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A B S T R A C T

This paper addresses sequential hypothesis testing for Markov models of time-series data by using the concepts
of symbolic dynamics. These models are inferred by discretizing the measurement space of a dynamical system,
where the system dynamics are approximated as a finite-memory Markov chain on the discrete state space. The
study is motivated by time-critical detection problems in physical processes, where a temporal model is trained
to make fast and reliable decisions with streaming data. Sequential update rules have been constructed for log-
posterior ratio statistic of Markov models in the setting of binary hypothesis testing and the stochastic evolution
of this statistic is analyzed. The proposed technique allows selection of a lower bound on the performance of the
detector and guarantees that the test will terminate in finite time. The underlying algorithms are first illustrated
through an example by numerical simulation, and are subsequently validated on time-series data of pressure
oscillations from a laboratory-scale swirl-stabilized combustor apparatus to detect the onset of thermo-acoustic
instability. The performance of the proposed sequential hypothesis tests for Markov models has been compared
with that of a maximum-likelihood classifier with fixed sample size (i.e., sequence length). It is shown that the
proposed method yields reliable detection of combustion instabilities with fewer observations in comparison
to a fixed-sample-size test.

1. Introduction

Recently there has been an unprecedented increase in the volume
and speed of temporal data being generated by physical systems, due
to the improvements in low-cost sensing and high-speed computation &
communication. Typical machine learning tools, used for monitoring of
physical processes, extract features from a fixed number of consecutive
observations and pose a supervised learning problem for detection
or classification using those features (Bishop, 2006). Similarly, fixed-
sample-size (FSS) tests from the estimation theory literature (Poor,
1994) compute likelihood or posterior probability of an observed se-
quence of fixed length and select the class which maximizes this
statistic. However, in order to perform well on all feasible sequences,
the chosen sample length in these approaches is made longer than
needed for most of the easily separable cases. For example, in time-
critical online monitoring systems such as detection of combustion
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instabilities in aircraft gas-turbine engines, an early detection can
enhance mitigation of structural damage in engines by avoiding the
thermo-acoustic resonance and may even prevent accidents due to
engine shutdown. A dynamic data-driven approach (Darema, 2004)
for sequential detection and classification is needed, which can adapt
the observed length of time series without any significant computa-
tional burden. Sequential hypothesis tests offer one such efficient and
adaptive framework, which would allow online detection of anomalies,
faults, and mode transitions in dynamical systems, where high-speed
streaming data are generated. This paper presents a sequential hypoth-
esis testing procedure for a class of Markov models of temporal data
inferred by using symbolic time-series analysis (STSA) (Daw et al.,
2003; Beim Graben, 2001).

A sequential detector is a statistical decision function that uses a
random number of samples depending on the observation sequence to
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detect the underlying hypothesis. A sequential detector, on the average,
would need a much smaller sequence length than FSS tests (Poor,
1994). Sequential probability ratio test (SPRT) (Wald and Wolfowitz,
1948; Shiryaev, 1978) has been traditionally used for binary hypothesis
testing and is known to be an optimal detector when the observation se-
quences are independent and identically distributed (IID) (Burkholder
and Wijsman, 1963). However, sequential data from physical sys-
tems are typically not independent as causal relations, because of the
underlying physics, may lead to statistical dependencies.

Hidden Markov models (HMMs) (Rabiner, 1989) undergo temporal
evolution, which are learned from data using iterative techniques to
capture some of the statistical dependencies (Bishop, 2006). In Grossi
and Lops (2008), Chen and Willett (2000), Fuh (2003), the concept
of SPRT was extended for data generated from a HMM. In contrast,
symbolic time-series analysis-based Markov modeling makes use of con-
cepts from symbolic dynamics to represent an observation sequence as
a discrete Markov model. This technique consists of two critical steps,
namely, discretization (also called partitioning) of the measurement
space of a dynamical system (Kennel and Buhl, 2003; Virani et al.,
2016) and memory-size estimation (Srivastav, 2014; Jha et al., 2015).
The time-series data are then approximated as a 𝐷-Markov model,
which is a Markov chain, with finite memory (or order which is denoted
as 𝐷), over the discrete state-space of the system (Ray, 2004; Mukherjee
and Ray, 2014); however, the 𝐷-Markov model is different from a
hidden Markov model (HMM) in the sense that the state-space of a
𝐷-Markov model is always observable. The structure of a 𝐷-Markov
model can be inferred by searching for the optimal discretization and
the corresponding order of the Markov chain. Thus, the parameters
associated with the model structure are: the size of partitioning set
(also called alphabet in symbolic dynamics literature), location of
partitioning segments, and the memory of the associated Markov chain.
Once the memory of the discrete symbol sequence is estimated, the
state-space of the Markov model is represented by the corresponding
collection of memory words (or collections of symbols of length equal
to the estimated memory for the discrete sequence). This paper presents
a technique to sequentially estimate the log-posterior ratio (LPR) for
a binary hypothesis test, where each hypothesis is represented by a
𝐷-Markov model.

Contributions: This paper extends the results of classical SPRT for
IID observations to sequential hypothesis tests for observations from 𝐷-
Markov models of time-series data. D-Markov modeling for time-series
data via STSA is an existing technique (Ray, 2004) with applications
in target detection and classification in surveillance (Virani et al.,
2013; Mukherjee et al., 2011), prognostics and health monitoring of
physical systems (e.g., nuclear plants (Jin et al., 2011) and electronic
products (Kumar and Pecht, 2007)), and others. The novel contribution
of this work is to enable the use of D-Markov models for streaming
data analysis in detection and classification problems by formulating
their real-time sequential estimation and hypothesis testing problem in
a Bayesian framework. In this paper, the probability density of the 𝐷-
Markov model is represented as a product of categorical distributions;
and the parameters of this distribution themselves have a Dirichlet
distribution. Then, using the fact that the Dirichlet distribution is the
conjugate prior of the categorical distribution, a sequential update rule
is developed for posterior probability ratios of 𝐷-Markov models to test
a time-series model against an alternate time-series model for binary
classification problems. Expected increment of the log-posterior ratios
are explicitly provided under each hypothesis; and it is shown that the
sequential tests for the Markov models terminate in finite time with
probability one. The efficacy of the proposed method for online moni-
toring with streaming data is first illustrated with numerical simulation
and then validated on experimental data from a lean-premixed swirl-
stabilized combustor apparatus (Kim et al., 2010). The performance
of the sequential tests is also compared with that of a (maximum
likelihood classifier) FSS test to demonstrate that the proposed method
is capable of making more accurate decisions using fewer observations.

Organization: The paper is organized in seven sections including
the present one. Section 2 provides mathematical background for the
rest of paper. Section 3 presents the problem formulation and explains
the difference with respect to the SPRT for IID sequences. Section 4
explains the proposed approach to address the sequential hypothesis
testing problem and shows the theoretical justification for the proposed
technique. Section 5 presents the results and inferences from a simula-
tion example to explain the underlying algorithms. Section 6 shows the
validation results based on experimental data of combustion instability
along with a description of the test apparatus. Section 7 concludes the
paper along with recommendations for future research.

2. Mathematical preliminaries

This section introduces mathematical concepts that are used
throughout the paper. Symbolic time-series analysis (STSA)
(Beim Graben, 2001; Daw et al., 2003) partitions the measurement
space of a dynamical system, where the partitioning is a mapping from
a continuous space of measurements to a discrete space of symbols.
In machine learning literature, discretization is generally studied as a
feature extraction technique. In mathematics literature, the partitioning
or discretization is characterized by the extent to which a dynamical
system can be represented by a symbolic one. The data are symbolized
based on the choice of a partitioning technique and then, the dynamics
of the discrete process are studied. Upon symbolization of statisti-
cally stationary (or quasi-stationary) time-series data, the resulting
symbol sequences are converted to probabilistic finite state automata
(PFSA) for information compression. While the details are reported
in Ray (2004), Mukherjee and Ray (2014), the essential information
is presented below for completeness of the paper.

Definition 2.1 (DFSA). A deterministic finite state automaton (DFSA)
is a 3-tuple  = (𝛴,𝑄, 𝛿) where:

• 𝛴 is a non-empty finite set, called the alphabet, with cardinality
|𝛴|;

• 𝑄 is a non-empty finite set, called the set of states, with cardinal-
ity |𝑄|;

• 𝛿 ∶ 𝑄 × 𝛴 → 𝑄 is the state transition map.

It is noted that 𝛴⋆ is a countable collection of all finite-length
strings with symbols from the alphabet 𝛴 and the (zero-length) empty
string 𝜀.

Definition 2.2 (PFSA). A probabilistic finite state automaton (PFSA) is
constructed upon a DFSA  = (𝛴,𝑄, 𝛿) as a pair  = (,𝑀), that is,
the PFSA  is a 4-tuple  = (𝛴,𝑄, 𝛿,𝑀), where:

• 𝛴,𝑄, and 𝛿 are the same as in Definition 2.1;
• 𝑀 ∶ 𝑄 × 𝛴 → [0, 1] is the morph function that satisfies the

condition ∑

𝑠∈𝛴 𝑚(𝑞, 𝑠) = 1 ∀𝑞 ∈ 𝑄. In matrix form 𝑀 is called
the morph matrix and its entries 𝑚𝑖𝑗 denotes the probability of
emitting a symbol 𝑠𝑗 ∈ 𝛴 from the state 𝑞𝑖 ∈ 𝑄.

A PFSA is viewed as a generative model capable of probabilistic gen-
eration of a symbol string through state transitions; it has found many
applications ranging from pattern recognition and machine learning to
computational linguistics (Vidal et al., 2005). For symbolic analysis of
time-series data, a class of PFSAs called the 𝐷-Markov machine has
been proposed in Ray (2004) as a sub-optimal but computationally
efficient approach for encoding the dynamics of symbol sequences as a
finite state automaton. The main assumption, which is the reason for
sub-optimality, is that the symbolic process can be approximated as a
𝐷𝑡ℎ-order Markov chain. The assumption of finite memory (or order)
is reasonable for stable and controlled engineering systems that tend
to eventually forget their initial conditions. The states of this PFSA are
words of length 𝐷 (or less) over an alphabet 𝛴; and state transitions
are described by a sliding block code of memory 𝐷 and anticipation
length of one or higher (Lind and Marcus, 1995).
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Definition 2.3 (𝐷-Markov Machine (Ray, 2004; Mukherjee and Ray,
2014)). A 𝐷-Markov machine is a statistically stationary stochastic
process 𝑆 = ⋯ 𝑠−1𝑠0𝑠1 ⋯, where the probability of occurrence of a new
symbol depends only on the last 𝐷 symbols, that is,

𝑃 (𝑠𝑛 ∣ ⋯ 𝑠𝑛−𝐷 ⋯ 𝑠𝑛−1) = 𝑃 (𝑠𝑛 ∣ 𝑠𝑛−𝐷 ⋯ 𝑠𝑛−1) (1)

where 𝐷 is called the depth of the Markov machine.

