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Data-Driven Detection and
Classification of Regimes in
Chaotic Systems Via Hidden
Markov Modeling
Chaotic dynamical systems are essentially nonlinear and are highly sensitive to variations
in initial conditions and process parameters. Chaos may appear both in natural (e.g., heart-
beat rhythms and weather fluctuations) and human-engineered (e.g., thermo-fluid, urban
traffic, and stock market) systems. For prediction and control of such systems, it is often
necessary to be able to distinguish between non-chaotic and chaotic behavior; several
methods exist to detect the presence (or absence) of chaos, specially in noisy signals. A
dynamical system may exhibit multiple chaotic regimes, and apparently, there exist no
methods, reported in open literature, to classify these regimes individually. This paper dem-
onstrates an application of standard hidden Markov modeling (HMM), which is a com-
monly used supervised method, as a technique to classify multiple regimes from a time
series of dynamical systems, where classified regimes could be chaotic or non-chaotic.
The proposed HMM-based method of regime classification has been tested using numerical
data obtained from several well-known chaotic dynamical systems (e.g., Hénon, forced
Duffing, Rössler, and Lorenz attractor). It is apparently well-suited to serve as a bench
mark for the development of alternative data-driven methods to enhance the performance
(e.g., accuracy and computational speed) of regime classification in chaotic dynamical
systems. [DOI: 10.1115/1.4047817]
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1 Introduction
Edward Lorenz introduced the concept of chaos in the form of the

Butterfly Effect [1], where he suggested that the atmospheric phe-
nomena are highly sensitive to exogenous perturbations. Chaotic
dynamical systems are essentially nonlinear and are usually deter-
ministic with an appearance of randomness, but having underlying
patterns, feedback loops, and a structure of repetitive order, which
are very sensitive to initial conditions and perturbations in the form
of parametric changes and/or impulse inputs.
Chaos has been studied in great details and initially observed in

several natural phenomena like weather fluctuations and climate
changes [2]. The presence of chaos has also been seen in several
other natural processes like heartbeat rhythms, which has helped
physicians and scientists to make predictions on patient health [3],
and anthropological studies to mathematically understand human
evolution [4]. Chaotic nature also shows up in human-engineered
processes such as urban traffic [5] and stock market [6]. Chaos is
also seen in physical systems [7] starting from the simple double-
pendulum going all the way up to thermo-fluid processes, electronic
circuits, and even the fairground Tilt-a-Whirl.
Chaotic systems do follow a deterministic map (often with addi-

tive noise), where the initial conditions, process parameters, excita-
tion inputs, and exogenous disturbances may significantly affect the
time evolution of system responses. Themap of a chaotic dynamical
system may show significantly different nature for different values
of process parameters. The state to which the system converges for a
given set of parameters is called an attractor for that regime, which
remains locally unchanged irrespective of the initial conditions or
exogenous perturbations. There are essentially three types of attrac-
tors: (i) fixed-point attractors, where the system function converges

to a single value, (ii) limit cycles, where the system shows a periodic
nature, and (iii) strange attractors, where the system shows complex
dynamical behavior that may be locally unstable and yet globally
stable, implying that the system output may diverge but never sig-
nificantly deviate from the attractor. This third kind of attractor is of
much interest in the field of chaos.
It is often important to be able to distinguish noise from chaos

and also to discriminate between the behaviors of a strange attractor
and a limit cycle, which is often a challenge because the differences
between these states may not be very apparent in the signal form,
because of the presence of hidden dynamics and dependencies.
Much work has been reported in literature in an attempt to make
these distinctions based on time series data from various sources.
The 0–1 test method [8] has been introduced in the last decade to

classify a given deterministic dynamical system as chaotic or non-
chaotic. This method has been used extensively to study chaos in
dynamical systems, including experimental plants (e.g., Ref. [9]).
Djurovíc and Rubez̆ić [10] proposed a different approach by
using short-time Fourier transform (STFT) to distinguish between
chaotic signals and periodic oscillations. Recently, the concept of
a simple decision tree structure is introduced by Toker et al. [11]
to distinguish between non-chaotic and chaotic signals, which mod-
ifies the standard 0–1 test to show its applicability to several stan-
dard chaotic systems as well as to biological data.
Nearly all of the above techniques involve binary detection tests to

study time series data from a system and decide whether it is chaotic
or not. Few other researchers have attempted to classify the type of
chaos but not with much rigor, because chaos occurs in complex
dynamical processes, and it is not easy to generate a single test
method to classify the various types of chaos occurring in the signal.
This study proposes regime classification in chaotic dynamical

