-noised rotation pressure 

Concrete 
combinations S-H H-S M-H H-H H-M M-S S-M M-M S-S Overall 

Valid holes 15 17 17 18 21 18 18 17 16 157 
Holes missed 
joints 

0 4 0 3 0 2 1 2 0 12 

Detection 
rate 

100% 76% 100% 83% 100% 89% 94% 88% 100% 92% 

False alarms 1 3 1 0 14 10 14 4 15 62 

7 Conclusions 

Instrumented drilling units for ‘rock characterisation while drilling’ is an enabling 
technique to identify the location of geological discontinuities, including joints, voids, 
cracks, and bed separations, present in the ground surrounding an underground opening. 
Despite much advancement in this field, such as instrumented roof bolters, locating rock 
discontinuities with apertures less than 3.175 mm is still a challenge to the available 
smart drilling systems. Therefore, further research is necessary to improve the capability 
of available systems in identifying joints and/or voids with smaller apertures. 

In this paper, wavelet analysis using the db45 wavelet, along with an updated 
CUSUM algorithm, were employed to improve capabilities of programs for detecting 
joints and/or voids with smaller sizes. This involves the use of wavelet to filter the noise 
in the data and enhanced CUSUM algorithm to improve the detection rate and reduce the 
false alarms. The analysis of updated detection programs for locating simulated joints 
with smaller aperture in combination of nine specimens with various strength shows that 
detection results have improved. This was based on analysis of feed pressure and rotation 
pressure data obtained during the drilling process. Moreover, the updated programs are 
self-adjusting to offer better performance in different conditions. However, the programs 
have limited capabilities when analysing acoustic and vibration data. This is because the 
acoustic and vibration data offered different characteristics and require extensive digital 
filtering to eliminate the noise and allow for distinguishing special features such as a joint 
and/or void. 

Additional studies are underway to improve the capabilities of these programs in 
detecting joints with smaller apertures. Simultaneously, programs are being developed for 
rock classification and to offer estimated rock strength, while also looking at 
identification of inclined joints. Additional full-scale tests have been performed with 
these objectives in mind and data analysis is underway. 
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