A 𝐷-Markov machine is thus a 𝐷𝑡ℎ-order Markov approximation
of the discrete symbolic process. It is also noted that the presented
formalism for statistical learning is different from the standard hidden
Markov models in the following sense:

• The underlying algebraic structure of a PFSA (and hence that of
a 𝐷-Markov machine) is restricted to be deterministic, whereas a
hidden Markov machine is not subjected to this restriction (Vidal
et al., 2005).

• The state space of these models is inferred by partitioning the
observed measurement space of the dynamical system, while in
HMM, the state space may never be observed and thus it is not
straight-forward to infer the underlying structure of the model.
It is noted that, in the considered class of models, the states as
well as transitions between the states are observed, in contrast to
HMMs where only emissions are observed.

• Under the assumption that the observed sequence is a finite-
order Markov chain, the estimation of parameters is simplified.
The sufficient statistics could be obtained by estimating the order
of the Markov chain and the symbol emission probabilities are
conditioned on the memory words of the discrete sequence.

Although the framework of a 𝐷-Markov machine is restrictive due
to the constraint of (finitely many) observable states, it can be con-
veniently used for online in-situ monitoring applications due to the
simplicity of the inference algorithms. For finite-order and finite-state
Markov chains, the conditional symbol emission probabilities and the
initial state summarize all of the relevant information supplied by an
appropriate sample (i.e., time series) (Laurence, 1993). Under station-
arity assumptions, the initial state becomes unnecessary and thus, the
sufficient statistic is provided by the emission probabilities given by the
morph matrix.

In information theory, Kullback–Leibler divergence (or K–L diver-
gence) between two probability mass functions (Cover and Thomas,
1991) is defined as:

dKL
(

𝑝(𝑞) ∥ 𝑝̄(𝑞)
)

=
∑

𝑞∈𝑄
𝑝(𝑞) log

(

𝑝(𝑞)
𝑝̄(𝑞)

)

.

In this paper, a measure of difference between two morph matri-
ces, which are conditional distributions, is obtained in terms of the
conditional relative entropy (Cover and Thomas, 1991) as:

d
(

𝑝(𝑠|𝑞) ∥ 𝑝̄(𝑠|𝑞)
)

=
∑

𝑞∈𝑄
𝑝(𝑞)

∑

𝑠∈𝛴
𝑝(𝑠|𝑞) log

(

𝑝(𝑠|𝑞)
𝑝̄(𝑠|𝑞)

)

. (2)

3. Problem formulation

Sequential detectors for independent and identically distributed
(IID) observations to infer which of the known probability densi-
ties is generating the data have been well-studied in literature (Poor,
1994). This section first addresses the sequential detection problem
for discrete-valued IID observations and then extends it to the case in
which the observation sequence is generated by a 𝐷-Markov model.

3.1. Sequential detection: IID Case

The discrete-valued IID observations {𝑆𝑡; 𝑡 = 1, 2,…} are tested
according to the following binary hypotheses:

0 ∶ 𝑆𝑡 ∼ 𝑃0, 𝑡 = 1, 2,…

versus
1 ∶ 𝑆𝑡 ∼ 𝑃1, 𝑡 = 1, 2,… ,

where 𝑃0 and 𝑃1 are two known probability distributions (or measures)
on the measurable space (𝛴, 2𝛴 ). Here, 𝛴 is a finite set of symbols, each
symbol 𝑠 ∈ 𝛴 is a discrete observation, and 2𝛴 denotes the power set
of 𝛴, which consists of all possible subsets of 𝛴 including the empty
set and the set 𝛴 itself.

A sequential decision rule is formulated as a pair of (time-
dependent) sequences (𝜙̄, 𝜇̄). In this setting, 𝜙̄ ≜ {𝜙𝑗 ∶ 𝑗 = 0, 1, 2,…}
is called a stopping rule with 𝜙𝑗 ∶ 𝛴𝑗 → {0, 1} and 𝜇̄ ≜ {𝜇𝑗 ∶ 𝑗 =
0, 1, 2,…} is called a terminal decision rule with 𝜇𝑗 ∶ 𝛴𝑗 →  ; for
binary hypothesis (i.e., either 0 or 1) testing,  is represented as
{0, 1}. For an observed symbol string of finite length 𝑆𝑡 = {𝑠𝑖 ∈ 𝛴 ∶ 𝑖 =
1, 2,… , 𝑡} at time 𝑡, either the stopping rule is executed if 𝜙𝑡(𝑆𝑡) = 1) to
make a decision, or sampling is continued if 𝜙𝑡(𝑆𝑡) = 0) to observe the
next symbol 𝑠𝑡+1. If the decision is to stop sampling (i.e., 𝜙𝑡(𝑆𝑡) = 1),
then the terminal decision rule selects the hypothesis for 𝑆𝑡, which
yields the decision 𝜇𝑡(𝑆𝑡) ∈  .

3.2. Sequential detection: D-Markov case

In the hypothesis testing problem under consideration, the obser-
vations may not necessarily be IID as they are often generated from
a physical process. Therefore, a 𝐷-Markov model is assigned corre-
sponding to each hypothesis, instead of a probability distribution. As
stated earlier in Section 2, these 𝐷-Markov models are represented
as 𝑘 = (𝑄,𝛴, 𝛿,𝑀𝑘) for each hypothesis 𝑘 with 𝑘 ∈  , where 𝑄
represents the set of states, 𝛴 is the alphabet set, 𝛿 ∶ 𝑄 ×𝛴 → 𝑄 is the
transition function, and 𝑀𝑘 is the class-specific morph matrix, which
consists of entries [𝑀𝑘]𝑖𝑗 = 𝑚𝑘

𝑖𝑗 = 𝑝𝑘(𝑠𝑗 |𝑞𝑖). Each row of the matrix 𝑀𝑘
represents the probability of emitting a symbol 𝑠𝑗 ∈ 𝛴 from a particular
state 𝑞𝑖 ∈ 𝑄 in the model 𝑘 ∈  . Thus, each row of the morph matrix
is a categorical distribution (Papoulis and Pillai, 2002).

It is noted that all of these models have a similar algebraic struc-
ture and they differ only in the symbol emission probabilities. It is
assumed that the training instances for nominal and anomalous condi-
tions have been obtained as sufficiently long symbol sequences, which
allows the convergence of the morph matrix parameters in the training
phase (Meyn and Tweedie, 2012). However, in the operation phase, it
is necessary to make accurate decisions with (possibly) fewer streaming
observations, because early detection (or prediction using precursors)
of anomalies/faults and instabilities are crucial for taking corrective
actions in the physical process.

Let a Markov model over the state-symbol pair, which generates the
symbol sequence, be given as:

𝑝(𝑞𝑡+1, 𝑠𝑡+1 ∣ 𝑞𝑡, 𝑠𝑡) = 𝑝(𝑠𝑡+1 ∣ 𝑞𝑡, 𝑠𝑡, 𝑞𝑡+1) 𝑝(𝑞𝑡+1 ∣ 𝑞𝑡, 𝑠𝑡)

= 𝑝(𝑠𝑡+1 ∣ 𝑞𝑡+1) 𝑝(𝑞𝑡+1 ∣ 𝑞𝑡, 𝑠𝑡) (3)

where 𝑝(𝑞𝑡+1 ∣ 𝑞𝑡, 𝑠𝑡) is obtained from the transition function 𝛿 as:

𝑝(𝑞𝑡+1 ∣ 𝑞𝑡, 𝑠𝑡) =
{

1 if 𝛿(𝑞𝑡, 𝑠𝑡) = 𝑞𝑡+1
0 otherwise

In Eq. (3), 𝑝(𝑠𝑡+1 ∣ 𝑞𝑡+1) is obtained from the morph matrix 𝑀 . Since,
the state transition is deterministic (see Definition 2.1), the emission of
a symbol sequence from hypothesis 𝑘 is governed only by the morph
matrix 𝑀𝑘[𝑖, 𝑗] = [𝑝𝑘(𝑠𝑡+1 = 𝑗 ∣ 𝑞𝑡+1 = 𝑖)]. Thus, the hypothesis test is
given as follows:

The discrete-valued observation sequence 𝑆𝑡 = {𝑠𝑖 ∈ 𝛴 ∶ 𝑖 =
1, 2,… , 𝑡} is generated according to

0 ∶ 𝑆𝑡 ∼ 𝑀0, 𝑡 = 1, 2,…

versus
1 ∶ 𝑆𝑡 ∼ 𝑀1, 𝑡 = 1, 2,… ,

where 𝑀𝑘 is the morph matrix of the PFSA model 𝑘 for 𝑘 ∈ {0, 1}. It
is noted that, in a 𝐷-Markov model, each state is represented by a finite

236



N. Virani, D.K. Jha, A. Ray et al. Engineering Applications of Artificial Intelligence 81 (2019) 234–246

Fig. 1. Proposed scheme for training and during operation.

history of at most 𝐷 symbols, thus after observing the first at most 𝐷
symbols, the initial state will be known. Hence, the sequential detector
is initiated after at most 𝐷 symbols have been observed. The sequential
detector in this case is also defined as the pair of sequences of stopping
rule and terminal decision rule as discussed in Section 3.1.

3.3. Problem statement

In this paper, a sequential detector is constructed to identify the
𝐷-Markov model that generates symbol sequences, as shown in the
hypothesis test in Section 3.2. Given these models, the problem is to
execute the following tasks:

(1) To construct a sequential detector to guarantee a desired proba-
bility, 𝑝𝑑 , of successful detection as well as the probability, 𝑝𝑓𝑎,
of false alarms;

(2) To prove that the sequential detector terminates with a decision
in finite time with probability one and to obtain an estimate of
the stopping time 𝜏(𝑆𝑡) ≜ min{𝑡 ∶ 𝜙𝑡(𝑆𝑡) = 1}.