systems in the setting of a standard supervised data-driven
method, called hidden Markov modeling (HMM) [12]. Several
other well-known data-driven methods are potentially applicable
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for regime classification; examples are symbolic time series analysis
(STSA) [13] and deep neural networks (DNN) using long short-
term memory (LSTM) [14]. However, HMMs provide a good
trade off with relatively smaller training times compared to that in
LSTM-based neural networks with similar accuracy and may
have higher accuracy than traditional STSA methods. Thus, in
this study, the authors have chosen to demonstrate the efficacy of
an HMM classifier in the context of performing the difficult task
of discriminating multiple regimes in chaotic systems. To the best
of authors’ knowledge, there is no reported literature that reports
classification of different regimes of a chaotic dynamical system.
The primary objective here is not only to detect the presence of

chaos but also to classify the operational regimes of the system,
after the classifier is trained with the knowledge of the regimes
(i.e., in a supervised fashion). As a classifier, HMMs are capable
of identifying the current regime of the system, regardless of
whether the regime is chaotic or non-chaotic. In the event that the
dynamical system is needed to be controlled, this information
could help in choosing a better control action to steer the system
to a preferred state. Efficacy of the HMM-based regime classifier
is demonstrated on several well-known chaotic dynamical sys-
tems that are sensitive to initial conditions and parametric perturba-
tions and that have very different structures of attractors depending
on their model parameters.
Contributions: Major contributions of the work reported in this

study are as follows:

(1) Development of a HMM-based regime classifier for chaotic
dynamical systems: The underlying algorithm takes time-
series signals as inputs for regime classification and does
not require the information on whether the classified
regimes are chaotic or not. The output is the identified
regime based on previously trained regime class data.

(2) Efficacy demonstration of the above HMM-based regime
classifier: The classification algorithm has been validated
on time series data, generated from four chaotic dynamical
systems—Hénon map, forced Duffing, Rössler, and Lorenz
attractor.

Organization: The study is organized in five sections. Section 2
introduces the essential concepts of chaos along with a

mathematical description of four different chaotic system models
that are investigated here. Section 3 provides a brief background
of HMM that is the backbone of the regime classification algorithm
in this study. Section 4 presents the results for various cases of each
of the four chaotic systems. Section 5 summarizes and concludes
the reported work along with a few recommendations for future
research.

2 Chaotic Dynamical Systems
Chaotic dynamical systems are essentially deterministic; they are

sensitive to the initial conditions, only for chaotic regimes, and to
system parameters for (possibly) all regimes. This study focuses on
chaotic dynamical system models with parameters that can be
varied to obtain multiple regimes of operation, including both
chaotic and non-chaotic. This section presents the four chaotic dyna-
mical systems used to generate time-series data from various operat-
ing regimes, obtained by varying the parameters (see Table 1 for
details).
The first chaotic system is the Hénon map [15] that has the fol-

lowing set of governing equations:

xn+1 = 1 − ax2n + yn
yn+1 = bxn

(1)

The second chaotic system is the forced Duffing system [16], repre-
senting a nonlinear spring, whose governing equation is given as

ẍ + δẋ + αx + βx3 = γ cosωt (2)

The third chaotic system is the Rössler attractor [17], which repre-
sent chemical reaction kinetics, has the following set of three
coupled first-order differential equations:

ẋ = −y − z

ẏ = x + ay

ż = b + z(x − c)

(3)

The fourth chaotic system is the Lorenz attractor which is derived
by reducing the Navier–Stokes equation [1] and has the following

Table 1 Results of case studies for the different chaotic maps; listing the fixed and varying parameters and initial conditions for
training and testing data; the last (right hand) column indicates the total HMM classification error

Case
Chaotic
system

Fixed parameter
values

Varying parameter
values

Initial conditions
for training data

Initial conditions
for testing data

HMM
error

I Henon b= 0.3 a= 1 to 1.4 in increments of 0.05 (x0, y0)= (1, 1) (x0, y0)= (1, 1) 0.97%
I-A Henon b= 0.3 a= 1 to 1.4 in increments of 0.05 (x0, y0)= (1, 1) (x0, y0)= (0, 0) 12.24%
II Duffing γ= 0.2, δ= 0.5,

