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ABSTRACT

This paper investigates the spectral properties of ergodic measure of symbolic systems for
applications to signal processing, pattern recognition, and anomaly detection in uncertain
dynamical systems. The underlying algorithm is built upon the concept of ergodic
sequences of measure-preserving transformations (MPT) on probability spaces, where
non-stationary probabilistic finite state automata (PFSA) are constructed using short-
length windows of time-series measurements. The resulting PFSA are non-homogeneous
Markov, in which spectral properties of the MPT depend on several parameters that include
the window length. The paper also develops an MPT-based metric to quantify the diver-
gence of the evolving PFSA from that of the nominal PFSA; this information is then used
for pattern classification and anomaly detection with low-delay tolerance. The MPT-
based methodology has been validated with experimental data generated from a labora-
tory apparatus that deals with detection of thermoacoustic instabilities in combustion pro-
cesses, which are known to have chaotic characteristics on a time scale of milliseconds. In
this application, the concepts of MPT and ergodicity have been used to develop a novel
symbolic time series analysis (STSA)-based detection method, whose performance is vali-
dated by comparison with two well-known techniques, namely, hidden Markov model
(HMM) and cumulative sum (CUSUM), on the same experimental data. The results consis-
tently show superior performance of the proposed MPT-based STSA.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

The topic of low-delay detection has attracted the attention of many researchers over the last several decades. For exam-
ple, Shiryaev [1] established Bayesian methods to address the problem of fast sequential detection of changes (e.g., disrup-
tions) in time series of independent and identically distributed (iid) observations by using the theory of optimal stopping.
Subsequently, Tartakovsky and Veeravalli [2] established a general asymptotic change-point detection theory that is not lim-

ited to iid observations.

The above discussion largely applies to cases where (i) the change in the time series occurs as a result of abrupt variations
in the underlying model structure [3], and (ii) the distribution of observations before a change point occurs and the distri-
bution after a change point are both known, in which case the problem can be treated as a standard (e.g., binary) hypothesis
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testing. Nevertheless, in many applications, changes in the time series occur due to gradual degradation in the underlying
dynamical system. Moreover, as it is realistic in practice, the probability distribution after occurrence of the change is typ-
ically unknown. In this context, the method of hidden Markov model (HMM) [4,5] has been widely used for detection of both
abrupt changes and gradually evolving anomalies in diverse applications, where the post-change distribution is unknown
[6]. Another well-known technique in this regard is the cumulative sum (CUSUM), developed by Page [7], which has been
widely used for change point detection [3,8,9]. CUSUM is a sequential method and it requires a cumulative statistic which
is thresholded to decide whether a change has occurred or not. An alternative approach for detection of change points
involves: (i) selection of a cost function to measure goodness-of-fit of the generated time series to the null model, and (ii)
identification of signal segments for which the goodness of fit falls below a threshold. In this context, Bai and Perron [10]
considered a time series generated by a linear regression model that undergoes multiple structural changes (i.e., breaks)
at unknown times with the sum of squared residuals between the regression model outputs and the observed time series
as the goodness of fit. Later, Bai and Perron [11] introduced a computationally-efficient algorithm that finds the global min-
imum of the sum of squared residuals by dynamic programming. However, the above technique [11] considers the entire
time series for change point detection and thus imposes no constraint on the amount of allowed delay in making a decision
on detection. Nevertheless, in real-time applications, the decision on detection must be made with low delay (e.g., by using
short observation windows).

The concept of symbolic time series analysis (STSA) (e.g., [12-14]) has been used to construct Markov models for anomaly
and change detection from observed windows of sensor data. In the framework of STSA, a (finite-length) time series is par-
titioned for conversion into a string of symbols from a (finite-cardinality) alphabet A [15-18]. Subsequently, probabilistic
finite state automata (PFSA) are constructed from the symbol strings [19-21], in which the probability distribution of the
emitted symbols depends upon the immediately preceding D symbols, where D is a positive integer called Markov depth.
Such a PFSA is called a D-Markov machine, which has found diverse applications in pattern classification and anomaly detec-
tion (e.g., [14,22]). The main distinction between HMM and D-Markov machines is that the algebraic structure of state tran-
sition in HMM is allowed to be non-deterministic, while it is restricted to be deterministic in D-Markov machines [20,21,14];
this restriction yields significant computational advantages of PFSA [19] over HMM [4]. Moreover, training in HMM is typ-
ically done statistically by using an expectation maximization tool (e.g., Baum-Welch algorithm [4,5]). In addition to its iter-
ative computation cost, such a method only guarantees convergence to a point, having zero gradient with respect to the
HMM parameters, and therefore this point could be only a local optimum. In contrast, the deterministic algebraic structure
of D-Markov machines makes the modeling process simpler and less prone to the local optimum issue, where the model can
be trained using the frequency counting method [21], for example.

In the above setting, the selection of the window length, L, of the time series used to construct the PFSA in D-Markov
machines largely depends on the Markov depth D, the alphabet size |.4|, and the nature of the particular underlying process
generating the time series [21]. To find a lower bound on the window length of the time series required to estimate the PFSA
parameters, one may consider an increasing sequence of L. Under the assumption of asymptotic statistical stationarity [21],
the computed state transition probability matrix converges to a constant matrix; as a consequence, L may become arbitrarily
large [14]. Thus, one may choose the smallest L at which the stochastic matrix tends to be approximately time-invariant; the
resulting model could be treated as a time-homogeneous Markov chain [5]. However, this scenario would typically require a
large value of L, which could be infeasible in many physical applications, where decisions need to be made with low-delay
tolerance.