(3) To elucidate the developed sequential detector with numerical
simulation.

(4) To validate the proposed sequential testing procedure for fault
detection on an experimental apparatus.

4. Technical approach

This section first summarizes a time-series modeling method by
using symbolic analysis along with the process for hyper-parameter
estimation and a Bayesian approach for parameter estimation of these
time-series models. The posterior distribution of the PFSA model 𝑘,
given the observed symbol sequence 𝑆𝑡, is then computed. Subse-
quently, the sequential decision rule is developed for a binary hypothe-
sis testing problem. A summary of the proposed approach during train-
ing and during operation with streaming data is also provided. Some
analysis is shown to study the evolution of log-posterior ratio (LPR)
statistic and to obtain estimates of stopping time and performance
bounds.

4.1. Time-series modeling and hyper-parameter estimation

Symbolic time-series analysis (STSA) has been adopted as a tool
for time-series modeling, which consists of two critical steps: (i) dis-
cretization, where the continuous attributes of the sequential data are
projected onto a symbolic space, which is followed by (ii) identification
of concise probabilistic patterns to compress the information embedded in
the discretized symbol sequences. Specifically, a finite-memory Markov
model is built upon the memory estimate of the symbol sequence,
which is represented by a state transition matrix. This leads to iden-
tification of the causal dynamical structure, which is intrinsic to the

symbolic process under consideration; such a dynamical structure is
suitable for feature extraction and pattern classification.

The hyper-parameters for model inference under the current class
of Markov models include: (i) alphabet size and location of partition
boundaries for discretization (i.e., symbolization) of the continuous
real-valued signals, and (ii) memory of the corresponding discrete data.
Symbolization is carried out via partitioning of the phase-space of the
system within which the system dynamics evolves. In general, there
are two main lines of thought behind the symbolization process, one
inspired by dynamical systems theory and the other inspired by ma-
chine learning objectives. A brief formal introduction of discretization
is presented next.

Let the time-series data be denoted as the sequence {𝑦𝑡}𝑡∈N where
𝑦𝑡 ∈  ⊆ R and let 𝛷 represent the partitioning function such that
𝛷 ∶ 𝑦𝑡 ↦ 𝑠𝑡 where 𝑠𝑡 ∈ 𝛴 for all 𝑡 ∈ N and the alphabet size ∣ 𝛴 ∣∈ N
is known and fixed (see Fig. 1). Then the partitioning function, which
is determined by the set 𝛷 = {𝑅1,… , 𝑅

|𝛴|

}, has mutually exclusive
and exhaustive segments 𝑅𝑖, 𝑖 = 1,… , |𝛴| (i.e.,  = 𝑅1 ∪⋯ ∪ 𝑅

|𝛴|

and
𝑅𝑖 ∩ 𝑅𝑗 = ∅ ∀𝑖 ≠ 𝑗). The dynamics of the discrete system is governed
by the function 𝛷 and thus, to find a useful discrete stochastic system,
it is important to find a good partitioning function. Some approaches
inspired by the dynamical systems theory could be found in Buhl and
Kennel (2005), Adler (1998), Kennel and Buhl (2003). Several other
partitioning methods have been proposed in literature such as maxi-
mum entropy partition (MEP) (Rajagopalan and Ray, 2006), symbolic
aggregate approximation (SAX) (Lin et al., 2007), maximally-bijective
partition (Sarkar et al., 2013), and sparse density estimation-based
partition (Virani et al., 2016). In general, most of the machine learn-
ing applications use a cross-validation-based approach to select the
partitioning size and boundaries. This paper has used (unsupervised)
maximum entropy partitioning (MEP) (Rajagopalan and Ray, 2006),
where approximately equal number of points are assigned to each of
the partitioning segments; thus, it leads to a unique solution for a
one-dimensional time-series. For its simplicity, MEP is the most widely
used partitioning technique. For a detailed discussion on partitioning
techniques, interested readers are referred to Jha (2016).

Working in the symbolic domain, the task is to identify concise
probabilistic models that relate the past, present and the future states
of the system under consideration. For Markov modeling of the sym-
bol sequence, this is achieved by first estimating the depth (or size
of memory) for the discrete symbolic process and then, estimating
the approximate stochastic model from the observed sequence. Var-
ious approaches have been reported in literature for order estima-
tion of Markov chains (Jha, 2016; Jha et al., 2018). For machine
learning applications, the estimation process follows the wrapper ap-
proach (Bishop, 2006), where a search algorithm with a certain stop-
ping criterion calls the main modeling module to build several temporal
models with varying depths; and the search is stopped when the stop-
ping criterion (e.g., information gain or entropy rate) show marginal
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improvement for the added complexity. This paper does not address
optimization of the depth of the underlying models — it is assumed
to be known. Interested readers are referred to Jha et al. (2015, 2018)
for a detailed discussion on estimation of depth for 𝐷-Markov models.
For completeness of the paper, a recent and computation-efficient
algorithm based on spectral properties of the Markov model has been
provided in Appendix.

The work presented in this paper is independent of the choice
of hyper-parameters of the model; in other words, the presented re-
sults hold true for all choices of hyper-parameters. Once these hyper-
parameters are estimated, the time-series data are represented by a
stochastic matrix of the inferred Markov chain. The stochastic matrix
is estimated in a sequential fashion by a Bayesian approach with
conjugate priors as explained in the next section.

4.2. Bayesian approach for parameter estimation

The 𝐷-Markov model for each hypothesis is represented by a morph
matrix, as discussed in Section 2. Each row of the morph matrix of
a 𝐷-Markov model is a discrete probability mass function denoting
the probability of emission of a symbol from a given state. Given the
states, the rows of a morph matrix represent a set of independent
categorical distributions (Papoulis and Pillai, 2002) over the alphabet
set. It is known that the Dirichlet distribution is the conjugate prior of
the categorical distribution (Bishop, 2006), i.e., if the prior density over
parameters of the categorical distribution is represented as a Dirichlet
distribution, then the posterior density after a Bayesian update with a
new observation follows a Dirichlet distribution too. Thus, for a given
state, the density over parameters of a particular row of the morph
matrix is given by Dirichlet distribution (Wen et al., 2013).

For any 𝑡 ∈ N, let 𝑆𝑡 denote the symbol sequence (𝑠1, 𝑠2,… , 𝑠𝑡) of
length 𝑡. The posterior distribution of the model parameters of 𝑘,
given an observed symbol sequence 𝑆𝑡, is computed as:

𝑃 (𝑘 ∣ 𝑆𝑡) =
|𝑄|

∏

𝑖=1

(∏

|𝛴|

𝑗=1(𝑝
𝑘
𝑖𝑗 )

𝛼𝑡𝑖𝑗−1

B(𝛼̄𝑡𝑖 )

)

(4)

where the hyper-parameter 𝛼𝑡𝑖𝑗 is initialized at 𝛼0𝑖𝑗 ; the value of (𝛼𝑡𝑖𝑗−𝛼0𝑖𝑗 )
is the count of occurrences of the symbol 𝑠𝑗 at state 𝑞𝑖 in a symbol
sequence 𝑆𝑡; the vector 𝛼̄𝑡𝑖 represents [𝛼𝑡𝑖1, 𝛼

𝑡
𝑖2,… , 𝛼𝑡𝑖|𝛴|

] for all 𝑖 ∈

{1, 2,… , |𝑄|}; the scalar B(𝛼̄𝑡𝑖 ) =
∏

|𝛴|

𝑗=1 𝛤 (𝛼𝑡𝑖𝑗 )

𝛤 (
∑

|𝛴|

𝑗=1 𝛼
𝑡
𝑖𝑗 )

; and 𝛤 (⋅) is the standard

Gamma function. Using the posterior distribution and given 𝑆𝑡, the
expected value of the morph map for the PFSA  is:

𝑚𝑡(𝑞𝑖, 𝑠𝑗 ) = 𝑚𝑡
𝑖𝑗 ≜

𝛼𝑡𝑖𝑗
∑

|𝛴|

𝓁=1 𝛼
𝑡
𝑖𝓁

=
𝛼0𝑖𝑗 + 𝑛𝑡𝑖𝑗

∑

|𝛴|

𝓁=1 𝛼
0
𝑖𝓁 +

∑

|𝛴|

𝓁=1 𝑛
𝑡
𝑖𝓁

(5)

where 𝑛𝑡𝑖𝑗 is the count of occurrence of symbol 𝑠𝑗 at state 𝑞𝑖 in a
sequence 𝑆𝑡; and 𝛼0𝑖𝑗 is the initial value of the hyper-parameter 𝛼𝑡𝑖𝑗 of the
Dirichlet distribution. During parameter estimation in training phase,
the following observations are made:

• The uniform prior is obtained by usage of Eq. (5) to yield 𝑚0
𝑖𝑗 =

1
|𝛴|

by setting 𝑛0𝑖𝑗 = 0 and 𝛼0𝑖𝑗 = 1 for all 𝑖 and 𝑗. In that case, the morph
matrix is given by:

𝑚𝑡
𝑖𝑗 ≜

1 + 𝑛𝑡𝑖𝑗
|𝛴| +

∑

|𝛴|

𝓁=1 𝑛
𝑡
𝑖𝓁

(6)

In the absence of any prior information, Eq. (6) is used as the
estimate of the model parameter from the training data.

• If no symbol is generated from a specific state 𝑞 ∈ 𝑄 for the
entire symbol sequence, then there should be no preference to
any particular symbol, for which a uniform prior distribution is
assumed for symbol emission from that state 𝑞.

• This procedure guarantees that the PFSA constructed from a
finite-length symbol string must have an (element-wise) strictly
positive morph map 𝑀 . This property will be important in con-
struction of the sequential update rule.

This parameter estimation process is repeated to obtain a model for
each of the hypotheses. One may also create reduced-order Markov
models with fewer states for each hypothesis which can lead to faster
training and potentially quicker termination of sequential test by using
the tools prescribed in Jha et al. (2018). In the next part, these models
are used to obtain a test statistic and their sequential update rules for
use in the testing phase.