α= 1, β=−1
ω= 0 to 2 in increments of 0.5 (x0, ẋ0) = (0, 0) (x0, ẋ0) = (0, 0) 0%

II-A Duffing γ= 0.2, δ= 0.5,
α= 1, β=−1

ω= 0 to 2 in increments of 0.5 (x0, ẋ0) = (0, 0) (x0, ẋ0) = (0.1, 0) 0%

III Duffing α=−1, β= 1,
δ= 0.3, ω= 1.2

γ= 0.2 to 0.60 in increments of 0.1 (x0, ẋ0) = (0, 0) (x0, ẋ0) = (0, 0) 4.48%

IV Duffing α=−1, β= 1,
δ= 0.3, ω= 1.2

γ= 0.2, 0.28, 0.29, 0.37, 0.50 & 0.65 (x0, ẋ0) = (0, 0) (x0, ẋ0) = (0, 0) 1.11%

V Duffing α= 1, β= 1,
γ= 22, ω= 5

δ= 0.1 to 0.35 in increments of 0.05 (x0, ẋ0) = (0, 0) (x0, ẋ0) = (0, 0) 30.77%

VI Rossler b= 2, c= 4 a= 0.25 to 0.55 in increments of 0.05 (x0, y0, z0)= (1, 1, 1) (x0, y0, z0)= (1, 1, 1) 1.69%
VI-A Rossler b= 2, c= 4 a= 0.25 to 0.55 in increments of 0.05 (x0, y0, z0)= (1, 1, 1) (x0, y0, z0)= (0, 1, 1) 1.69%
VII Rossler b= 2, c= 4 a= 0.3547, 0.398, 0.410,

0.458, 0.503, and 0.550
(x0, y0, z0)= (1, 1, 1) (x0, y0, z0)= (1, 1, 1) 1.17%

VIII Rossler a= 0.2, c= 5.7 b= 0.2 to 1.8 in increments of 0.4 (x0, y0, z0)= (0, 0, 0) (x0, y0, z0)= (0, 0, 0) 0.85%
IX Rossler a= 0.1, b= 0.1 c= 5 to 45 in increments of 5 (x0, y0, z0)=

(0.2, 0.3, 0.2)
(x0, y0, z0)=
(0.2, 0.3, 0.2)

0.10%

X Lorenz σ= 10, β= 8/3 ρ= 50 to 250 in increments of 20 (x0, y0, z0)= (1, 1, 1) (x0, y0, z0)= (1, 1, 1) 0%
X-A Lorenz σ= 10, β= 8/3 ρ= 50 to 250 in increments of 20 (x0, y0, z0)= (1, 1, 1) (x0, y0, z0)= (0, 1, 1) 0%
XI Lorenz σ= 10, β= 8/3 ρ= 13, 14, 15, 28, 99.96, 100.3,

155, 193, 228, 229, 230.5, and 240
(x0, y0, z0)= (1, 1, 1) (x0, y0, z0)= (1, 1, 1) 0%
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governing equations:

ẋ = σ(y − x)

ẏ = x(ρ − z) − y

ż = xy − βz

(4)

Depending on the parametric values in Eqs. (1)–(4), the evolution of
the system state variables may drastically change. Therefore, it is
necessary to understand, especially for regime classification,
exactly which parametric condition a system is currently in. Some
of the challenges related to these phenomena are exemplified in
Figs. 1 and 2.
Figure 1 shows the bifurcation diagram for the Rössler system in

Eq. (3) by varying the parameter c, while the other system param-
eters are kept fixed at a= 0.1 and b= 0.1. It is seen that as c is
varied, the system behavior changes drastically, with different
attractor basins for different ranges of c. Non-chaotic attractors
cause the system to come to respective equilibria, irrespective of
initial conditions; for chaotic attractors, the initial conditions may
play a major role in the system evolution while the chaotic attractor
remains the same irrespective of the initial conditions. Figure 2
shows the phase plots of signals for nine selected values of the
parameter c along with a mention of the type of system regime
that it belongs to. It is seen that changes of the parameter c from
8.5 to values in the range of 8.7–9 alters the system behavior

from periodic with period 4, to periodic with period 8 to chaotic.
This demonstrates possible sensitivity of a chaotic system to
certain parameters. The plots in Figs. 1 and 2 show that it is not
always easy to distinguish between the regimes by traditional anal-
ysis of time-series data, and perhaps that is why it is not reported in
the current literature.
Section 3 addresses the usage of HMM [12] for detection and

classification of the exact regime of operation by analyzing the
time series of system responses.