4.3. Initialization and sequential update during testing

In binary hypothesis testing, such as Bayes or Neyman–Pearson
hypothesis testing, the log-likelihood ratio is computed from observed
data and compared with a predetermined threshold to choose a likely
hypothesis (Poor, 1994). The proposed method uses Eq. (4) to compute
the log-posterior ratio for as follows:

𝛬𝑡 = log
(

𝑃 (1 ∣ 𝑆𝑡)
𝑃 (0 ∣ 𝑆𝑡)

)

= log

(∏

|𝑄|

𝑖=1
∏

|𝛴|

𝑗=1(𝑚
1
𝑖𝑗 )

𝛼𝑡𝑖𝑗−1

∏

|𝑄|

𝑖=1
∏

|𝛴|

𝑗=1(𝑚
0
𝑖𝑗 )

𝛼𝑡𝑖𝑗−1

)

= log

(

|𝑄|

∏

𝑖=1

|𝛴|

∏

𝑗=1

(𝑚1
𝑖𝑗

𝑚0
𝑖𝑗

)𝛼𝑡𝑖𝑗−1
)

=
|𝑄|

∑

𝑖=1

|𝛴|

∑

𝑗=1
(𝛼𝑡𝑖𝑗 − 1) log

(𝑚1
𝑖𝑗

𝑚0
𝑖𝑗

)

,

𝛬𝑡 =
|𝑄|

∑

𝑖=1

|𝛴|

∑

𝑗=1
𝑤𝑖𝑗 (𝛼𝑡𝑖𝑗 − 1), (7)

where the constant 𝑤𝑖𝑗 denotes log(𝑚1
𝑖𝑗∕𝑚0

𝑖𝑗 ). The intuition behind this
statistic is as follows:

• The observed symbol sequence is used to obtain a posterior
distribution over the model parameter space.

• Using that posterior distribution and the known model parameters
from the training phase for each hypothesis, the probability of
each model can be computed.

• The ratio of these posterior probabilities will be high (resp. low)
if 1 is more (resp. less) likely to be the model generating the
symbol sequence.

In the absence of any initial count of emissions of symbols from
states, the hyper-parameters 𝛼𝑡𝑖𝑗 in Eq. (7) are initialized to be 1,
i.e., 𝛼0𝑖𝑗 = 1 ∀𝑖, 𝑗. This is consistent with the uniform prior assumption
to obtain an estimate of the Markov model parameters as discussed
in Section 4.2. However, if prior observations of the number, 𝑁0

𝑖𝑗 , of
emissions of symbol 𝑠𝑗 from state 𝑞𝑖 are available before the start of
the hypothesis test, then the initial value is assigned as 𝛼0𝑖𝑗 = 𝑁0

𝑖𝑗 + 1.
Specifically, in nested binary classification problems for anomaly/fault
detection and then anomaly/fault classification, the Bayesian formula-
tion allows to use observation counts from the first hypothesis test in
the Dirichlet priors during initialization of the second test for faster
classification. The fact that the Dirichlet class allows usage of non-
informative priors as well as previous symbol counts to impose priors
in a straightforward way is another reason for adopting the Bayesian
approach.

Alternatively, one may derive an expression for log-likelihood ratio
using the 𝐷-Markov models and choose to use log-likelihood ratio as
the test statistic too. The log-likelihood ratio statistic is derived next.

Let 𝑆𝑡 for 𝑡 ∈ N denote the symbol sequence (𝑠1, 𝑠2,… , 𝑠𝑡) of length
𝑡 in the testing phase. The likelihood of an observed symbol sequence
𝑆𝑡 for a given model 𝑘 is computed as:

𝑃 (𝑆𝑡 ∣ 𝑘) = 𝑚𝑘
𝑞0𝑠𝐷+1

𝑚𝑘
𝑞1𝑠𝐷+2

…𝑚𝑘
𝑞𝑡−𝐷𝑠𝑡

=
|𝑄|

∏

𝑖=1

|𝛴|

∏

𝑗=1
(𝑚𝑘

𝑖𝑗 )
𝑛𝑡𝑖𝑗 (8)
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where the state 𝑞𝑖 represents the 𝐷-length word (𝑠𝑖+1𝑠𝑖+2 … 𝑠𝑖+𝐷), the
value of 𝑛𝑡𝑖𝑗 is the count of occurrences of symbol 𝑠𝑗 at state 𝑞𝑖 in
a sequence 𝑆𝑡. Similar to the derivation of Eq. (7) from Eq. (4), a
log-likelihood ratio is derived from Eq. (8) as:

𝛬𝑡 =
|𝑄|

∑

𝑖=1

|𝛴|

∑

𝑗=1
𝑤𝑖𝑗𝑛

𝑡
𝑖𝑗 . (9)

A simple relation to compute the log-posterior ratio was obtained
in Eq. (7). Its relationship to log-likelihood ratio from Eq. (9) will be
shown ahead. It follows from Eq. (7), the relationship 𝛼𝑡𝑖𝑗 = 𝛼0𝑖𝑗 + 𝑛𝑡𝑖𝑗 ,
and Eq. (9) that:

𝛬𝑡 =
|𝑄|

∑

𝑖=1

|𝛴|

∑

𝑗=1
𝑤𝑖𝑗 (𝛼0𝑖𝑗 + 𝑛𝑡𝑖𝑗 − 1)

=
|𝑄|

∑

𝑖=1

|𝛴|

∑

𝑗=1
𝑤𝑖𝑗𝑛

𝑡
𝑖𝑗 +

|𝑄|

∑

𝑖=1

|𝛴|

∑

𝑗=1
𝑤𝑖𝑗 (𝛼0𝑖𝑗 − 1)

= 𝛬𝑡 +
|𝑄|

∑

𝑖=1

|𝛴|

∑

𝑗=1
𝑤𝑖𝑗 (𝛼0𝑖𝑗 − 1). (10)

The above relationship highlights that, without any informative
prior, where 𝛼0𝑖𝑗 = 1, the statistic log-likelihood ratio and log-posterior
ratio are identical and initialize at zero. However, any prior symbol
occurrence counts can be used to bias the test statistic initially by
assigning a non-zero value. The sequential update rule for log-posterior
ratio is formulated next.

Proposition 4.1 (Sequential Update). Given that the log-posterior ratio at
time 𝑡 is 𝛬𝑡 and the state at time 𝑡 + 1 is 𝑞𝑡+1, if 𝑠𝑡+1 is the emitted symbol,
then the updated log-posterior ratio 𝛬𝑡+1 is given by :

𝛬𝑡+1 = 𝛬𝑡 +𝑤𝑞𝑡+1𝑠𝑡+1 , (11)

where 𝑤𝑞𝑡+1𝑠𝑡+1 = {𝑤𝑖𝑗 ∶ 𝑞𝑡+1 = 𝑖 and 𝑠𝑡+1 = 𝑗}.

Proof. Recalling the hyper-parameter 𝛼𝑡+1𝑖𝑗 − 𝛼0𝑖𝑗 to be the count of
occurrence of symbol 𝑠𝑗 at the state 𝑞𝑖 in the observed symbol sequence
𝑆𝑡+1, it follows that:

𝛼𝑡+1𝑖𝑗 = 𝛼𝑡𝑖𝑗 + 1{𝑖}(𝑞𝑡+1)1{𝑗}(𝑠𝑡+1), (12)

where 1𝐴(⋅) is the indicator function with set 𝐴, that is, 1𝐴(𝑥) = 1, if
𝑥 belongs to 𝐴; otherwise, 1𝐴(𝑥) = 0. Then, by using the log-posterior
ratio given in Eq. (7) for time 𝑡 + 1, and Eq. (12), it follows that:

𝛬𝑡+1 =
|𝑄|

∑

𝑖=1

|𝛴|

∑

𝑗=1
𝑤𝑖𝑗 (𝛼𝑡𝑖𝑗 + 1{𝑖}(𝑞𝑡+1)1{𝑗}(𝑠𝑡+1) − 1)

=
|𝑄|

∑

𝑖=1

|𝛴|

∑

𝑗=1
𝑤𝑖𝑗 (𝛼𝑡𝑖𝑗 − 1) +

|𝑄|

∑

𝑖=1

|𝛴|

∑

𝑗=1
𝑤𝑖𝑗1{𝑖}(𝑞𝑡+1)1{𝑗}(𝑠𝑡+1)

= 𝛬𝑡 +𝑤𝑞𝑡+1𝑠𝑡+1 . □

The simplicity of sequential update of the log-posterior ratio for 𝐷-
Markov models enables online update of the statistic 𝛬𝑡(𝑆𝑡). The time
complexity of this sequential update is 𝑂(log(|𝛴|)) as explained below.

Using binary search, the new measurement is assigned a symbol 𝑠𝑡+1
by efficiently identifying its location in a sorted sequence of real num-
bers. This sorted sequence represents a partition of the measurement
range. The time complexity of symbolization via binary search is known
to be 𝑂(log(|𝛴|)). Given the symbol 𝑠𝑡+1 and previous state 𝑞𝑡+1, the
relation 𝑤𝑞𝑡+1𝑠𝑡+1 = 𝑤𝑖𝑗1{𝑖}(𝑞𝑡+1)1{𝑗}(𝑠𝑡+1) implies that 𝑤𝑞𝑡+1𝑠𝑡+1 can be
obtained directly from a look-up table and added to previous statistic
𝛬𝑡 in constant time. Thus, time complexity of sequential update is given
by 𝑂(log(|𝛴|)).

Since alphabet size |𝛴| is typically small, the time complexity of
update shows that the approach is feasible for real-time monitoring
of physical systems. It is noted that, under the current framework of
Dirichlet distribution for the class of 𝐷-Markov models, the expression

for likelihood ratio computation as well as its update is significantly
simplified when compared to the same for hidden Markov models as
proposed in Fuh (2003). This simplification is attributed to the perfect
information of the states being observed in the current class of models.
In the next part, the computed log-posterior ratio is used to obtain a
sequential decision rule.