3 Hidden Markov Modeling
While the details of HMM are extensively reported in technical

literature (e.g., Refs. [12,19]), this section briefly introduces the
underlying concept for completeness of this study. HMMs have
found applications primarily in speech recognition [20], time
series classification [21] and even in image classification [22]. In
all of these problems, the HMM method has shown high classifica-
tion accuracy. Since HMM is a well-known and well-reported tech-
nique, the mathematical details are not presented here in detail for
brevity; interested readers are referred to the cited references.
In the training phase of a HMM [12], time series data from each

regime, i.e., classes k = 1, . . . , K, are used to learn the HMM. Sub-
sequently, in the testing phase, the learned HMMs are compared to
the HMM trained from the unknown regime. A succinct description
of HMM is outlined below.
During training, the Baum-Welch algorithm [12,19] has been

used to learn the HMM models of K classes. For each class
(regime), an ensemble of time-series windows is obtained from
the available time-series data. This is done by first downsampling
the long data with a downsampling rate DS, and then taking data
windows of length L shifted by a distance S; the parameters, DS,
L, and S are user-specified [23]. Then, the Baum-Welch algorithm
[12,19] is applied to train the HMM λk which is a triplet λk= {Ak,
Bk, πk} [12], where

(1) A≜ [aij] is the N ×N state-transition probability matrix where
N is the assumed finite number of hidden states belonging to
a set of symbols ∈ Q:

aij = p(zt+1 = qj|zt = qi): qi, qj ∈ Q
where

∑
j aij = 1 ∀i.

(2) B≜ [bj(yt)] is the probability density of the observation given
the state:

bj(yt) = p(yt|zt = qj)

(3) π≜ [πi] is the probability distribution of the initial state z1:
πi = p(z1= qi), where π is a 1 ×N vector with

∑
i πi = 1.

This procedure is repeated for each of the K classes.
During the testing phase, data windows of the signal from an

unknown regime, with the same parameters, DS, L, and S, as in
the training phase, are provided as inputs to the algorithm. Then,
the Forward Procedure [12,19] of HMM is used to compute the
log likelihood (Lk) of a given window of unknown time series
data belonging to each of the K classes. The final decision, as to
which class the unknown data belongs, is made by selecting the
class with the largest log likelihood as follows:

Selected Class = argmax
k∈{1,2,...,K}

Lk (5)

In this study, a continuous HMM formulation has been used,
where the emission is assumed to follow a Gaussian mixture
model withM Gaussian components and N hidden states. The algo-
rithms and theory for all the above HMM procedures are available
in the literature (e.g., Refs. [12,19]).
Remark 1. Although dynamical systems may have multiple
regimes of operation, a real-life system would probably show
only a few chaotic and periodic regimes. The HMM-based

Fig. 1 Bifurcation diagrams of the Rössler system
for the varying parameter “c,” from Alvarez et al. [18]: a=0.1, b
=0.1, (x0, y0, z0)= (0, 0, 0)

Fig. 2 Phase diagrams of the Rössler system for the varying
parameter c indicating the system regime for that value: a=
0.1, b=0.1, (x0, y0, z0)= (0, 0, 0)
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classification should be applicable to those cases as a subset of the
dynamical systems demonstrated in this study.

4 Results and Discussions
This section presents the results of analysis for each of the four

chaotic dynamical systems (see Eqs. (1)–(4)). Multiple cases are
considered, each having a different set of fixed and varying param-
eters. For each case, time-series data are obtained numerically for
the system parameters using a set of initial conditions of the
states. In some cases, the initial conditions are varied to examine
robustness of the HMM-based classifier to capture the attractor
behavior when the initial conditions are perturbed in the chaotic
system.
In the Hénon map (see Eq. (1)), the time evolution is accom-

plished by forward integration. For Duffing, Rössler and Lorenz
systems (see Eqs. (2)–(4)), the signals are generated using the
fourth-order Runge–Kutta formulation at a fixed time-step size of
1 × 10−3 s. Data of 5000 s have been generated corresponding to
each parameter set, for both training and testing phases, yielding
5,000,000 data points per condition. Furthermore, the signals are
artificially contaminated with 10% noise (amplitude ratio formula-
tion), which corresponds to a signal-to-noise ratio (SNR) of 20 dB.
For both HMM training and testing (see Sec. 3), the data are first

downsampled by DS= 100. This is necessary because the time-step
of integration is intentionally made very small, which leads to over-
sampling. The processed data are then windowed with a moving
window formulation (see Sec. 3) with a window size of L= 1000
and a shift value of S= 100 data points. The parameters DS, L,
and S are held constant across all training and test cases.
The HMM parameters, namely, number of Gaussian components