4.4. Sequential hypothesis test for D-Markov models

As mentioned in Section 3.2, a sequential decision rule is a pair of
sequences (𝜙̄, 𝜇̄), where 𝜙̄ ≜ {𝜙𝑗 ∶ 𝑗 = 0, 1, 2,…} is called a stopping
rule and 𝜇̄ ≜ {𝜇𝑗 ∶ 𝑗 = 0, 1, 2,…} is called a terminal decision rule.
By choosing two thresholds 𝛾0 and 𝛾1 with 𝛾0 < 0 < 𝛾1, the sequential
hypothesis test SHT(𝛾0, 𝛾1) is constructed from the sequence of stopping
rule 𝜙𝑗 and terminal decision rule 𝜇𝑗 as follows:

𝜙𝑗 (𝑆𝑗 ) =

{

0; if 𝛾0 < 𝛬𝑗 (𝑆𝑗 ) < 𝛾1,
1; otherwise.

(13a)

𝜇𝑗 (𝑆𝑗 ) =

{

0; if 𝛬𝑗 (𝑆𝑗 ) ≤ 𝛾0,
1; if 𝛬𝑗 (𝑆𝑗 ) ≥ 𝛾1.

(13b)

Let 𝑝𝑑 be the probability of detection and 𝑝𝑓𝑎 be the probability
of false alarm of the detector. In order to choose the thresholds, the
following relations from Wald’s SPRT (Poor, 1994) are used:

𝛾1 ≤ log
(

𝑝𝑑
𝑝𝑓𝑎

)

and 𝛾0 ≥ log
(

1 − 𝑝𝑑
1 − 𝑝𝑓𝑎

)

. (14)

These relations hold even without the assumption of independence
(Grossi and Lops, 2008) and the underlying inequalities not only relate
the performance with the chosen thresholds but also help to choose the
threshold to guarantee a particular desired performance.

4.5. Summary of the proposed approach

The proposed approach is summarized in this subsection and a
schematic overview is provided in Fig. 1. In the training phase, the pre-
recorded time-series data are used to learn the corresponding 𝐷-Markov
models. In this learning process, the model hyper-parameters (i.e., al-
phabet size, boundary locations of partition segments, and depth) are
estimated using the techniques describes in Section 4.1. The parameters
of the time-series model, i.e. the entries of the morph matrix, are then
obtained using a Bayesian approach given in Section 4.2. The maximum
a posteriori probability (MAP) estimates of the model parameters for
each hypothesis are then used to compute a weight matrix 𝑊 = [𝑤𝑖𝑗 ],
where 𝑤𝑖𝑗 ≜ log(𝑚1

𝑖𝑗 )∕ log(𝑚
0
𝑖𝑗 ), which is used in the sequential update

step during operation. Finally, the user-defined performance is used to
obtain thresholds for the sequential test.

During operation with streaming data at initialization of the test,
the log-posterior ratio is initialized using suitable hyper-parameters 𝛼0𝑖𝑗
for all 𝑖 ∈ 𝑄 and 𝑗 ∈ 𝛴. Based on the first 𝐷 symbols, the state 𝑞𝐷+1 is
initialized to be (𝑠1𝑠2 … 𝑠𝐷). After initialization, each observation from
the data acquisition system is symbolized, used to obtain next state, and
also update the log-posterior ratio statistic using Eq. (11). The statistic
is then compared with the predefined thresholds in the stopping rule
and terminal decision rule to either declare the hypothesis or continue
sampling. These computations enable online monitoring and hypothesis
testing with streaming data.

Fig. 1 summarizes the process during training and during operation.
In the next part of this section, the sequential detector is analyzed in
detail and certain convergence and test completion results have been
derived.
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4.6. Analysis of the sequential detector

The sequential detector SHT(𝛾0, 𝛾1) has been shown in Eq. (13).
This part explores the stochastic evolution and asymptotic behavior of
the log-posterior ratio (LPR) statistic for 𝐷-Markov models as well as
prove that the sequential detector will terminate in finite time with
probability one.

The sequential update rule for LPR in Eq. (11) suggests that its
stochastic evolution has some resemblance with a random walk on
the real line (Papoulis and Pillai, 2002). This stochastic evolution is
characterized in the following Proposition.

Proposition 4.2 (Random Walk on a DFSA). Given that DFSA  is the
common algebraic structure in both models 0 and 1, and 𝑆𝑡 is a (finite-
length) symbol sequence over the alphabet 𝛴, then the stochastic evolution
of the log-posterior ratio (LPR) 𝛬𝑡 = log

( 𝑃 (1 ∣𝑆𝑡)
𝑃 (0 ∣𝑆𝑡)

)

, is given by a weighted
random walk on the DFSA .

Proof. Using Eq. (11), it follows that:

𝛬𝑡+2 = 𝛬𝑡+1 +𝑤𝑞𝑡+2𝑠𝑡+2 ,

= 𝛬𝑡 +𝑤𝑞𝑡+1𝑠𝑡+1 +𝑤𝑞𝑡+2𝑠𝑡+2 .

Given 𝑞𝑡+1 and 𝑠𝑡+1, the next state 𝑞𝑡+2 = 𝛿(𝑞𝑡+1, 𝑠𝑡+1), thus, 𝑞𝑡+2 is not
random and is governed by the algebraic structure of the DFSA. The
symbol emission probabilities are obtained from the morph matrix of
true model, given the current state. The step size 𝑤𝑞𝑡𝑠𝑡 at time step 𝑡
can take |𝑄|||𝛴| different values depending on the state and emitted
symbol pair. Thus, the evolution of LPR is a weighted random walk
over a DFSA. □

Given the stochastic evolution of the LPR statistic from
Proposition 4.2, the expected value of the LPR statistic is presented
in the following theorem.

Theorem 4.3 (Expected Value of Log-Posterior Ratio (LPR)). Given that
𝑝𝑘(𝑞1) is a row vector of initial state probabilities, 𝑇𝑘 is the state transi-
tion probability matrix and 𝑀𝑘 is the morph matrix for model 𝑘, and
𝑊 = [𝑤𝑖𝑗 ] = [log(𝑚1

𝑖𝑗∕𝑚0
𝑖𝑗 )], then the expectation (over all possible symbol

sequences) of the log-posterior ratio (LPR) statistic after 𝑡 updates is given
as:

E[𝛬𝑡 ∣ 𝑘] =
𝑡

∑

𝑙=1
𝑝𝑘(𝑞1)𝑇 𝑙−1

𝑘 (𝑀𝑘 ⊙𝑊 )𝟏
|𝛴|

, (15)

where ⊙ is element-wise multiplication operator and 𝟏𝑛 is column vector of
𝑛 ones.

Proof. Using 𝛬𝑡+1 = 𝛬𝑡 +𝑤𝑞𝑡+1𝑠𝑡+1 from Eq. (11), it follows that:

E[𝛬𝑡+1 − 𝛬𝑡 ∣ 𝑘] = E[𝑤𝑠𝑡+1𝑞𝑡+1 ∣ 𝑘]

= E
[
|𝑄|

∑

𝑗=1

|𝛴|

∑

𝑖=1
𝑤𝑖𝑗1{𝑖}(𝑞𝑡+1)1{𝑗}(𝑠𝑡+1) ∣ 𝑘

]

=
|𝑄|

∑

𝑗=1

|𝛴|

∑

𝑖=1
𝑤𝑖𝑗𝑝𝑘(𝑞𝑡+1 = 𝑗)𝑝𝑘(𝑠𝑡+1 = 𝑖|𝑞𝑡+1 = 𝑗)

=
|𝑄|

∑

𝑗=1
𝑝𝑘(𝑞𝑡+1 = 𝑗)

|𝛴|

∑

𝑖=1
𝑤𝑖𝑗𝑝𝑘(𝑠𝑡+1 = 𝑖|𝑞𝑡+1 = 𝑗)

= 𝑝𝑘(𝑞𝑡+1)(𝑀𝑘 ⊙𝑊 )𝟏
|𝛴|

. (16)

Using 𝑝𝑘(𝑞𝑡+1) = 𝑝𝑘(𝑞1)𝑇 𝑡
𝑘, it follows that:

E[𝛬𝑡+1 − 𝛬𝑡 ∣ 𝑘] = 𝑝𝑘(𝑞1)𝑇 𝑡
𝑘(𝑀𝑘 ⊙𝑊 )𝟏

|𝛴|

.

Thus, the expression for the expected increment in LPR is derived after 𝑡
updates. Finally, adding up the expected increments, the desired result
is obtained for the expected LPR as:

E[𝛬𝑡 ∣ 𝑘] =
𝑡

∑

𝑙=1
𝑝𝑘(𝑞1)𝑇 𝑙−1

𝑘 (𝑀𝑘 ⊙𝑊 )𝟏
|𝛴|

. □

The information-theoretic interpretation of the result in Theorem 4.3
is explained by the following remark.

Remark 4.4 (Information-Theoretic Interpretation). Using Eq. (16) and
the relation for conditional relative entropy Eq. (2), it follows that:

E[𝛬𝑡+1 − 𝛬𝑡 ∣ 1] = 𝑝1(𝑞𝑡+1)(𝑀1 ⊙𝑊 )𝟏
|𝛴|

=
|𝑄|

∑

𝑗=1

|𝛴|

∑

𝑖=1
𝑝1(𝑞𝑡+1 = 𝑗)𝑚1

𝑖𝑗 log
(𝑚1

𝑖𝑗

𝑚0
𝑖𝑗

)

= E𝑝1(𝑠𝑡+1 ,𝑞𝑡+1)

[

log
(

𝑝1(𝑠𝑡+1 ∣ 𝑞𝑡+1)
𝑝0(𝑠𝑡+1 ∣ 𝑞𝑡+1)

)]

= d𝑡+1
(

𝑝1(𝑠𝑡+1 ∣ 𝑞𝑡+1) ∥ 𝑝0(𝑠𝑡+1 ∣ 𝑞𝑡+1)
)

= d𝑡+1(𝑀1 ∥ 𝑀0).

Similarly, using non-negativity of conditional relative entropy, it fol-
lows that:

E[𝛬𝑡+1 − 𝛬𝑡 ∣ 0] = − d𝑡+1(𝑀0 ∥ 𝑀1).

Thus, one may infer that expected increment in log-posterior ratio at
time 𝑡+1 is the conditional relative entropy between the given models
at time 𝑡+1, where time dependence is introduced because of state prob-
ability vector 𝑝1(𝑞𝑡+1). Thus, considering conditional relative entropy to
be a distance function, the expected increment is the statistical distance
between the two different models. Moreover, the derived relationship
shows that the expected value of the statistic at time 𝑡 is

E[𝛬𝑡 ∣ 𝑘] = (−1)1−𝑘
𝑡

∑

𝑙=1
d𝑙(𝑀𝑘 ∥ 𝑀1−𝑘)

Here the magnitude of the expected value of the statistic is directly pro-
portional to the distance between the models. Thus, this result implies
that models which are closer will need more incremental updates to
cross a prescribed threshold. In other words, models which are closer
will need larger number of observations to terminate the sequential
hypothesis test for a given desired performance.