(M) and number of hidden states (N), also need to be assigned. The
optimal values for each system of equations are slightly different.
To allow for easy comparison, a common set of values are taken
and then kept unchanged for all tested cases; these parameters are
M= 4 and N= 30. Higher values of N degrade the performance
due to over-fitting and needing more data for proper training.
Also computational time increases with increasing N.
Table 1 lists the results for each case, which show both fixed and

varying parameters for individual systems. The initial conditions for
generation of training and testing data are also given. These param-
eters and their ranges are taken from cited research publications
(e.g., Refs. [1,13,15–17,24,25]) and are reported here for reproduc-
ibility of the results.
For the same map, multiple cases have been presented with dif-

ferent fixed and varying parameters. The last (right hand) column
in Table 1 provides the overall classification accuracy for various
classes, where the varying data are used for both training and
testing. The total error is defined as the ratio of the number of
data windows erroneously classified, to the total number of data
windows analyzed.
Majority of the cases are trained and tested using data from a

range of values of the varying parameter, as obtained from literature
or from the bifurcation diagrams of the dynamical systems. For
cases I, II, VI, and X in Table 1, a second analysis is done, where
the initial conditions for the testing data are made different from
those of the training data. These cases are appended with “-A” in
the first (left hand) column of Table 1. Certain cases, namely, IV,
VII, and XI, have been analyzed using specific values of the
varying parameter. These values are taken from literature as
regions of interest and have been analyzed for illustrating the
strengths and weaknesses of HMM-based classification. In
general, it is seen that HMM-based classification yields low error
rates (e.g., less than 2%). However, it is important to know why
HMM-based classification performs somewhat poorly for cases
I-A, III, and V, as explained below.
The poor performance in Case I-A is explained by the fact that, as

these systems are chaotic, changing the initial conditions causes the
system behavior to change significantly. This possibly leads to

incorrect classification, especially for the regions that have
strange attractors.
For case III, the chosen range of values of γ is such that several

values correspond to signals coming from the same regime with
possibly a minor difference in the signal form (e.g., γ= 0.3 and
γ = 0.4 have very similar signals); this leads to poor classification.
However, in the next case IV, the same fixed parameters are used,
with the values of the varying parameter chosen to match regions
where the signal nature varies. Here, a better classification accuracy
is achieved.
In case V, the signals are from a region where the parameter δ

ranges from 0.1 to 0.35. For δ= 0.1 to 0.3, the time signals are
very similar, and the signal bifurcates to a different regime when
δ≈ 0.35, as seen in Figs. 3 and 4. Here too, HMM-based classifi-
cation is unable to capture the difference between the signals
when δ= 0.1 to 0.3. Thus, in this region of interest [13], the
HMM method is apparently insufficient.

5 Summary, Conclusions, and Future Work
This study has demonstrated the applicability of the HMM-based

time-series analysis in an attempt to classify regimes of operation
in chaotic dynamical systems, which is not apparently explored
much in literature. The proposed data-driven regime classification
does not need the knowledge of whether the classified regime is
chaotic or non-chaotic; this property has been demonstrated by con-
sidering various operational cases from four standard chaotic maps,
namely, Hénon, Duffing, Rössler, and Lorenz attractor systems. The
study has been conducted on global ranges as well as local ranges of
interest near bifurcation zones.
The proposed HMM-based method of regime classification

yields good accuracy, in general, and it performs sub-par only for
a few specific cases, the possible causes for which are discussed

Fig. 3 Phase plots for the generated signal for δ=0.10 to 0.35 in
increments of 0.05, where α=1, β=1, γ=22, ω=5

Fig. 4 Phase-aligned noise-less signal for δ=0.10 to 0.35 in
increments of 0.05, where α=1, β=1, γ=22, ω=5

021009-4 / Vol. 1, APRIL 2021 Transactions of the ASME



in Sec. 4. Thus, this method, coupled with the standard tests for
chaotic nature could help not only to identify chaos but also to clas-
sify chaotic “sub”-regimes.
The above results evince that the proposed HMM-based method

is expected to be well-suited to serve as a bench mark for develop-
ment of alternative data-driven methods of regime classification in
chaotic dynamical systems.
While there are many areas of research to enhance the work

reported in this study, the following topics are suggested to be con-
ducted in the near future.

(1) Development of other data-driven methods (such as Sym-
bolic Time Series Analysis [13,26]) that can improve upon
the accuracy of HMM-based classification, especially in
closeby regions of interest, typically seen just prior to
bifurcation.

(2) Enhancement of robustness of data-driven regime classifica-
tion to initial conditions of chaotic systems.

(3) Application of the proposed classification method to real-life
systems that display multiple chaotic regimes.

(4) Development of a data-driven method to identify chaos type
with no or partial knowledge of system dynamics (e.g., unsu-
pervised or semi-supervised classification).
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