There are two consequences of the result in this remark:

• The expected increment and the rate of sequential update de-
pends directly on the statistical distance between models of the
hypotheses. Hence, the speed of sequential update cannot be
tuned with any parameter. However, an alternative approach
to create reduced-order Markov models (Jha et al., 2018) of
time-series data with smaller state set can be employed. It can
provide sufficiently accurate models that maybe further apart and
yield high expected increment in test statistic leading to faster
termination of the test.

• The work in Beim Graben (2001) showed that symbolic dynamics
approach shows good robustness to measurement noise as ad-
ditive noise leads to uncertainty in the assigned symbol for a
measurement, which are near the partition boundaries only. The
noise statistics observed in the training data sequence are already
captured in the Markov models. Addition of noise in data for
each hypothesis leads to reduction in conditional relative entropy
between models giving shorter expected increments. Thus, noisy
signals will lead to slower termination of test to guarantee similar
performance.

The results from Theorem 4.3 are used in next two remarks to derive
the asymptotic behavior of the test statistic and to obtain insights on
special case where the 𝐷-Markov models are stationary.

Remark 4.5 (Asymptotic Behavior of Log-Posterior Ratio). Using the
result from Theorem 4.3 and computing the limit as number of obser-
vations tend to infinity, it follows that:

lim
𝑡→∞

E[𝛬𝑡 ∣ 𝑘]
𝑡

= 𝜋̃𝑘(𝑀𝑘 ⊙𝑊 )𝟏
|𝛴|

(17)
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where 𝜋̃𝑘 = lim𝑡→∞
( 1
𝑡
∑𝑡

𝑙=1 𝑝𝑘(𝑞1)𝑇
𝑙−1
𝑘

)

is the Césaro limit. The constant
value on the right hand side of this result implies that the growth of
log-posterior ratio becomes linear asymptotically.

Remark 4.6 (Stationary Markov Models). Let two Markov models 0
and 1 be stationary and let their stationary distributions be given as
𝜋0 and 𝜋1, respectively. Thus, the state probability vector is the same
as the stationary distribution of the Markov model at all time epochs,
i.e., 𝑝𝑘(𝑞𝑡) = 𝜋𝑘 for all 𝑡 ∈ N and 𝑘 = 0, 1. Using 𝜋𝑘 in Eq. (16), it follows
that:

E[𝛬𝑡+1 − 𝛬𝑡 ∣ 𝑘] = 𝜋𝑘(𝑀𝑘 ⊙𝑊 )𝟏
|𝛴|

, (18)

which has a constant value. Hence, the expectation under model 𝑘 is
given by:

E[𝛬𝑡 ∣ 𝑘] = 𝑡𝜋𝑘(𝑀𝑘 ⊙𝑊 )𝟏
|𝛴|

. (19)

Since, it is known that the Césaro limit is equal to the stationary dis-
tribution for irreducible aperiodic Markov models (Meyn and Tweedie,
2012), this result matches the intuition from Remark 4.5 with 𝜋̃𝑘 = 𝜋𝑘.
Using the interpretation from Remark 4.4, it follows that:

E[𝛬𝑡 ∣ 𝑘] = (−1)1−𝑘𝑡 d(𝑀𝑘 ∥ 𝑀1−𝑘), (20)

for 𝑘 = 0, 1. This relation for the stationary case shows a direct
relationship between the expected value of log-posterior ratio and the
distance between the models.

4.7. Completion of the test and estimation of the sequence length

This subsection proves that the sequential hypothesis test for 𝐷-
Markov models terminates in finite time with probability one and
also provides an estimate of the average observation sequence length.
Similar to the methodology in Grossi and Lops (2008), the notion of
stopping time under each hypothesis for a symbol sequence 𝑆𝑡 is given
as follows:

𝜏0(𝑆𝑡) = inf{𝑡 ∈ N ∶ 𝛬𝑡(𝑆𝑡) ≤ 𝛾0}, (21a)

𝜏1(𝑆𝑡) = inf{𝑡 ∈ N ∶ 𝛬𝑡(𝑆𝑡) ≥ 𝛾1}. (21b)

Then, the stopping time for the sequential test is given by 𝜏(𝑆𝑡) =
min{𝜏0(𝑆𝑡), 𝜏1(𝑆𝑡)}. The formal result for the guarantee of completion
of the sequential test in finite time is given below as Theorem 4.7.

Theorem 4.7 (Completion of the Test). If the discrete finite-order Markov
process generating the symbols is ergodic, then the sequential test with
decision rule shown in Section 4.4 terminates in finite time almost surely
under both hypothesis, i.e., 𝑃 ({𝜏(𝑆𝑡) < +∞}|𝑘) = 1, for 𝑘 = 0, 1.

Proof. Ergodicity of the symbol sequence generated by a Markov
model implies that the sequence of log-posterior ratio (LPR) is also
ergodic for the model, because the LPR is a deterministic function of
the stochastic sequence. Thus, the sequence of time averages of the LPR
converges to the ensemble average (i.e., expected value) of the LPR
almost surely, that is,

lim
𝑡→∞

E[𝛬𝑡 ∣ 𝑘]
𝑡

𝑎𝑠
= lim

𝑡→∞
1
𝑡
𝛬𝑡(𝑆𝑡) (22)

under hypothesis 𝑘 ∈  . Using Eq. (17) for 𝑘 = 1, it follows that:

lim
𝑡→∞

1
𝑡
𝛬𝑡(𝑆𝑡)

𝑎𝑠
= 𝜋̃1(𝑀1 ⊙𝑊 )𝟏

|𝛴|

(23)

The constant value in this result implies that asymptotic growth rate
of test statistic sequence is linear. Thus, eventually the statistic will be
greater than any finite threshold, i.e., 𝑃 ({lim𝑡→∞ 𝛬𝑡(𝑆𝑡) > 𝛾1}|1) = 1.
Similarly, for 𝑘 = 0, it follows that:

𝑃 ({ lim
𝑡→∞

𝛬𝑡(𝑆𝑡) < 𝛾0}|0) = 1

Table 1
𝐷-Markov models used in the numerical simulation.

Case 𝑀0 𝑀1 d(𝑀0 ∥𝑀1) d(𝑀1 ∥𝑀0)

1

⎡

⎢

⎢

⎢

⎢

⎣

0.6 0.4
0.7 0.3
0.6 0.4
0.7 0.3

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

0.6 0.4
0.7 0.3
0.6 0.4
0.3 0.7

⎤

⎥

⎥

⎥

⎥

⎦

0.037 0.075

2

⎡

⎢

⎢

⎢

⎢

⎣

0.1 0.9
0.7 0.3
0.6 0.4
0.7 0.3

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

0.9 0.1
0.3 0.7
0.4 0.6
0.3 0.7

⎤

⎥

⎥

⎥

⎥

⎦

0.561 0.989

Using Eq. (21) for 𝑘 = 0, 1, it follows that:

𝑃 ({𝜏𝑘(𝑆𝑡) < +∞}|𝑘) = 1

The proof follows from 𝜏(𝑆𝑡) = min{𝜏0(𝑆𝑡), 𝜏1(𝑆𝑡)}. □

It follows from Theorem 4.7 that the sequential tests for 𝐷-Markov
machines terminate in finite time with probability one. Now an esti-
mate of this stopping time is obtained with respect to the expected
behavior of the LPR sequence. For each hypothesis, this sequence length
estimate is defined by using E[𝛬𝑡 ∣ 𝑘] from Eq. (15) as:

𝜏1 ≜ inf
𝑡∈N

{

𝑡 ∶
𝑡

∑

𝑙=1
𝑝1(𝑞1)𝑇 𝑙−1

1 (𝑀1 ⊙𝑊 )𝟏
|𝛴|

≥ 𝛾1

}

, (24a)

𝜏0 ≜ inf
𝑡∈N

{

𝑡 ∶
𝑡

∑

𝑙=1
𝑝0(𝑞1)𝑇 𝑙−1

0 (𝑀0 ⊙𝑊 )𝟏
|𝛴|

≤ 𝛾0

}

. (24b)

The utility of these estimates and other theoretical results from this
section are elucidated by numerical simulation and validation with
experimental data in the next two sections.

5. Numerical simulation

A theoretical framework for sequential hypothesis testing with 𝐷-
Markov models has been developed in the previous sections. This
section presents the results of numerical simulation to elucidate the
underlying principles of the proposed sequential hypothesis testing
procedure.

5.1. Description of the simulation scenarios

An anomaly detection scenario is simulated by two 𝐷-Markov mod-
els, having a common binary alphabet set (i.e., 𝛴 = {0, 1}) and the same
depth 𝐷 = 2. These models have been trained with sufficiently long
data. The first model, 0, represents the nominal behavior and the
second model, 1, represents the anomalous behavior. The state set
𝑄 for each model is given by the words {00, 01, 10, 11}. The simulation
has been performed for two different cases: Case 1, where models 0
and 1 are largely similar; and Case 2, where models 0 and 1
are reasonably different. The morph matrices for the models from both
the cases are shown in Table 1. The distance between the models, in
terms of conditional relative entropy, using the stationary distribution
for the state probabilities, is also given in Table 1. It is verified that
Case 1 models are closer than the models in Case 2.

Each model simulates 2500 symbol sequences of length 1000 and
uses the sequential detector algorithms from Section 4.4 to make
decisions. The results from this analysis are discussed next.

5.2. Simulation results

Simulated symbol sequences have been used to sequentially esti-
mate the log-posterior ratio (LPR) statistic. In order to visualize the
behavior of the LPR statistics under different hypotheses, 1000 LPR
trajectories are shown under each hypothesis for both cases in Fig. 2.
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Fig. 2. Log-posterior ratio trajectories, when 0 is true (shown in gray) and when
1 is true (shown in black), for (a) Case 1 and (b) Case 2. The expected value of
LPR in each case is shown for 0 (with red −⋅ line) and 1 (with red −− line). The
log-posterior ratio grows much faster when models are different (Case 2) as compared
to when models are largely similar (Case 1).

The expected value of the LPR is computed using the derived equa-
tion Eq. (15) and it is also shown in Fig. 2. It can be qualitatively
verified that the LPR trajectories under the two hypothesis begin to
differ as more observations are used in both cases. Moreover, if the
models are further apart (as in Case 2), then the distinction between
the LPR trajectories is discernible using fewer observations. The models
in Case 1 have identical emission probabilities for 3 out of 4 states (see
Table 1), thus the discriminatory information is only available when
the model is in state 4. Hence, in Fig. 2(a), it is seen that the LPR value
remains constant for several consecutive observations.

In Remark 4.5, the asymptotic value of the average increment of
expected value LPR has been derived under each hypothesis. Fig. 3
qualitatively verifies the convergence of the time average of increment
in expected LPR to the limit computed in Remark 4.5 under both
hypotheses for Case 2.

An estimate of the sequence length is given in Eq. (24), which is
shown to be a reasonable estimate of the average sample length; this
is seen in Fig. 4 that compares the estimated length with the average
sample length by repeating the simulation for 40 different choices of
probability of detection between 0.8 and 0.999, while keeping proba-
bility of false alarm (𝑝𝑓𝑎) fixed at 0.001. Fig. 4 also verifies the intuition
that more observations are needed to achieve better performance.

Fig. 5 shows that the histograms of stopping length under 0 and
that the histograms of stopping length under 1 for Case 1 of the
simulation models. From Remark 4.4, it follows that magnitude of
expected increment in LPR, under a given hypothesis, say 𝑘, is equal
to the distance of the true model from the alternate model, i.e., d(𝑀𝑘 ∥
𝑀1−𝑘). Thus, if d(𝑀1 ∥ 𝑀0) > d(𝑀0 ∥ 𝑀1) (see Table 1 for Case 1), then

Fig. 3. Verification of convergence of the expected log-posterior ratio to the computed
limit (from Remark 4.5) under each hypothesis.

Fig. 4. Average sample length and estimated length for different values of desired
probability of detection (𝑝𝑑 ) and constant probability of false alarm (𝑝𝑓𝑎) = 0.001.

on average it is expected the sequential test to terminate with fewer
observations under hypothesis 1. This can be verified in Fig. 5, where
the distribution for 1 is to the left of 0. It is noted that the empirical
distribution is not symmetric, thus, the characterization of the stopping
time for the test requires further investigation by estimating the higher
moments of the respective distributions (Grossi and Lops, 2008).

The efficacy of a sequential detector is characterized by the average
sample length and the detection performance. The desired performance
in terms of probability of detection and false alarm is used to de-
sign the sequential detector, as shown in Section 4.4. In Fig. 6, it
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Fig. 5. Histograms of sample length under each hypothesis with 𝑝𝑑 = 0.999 and
constant 𝑝𝑓𝑎 = 0.001.

Fig. 6. Observed probability of detection for different values of desired probability of
detection (𝑝𝑑 ) and constant probability of false alarm (𝑝𝑓𝑎) = 0.001 using simulated
data.

is seen that the probability of detection of the sequential detector is
better than the desired 𝑝𝑑 and the probability of false alarm was also
lesser than 0.001. Thus, the claim that sequential detector with 𝐷-
Markov models achieves the desired performance has been verified
with simulation.

The performance of the proposed sequential approach is com-
pared with the maximum likelihood classifier, which is a fixed-sample-
size (FSS) test. The classification rule for a symbol sequence 𝑆𝑁 of
length 𝑁 is given in terms of the likelihood as follows: 𝑥∗(𝑆𝑁 ) =
argmax𝑥∈ 𝑝(𝑆𝑁 |𝑥). The comparison of performance of the classifier
with the developed approach for different probability of detection (𝑝𝑑)
is shown in Table 2. It is inferred that, for the same 𝑝𝑑 , on average the
FSS test needs several more observations as compared to the proposed
sequential detector. It is noted that the desired 𝑝𝑓𝑎 is chosen to be
0.001 for the SHT and the observed 𝑝𝑓𝑎 is 0.0004, which is lower
than all cases of ML classifier. Thus, better performance is achieved
with lesser number of observations (on average) with the proposed
sequential detector.

In summary, the inferences from the results of numerical simulation
are given as follows:

• The LPR trajectories differ under different hypothesis as more ob-
servations are used and the distance between the models governs
the expected LPR increment.

• The average increment of expected LPR from the simulated mod-
els converges to the limit derived in Eq. (17).

• The estimate of the sequence length provided in Eq. (24) is a
reasonable estimate of the average sample length.

Table 2
Comparison of the performance (𝑝𝑓𝑎) and average
sample length (ASL) of the proposed sequential hy-
pothesis test (SHT) and maximum likelihood (ML)
classifier (with fixed sequence length (𝑁)) for the
same 𝑝𝑑 .

𝑝𝑑 SHT ML

𝑝𝑓𝑎 𝐴𝑆𝐿 𝑝𝑓𝑎 𝑁

0.960 0.0004 101.5 0.0360 140
0.980 0.0004 114.4 0.0260 170
0.995 0.0004 138.4 0.0044 280
0.999 0.0004 162.0 0.0016 380

Fig. 7. Schematic diagram of the combustor apparatus.

• The models that are further apart need fewer observations for
termination of the sequential detector.

• The thresholds in the sequential detector can be chosen based on
any desired performance and that performance is guaranteed by
the detector at the expense of sampling more observations.

• The sequential detector gives better performance with fewer ob-
servations (on average) as compared to fixed-sample-size tests in
this study.

6. Validation on a laboratory apparatus

This section describes and analyzes the data used for detection of
unstable behavior in lean pre-mixed combustion for validation on a
laboratory apparatus, where thermo-acoustic instabilities are a con-
sequence of nonlinear coupling between the acoustic and thermal
oscillations during combustion and have undesirable effects on dura-
bility of structural components as well as performance of gas-turbine
engines. The dynamics of the thermo-acoustic phenomena are very fast
and the underlying physics is still not completely understood (O’Connor
et al., 2015; Jha et al., 2016). In this context, the detection sys-
tem should be capable of identifying the onset of thermo-acoustic
instabilities as early as possible with negligible false alarm rates.

6.1. Experimental apparatus and data

This subsection very briefly discusses the data collected for de-
tection of thermo-acoustic instabilities in a laboratory environment.
Fig. 7 presents a schematic diagram of the test apparatus that is a
swirl-stabilized, lean-premixed, laboratory-scale combustor (see Kim
et al. (2010) for details). The apparatus consists of an inlet section, an
injector, a combustion chamber, and an exhaust section. The combustor
chamber consists of an optically-accessible quartz section followed
by a variable length steel section. Tests have been conducted at a
nominal combustor pressure of 1 atmosphere over a range of operating
conditions, as listed in Table 3.

In each test, dynamic pressure and global OH and CH chemilumi-
nescence intensity in the combustion chamber were measured to study
the mechanisms of combustion instability. The measurements were
made simultaneously at a sampling rate of 8192 Hz (per channel), and
data were collected for 8 s, which include a total of 65,536 measure-
ments (per channel). A total of 780 cases for pressure data are collected
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Table 3
Operating conditions of the combustor apparatus.

Parameters Value

Equivalence ratio 0.525, 0.55, 0.60, 0.65
Combustor length 0. 635 m to 1.475 m in 25 mm increments

(each sequence 65,536 long); however, the label for stable/unstable
case is not available. In this work, the labels are created by clustering
the Markov models of pressure data and using some domain expertise.
The Markov models are clustered in an unsupervised fashion using
symmetric KL-distance and hierarchical clustering for the states of the
Markov models. The states of the Markov model are, to some extent,
similar to each other in the stable case — however, as the lean
premixed combustion locks onto an unstable limit cycle, the states of
the corresponding Markov models become more distinct. This behavior
of the Markov models is used to cluster the stable and unstable classes
and provides almost perfect separation. More details are available in
a previous publication (Jha et al., 2018). Finally, 125 stable and 125
unstable cases have been used for analysis presented in this paper.

6.2. Time-series modeling and sequential tests on experimental data

The time-series data set is first normalized by subtracting the mean
and then dividing by the standard deviation of its elements; this step
corresponds to bias removal and variance normalization. Data from
engineering systems are typically over-sampled to ensure that the
underlying dynamics can be captured. Due to coarse-graining in the
symbolization process, an over-sampled time-series may mask the true
nature of the system dynamics in the symbolic domain (e.g., occurrence
of self loops and irrelevant spurious transitions in the Markov chain).
A time-series is first down-sampled to find the next crucial observation.
The first minimum of auto-correlation function 𝑅(𝜏) generated from
the observed time-series is obtained to find the uncorrelated samples
in time. The data sets are then down-sampled by this lag (it is noted
that different sequence will have different lags). Fig. 8 shows the auto-
correlation function for a typical time-series in the region of unstable
combustion, where the data are down-sampled by the lag marked in red
rectangles. To avoid discarding significant amount of data due to down-
sampling, the down-sampled data using different initial conditions (or
offsets) are concatenated. Using this approach, the number of data
points lost if reduced significantly to mod(𝑛, 𝜏) ≤ 𝜏 − 1 where, 𝑛 is
the original data length and 𝜏 is the lag value. For example, if the
original time-series is given by 𝑥1, 𝑥2, 𝑥3,… , after this pre-processing
it could rearranged as 𝑥1, 𝑥𝜏+1,… , 𝑥𝑛−𝜏+1, 𝑥2,… , 𝑥𝑛−𝜏+2,… . An example
is shown in Fig. 9 for 𝜏 = 4. Further details of this pre-processing are
reported in Srivastav (2014), Jha et al. (2015).

The measurement space of the continuous time-series is then par-
titioned using maximum entropy partitioning (MEP) (Rajagopalan and
Ray, 2006), where the information rich regions of the measurement
space are partitioned finer and those with sparse information are
partitioned coarser. In essence, each cell in the partitioned set contains
(approximately) equal number of data points under MEP. A ternary
alphabet with 𝛴 = {0, 1, 2} has been used to symbolize the data. As
discussed in Section 6.1, data sets are analyzed from two different
modes of combustion, stable and unstable, with the aim of detecting
the unstable modes.

To perform the sequential ratio tests using the combustion data,
a single-depth Markov model is first trained for stable and unstable
cases on the discretized sequence. A single symbol sequence of length ∼
65, 000 is used to train Markov models for the two hypotheses — stable
and unstable. This model is then used to detect the unstable modes from
a test data set with 250 discrete sequences with equal proportions of
stable and unstable cases. Figs. 10 and 11 display the pertinent results
of sequential tests. Fig. 10 compares the theoretical estimate of stopping

Fig. 8. Auto-correlation function of time-series data in the unstable phase of combus-
tion. The time-series data is down-sampled by the lag marked in the red square. It is
noted that the individual time-series have their own down-sampling lags.

Fig. 9. A schematic demonstrating re-arrangement of data for 𝜏 = 4. The data points 𝑥𝑖
are first re-arranged row-wise and then the columns are concatenated. Only a maximum
of mod(𝑛, 𝜏) data points are thrown away in the process.

Fig. 10. Average sample length and estimated length for different values of 𝑝𝑑 (max.
0.999) and constant 𝑝𝑓𝑎 = 0.01.

time for the sequential tests with the average sample length obtained
over the test data set corresponding to different operating conditions
specified by the desired probability of detection (𝑝𝑑) and a constant
false alarm rate, 𝑝𝑓𝑎 = 0.01. Fig. 11 shows the probability of detection
achieved by the sequential tests for different desired detection rates.
Observed probability of false alarm is 0.016 for all test cases, which is
slightly higher than the desired value of 𝑝𝑓𝑎 = 0.01. Out of 125 stable
and 125 unstable cases, there are 5 misdetections and 2 false alarms as
the best performance. It is noted that the sequential tests for Markov
models are able to achieve desired performance for most cases (except
for cases when desired 𝑝𝑑 > 0.95).

The results from sequential approach using experimental data are
also compared with fixed-sample-size (FSS) maximum likelihood clas-
sifier. The desired 𝑝𝑑 was chosen to be 0.95 for the SHT, the observed
𝑝𝑑 is greater than 0.95 and it is also higher than all cases of ML classifier
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Fig. 11. Observed probability of detection for different values of desired probability
of detection (𝑝𝑑 ) and constant probability of false alarm (𝑝𝑓𝑎) = 0.01 using experiment
data.

Table 4
Comparison of the performance (i.e., 𝑝𝑑 for the for
same 𝑝𝑓𝑎) and average sample length (ASL) of the
proposed sequential hypothesis test (SHT) with that
of the (fixed length 𝑁) maximum likelihood (ML)
classifier.

𝑝𝑓𝑎 SHT ML

𝑝𝑑 𝐴𝑆𝐿 𝑝𝑑 𝑁

0.016 0.952 60.64 0.944 150
0.032 0.952 52.55 0.944 100
0.080 0.960 41.88 0.944 60
0.120 0.968 36.56 0.928 50

(See Table 4). Thus, the comparison shown in Table 4 verifies the claim
with experiments that sequential tests need fewer observations than FSS
tests on average to give the same (or even better) level of performance.

Remark 6.1. Even though the sequential detection procedure is tested
using a dataset with equal number of stable and unstable samples (i.e., a
balanced dataset), the Markov models are learned using just one such
sample from the stable and unstable class (as mentioned earlier in
the section that the models are trained using one long time-series).
The theoretical results presented in the paper are independent of the
number of samples available from the two classes (see Theorem 4.7).
Hence, as long as one representative symbol sequence for each of the
hypotheses under consideration is available, the proposed technique
is expected to work well. Thus, the proposed sequential detection test
is immune to data imbalance (which is common in a lot of industrial
applications).

In contrast to the inferences from numerical simulation in Sec-
tion 5.2, the sequential tests on experimental data could not always
guarantee the desired performance. This observation can be attributed
to the fact that the test set contains (experimental) data from a wide
range of operating conditions as was discussed in Section 6.1. Thus, the
test samples cannot be represented accurately by a single 𝐷-Markov
model used for training.

Remark 6.2 (Multi-Dimensional Time-Series:). The experimental exam-
ple in this section considers only a single-dimensional time-series data
for simplicity of presentation. However, the results presented in the pa-
per are applicable to any symbol sequence with D-Markov property and
thus can treat multi-dimensional data with any additional constraints.

In essence, generating symbol sequences from multi-dimensional time-
series is a non-trivial task and is a topic of ongoing research (Vi-
rani et al., 2016). Illustration of the proposed approach with multi-
dimensional data is thus out-of-scope of the current paper and is
recommended as a topic of future research.

7. Summary, conclusions, and future work

Symbolic time-series analysis-based Markov modeling provides
learning and inference capabilities that can be used for on-line monitor-
ing of critical physical systems. Sequential hypothesis tests are useful
for fast and in-situ detection of anomalies and events in systems where
measurement data are available in a streaming fashion. This paper
formulates and validates a concept of sequential hypothesis testing
for symbolic analysis-based Markov models of time-series data. First,
a Bayesian approach for parameter estimation 𝐷-Markov models is
presented using Dirichlet and categorical distributions. This approach
has been used to estimate the log-posterior ratio (LPR) for hypothesis
testing. The LPR is then used to develop a sequential hypothesis test
for the 𝐷-Markov model. The stochastic evolution of the LPR statistic
is studied and it is proved that the sequential test will terminate in finite
time with probability one. The underlying concept is illustrated on two
cases of PFSA models with a binary symbol alphabet and depth 𝐷 = 2.
Finally, the proposed sequential test has been used to detect occurrence
of unstable combustion on experimental data of pressure time-series
collected from a laboratory apparatus of swirl-stabilized combustion.
The sequential tests are able to achieve 95% detection accuracy at
1.6% false alarm for detecting instabilities with short-length data over
a wide range of operating conditions. The performance of the proposed
sequential test for 𝐷-Markov models is also compared with fixed-
sample-size test (maximum likelihood) to verify that sequential tests
need fewer observations than FSS tests on average to give the same
level of performance, which is important for real-time monitoring of
time-critical processes.

Although the performance of the proposed sequential hypothesis
test is apparently promising, much theoretical and experimental re-
search is necessary before its real-life applications. To this end, the
authors propose the following topics for future research.

(1) Modeling uncertainties, measurement noise, and/or process vari-
ability : Although symbolization provides robustness to noise
(Beim Graben, 2001), the effects of modeling uncertainty and
process variability on the posterior density and the sequential
test need to be explored in the future.

(2) Optimality of sequential test with D-Markov Models: The SPRT with
IID observations is known to be optimal in the sense that it
minimizes the expected sample size among all sequential tests.
Future research may investigate whether this optimality holds
for the proposed sequential test for 𝐷-Markov observations.

(3) Multi-hypothesis testing (Baum and Veeravalli, 1994), truncated
SPRT (Tantaratana and Thomas, 1977), and Markov
mode-switching (Zhang et al., 2010): Future research can extend
the current approach for tests with multiple hypothesis and
truncated tests with limited decision horizon for 𝐷-Markov
models. Instead of classification, one can also do time-series seg-
mentation with system mode estimation and tracking via Markov
mode-switching, where D-Markov models represent dynamics of
each discrete mode.
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Appendix. Depth estimation using spectral analysis

This appendix briefly describes a technique for depth estimation
in 𝐷-Markov models using their spectral properties. Srivastav (2014)
has interpreted the significance of depth 𝐷 of a symbol sequence (see
Definition 2.3) as the number 𝑛 of time steps after which probability of
current symbol is independent of any past symbol, i.e.,

Pr(𝑠𝑘|𝑠𝑘−𝑛) = Pr(𝑠𝑘) ∀𝑛 > 𝐷, (25)

where the statistical dependence is evaluated on individual past sym-
bols as Pr(𝑠𝑘|𝑠𝑘−𝑛) instead of assessing the dependence on words of
length 𝐷 as Pr(𝑠𝑘|𝑠𝑘−1,… , 𝑠𝑘−𝐷). Since the equality in Eq. (25) may
not strictly hold, the following approximation is made for estimation
of depth 𝐷 as follows:

|Pr(𝑠𝑘|𝑠𝑘−𝑛) − Pr(𝑠𝑘)| ≤ 𝜖 ∀𝑛 > 𝐷 (26)

where 𝜖 is a user-specified tolerance or convergence condition. It is
noted that Pr(𝑠𝑘) is the stationary distribution for the one-step transition
matrix. After some simplification and using the distance of the state-
transition probability matrix after steps from the stationary point (see
Eq. (26)), depth 𝐷 is obtained such that the following condition is
satisfied (see Srivastav (2014), Jha et al. (2018) for more details):

|trace (𝚷𝑛) − trace (𝚷∞)| ≤
𝐽
∑

𝑗=2

|

|

|

𝜆𝑗
|

|

|

𝑛
< 𝜖 ∀𝑛 > 𝐷, (27)

where 𝑛 is the number of iterations of the PFSA; 𝐽 is number of (non-
zero) eigenvalues of 𝚷; and 𝜖 is the user-specified threshold as an
appropriate convergence condition, i.e., the depth 𝐷 of the symbol
sequence is estimated for a choice of 𝜖 by estimating the stochastic
matrix for the one-step PFSA. A pseudo-code of the process is presented
in Algorithm 1.
Algorithm 1: 𝙳𝚎𝚙𝚝𝚑𝙴𝚜𝚝𝚒𝚖𝚊𝚝𝚒𝚘𝚗
1 Input: The observed symbol sequence 𝑆 = {𝑠𝑡}𝑡∈N and parameter 𝜖
2 Output: Depth estimate 𝐷
3 Estimate the Markov model  = (𝑄,𝛴, 𝛿,𝑀), where 𝐷 = 1
4 Estimate the state transition matrix 𝚷 = [𝜋𝑖𝑗 ] , where 𝜋𝑖𝑗 =

∑

𝑠∈𝛴
𝑀(𝑞, 𝑠)

5 Estimate 𝐷 using the following relationship:

|trace (𝚷𝑛) − trace (𝚷∞)| ≤
𝐽
∑

𝑗=2

|

|

|

𝜆𝑗
|

|

|

𝑛
< 𝜖 ∀𝑛 > 𝐷,

where, 𝜆𝑗 are the eigenvalues of the state transition matrix 𝚷
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