The notion of measure-preserving transformation (MPT) has evolved in the discipline of Statistical Mechanics to represent
Hamiltonian systems (e.g., Louisville Theorem [23]), where the total energy of the dynamical system is invariant. A key con-
cept in this regard is that, even though a measure-preserving dynamical system is described by a transformation with time-
varying eigenvalues, the absolute values of the eigenvectors remain time-invariant under the ergodicity assumption [24].
Based on this rationale, Ghalyan and Ray [25] introduced a methodology for constructing PFSA, from short-length time ser-
ies, which generate non-homogeneous Markov chain models for describing the uncertain dynamics of the physical process.
As a result, the time-invariance of the eigenvectors, which reflects measure-invariance and ergodicity of the dynamical sys-
tem, is used to decide the window length of the time series required to construct PFSA. Unlike the standard STSA ([14,21])
which requires increasing the window length until the resulting PFSA is no longer significantly changing, the MPT-based
STSA framework proposed in [25] can be used to select a minimum window length for which the eigenvectors are nearly
constant. The rationale is that anomalies could often be associated with a variation in the system’s total energy, which nat-
urally makes the system no longer measure-invariant and thus the eigenvectors are no longer time-invariant. Along this line,
Ghalyan and Ray [25] proposed a metric of variability of eigenvectors, as a measure of anomaly, for detection of fatigue dam-
age in polycrystalline alloys using ultrasonic time series measurements.

The current paper is a major extension of the authors’ previous work [25] and provides a significantly more detailed expo-
sition to the subject matter by focusing on the fundamental principles of symbol-sequence generation [24] and their rela-
tionships with the dynamics of the underlying physical process from a measure-theoretic perspective. Although the main
results in both the previous paper [25] and the current paper are built upon the concepts of invariance and ergodicity of
the probability measure of the generated symbolic systems, the previous paper [25] does not precisely define a probability
measure of symbolic systems. In contrast, the current paper develops a concrete mathematical framework by using the con-
cept of cylinders [24] later in the paper, which is used to define the probability measure for the generated symbolic systems.
In essence, the current paper lays a mathematical foundation, which is necessary not only to thoroughly understand the the-
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ory and the application results, but also to gainfully make future extensions of the reported work. To this end, a new detec-
tion methodology has been developed in the framework of MPT-based STSA, which is experimentally validated on an appli-
cation, different from the one reported in [25] by comparison with two well-known techniques, namely, HMM and CUSUM,
serving as benchmarks. The results show consistent superiority of the proposed MPT-based STSA over both HMM and
CUSUM.

In particular, the application investigated in this paper is directly related to real-time monitoring and active control of
thermoacoustic instabilities (TAI) in combustion processes. TAI are typically caused by spontaneous excitation of natural
modes of acoustic waves [26], which induces large-amplitude self-sustained chaotic pressure oscillations in the combustion
chamber, potentially leading to damage in its mechanical structures. A critical issue here is that TAI may develop within a
very short time (e.g., tens of milliseconds), for which a real-time algorithm for early detection is required for fast actuation of
control signals to circumvent any potential damage.

Contributions: Major contributions of the paper are summarized below:

1. A measure-theoretic spectral analysis of ergodic symbolic systems: A measure-theoretic framework is rigorously established
for spectral analysis of ergodic symbolic systems, defined on a shift space whose topological basis is described by relying
on the concept of cylinders [24]. This setting provides a thorough understanding of the application results in the paper,
and lays a concrete mathematical foundation for potential future work in signal analysis and pattern recognition from
observed time series measurements.

Time-inhomogeneous Markov-chain modeling for pattern classification with low-delay tolerance: The proposed methodology
facilitates low-delay detection of anomalies in uncertain dynamical systems using short-length time series of sensor data.
To this end, an MPT-based STSA algorithm has been developed on ergodic sequences of measure-preserving transforma-
tions, with a detailed exposition to the underlying theory.

Validation of the proposed detection methodology: The underlying algorithm is experimentally validated on a laboratory-
scale apparatus for detection of TAI in combustion systems using time series of pressure measurements. The detection
performance’ is compared with that of both HMM and CUSUM to serve as benchmarks.

[

U

Organization: The paper is organized in six sections including the present section. Section 2 briefly provides the back-
ground information on measure-preserving transformation (MPT) and ergodicity. These background information are
required for a full understanding of the material in the subsequent section, namely Section 3, which succinctly presents
the mathematical principles of symbolic time series analysis (STSA). This section also develops a measure-theoretic frame-
work for spectral analysis of ergodic symbolic systems generated from observed time series, which plays a central role in
developing the detection algorithm presented in this paper. Section 4 presents the technical approach and develops the algo-
rithm. Section 5 validates the proposed concept and the underlying algorithm with experimental data. Section 6 summarizes
and concludes the paper along with recommendations for future research.

2. Background information

This section provides a brief analysis of the spectral properties of measure-preserving transformation (MPT) sequences
with ergodic probability measure, which form the backbone of the statistical pattern classification and anomaly detection
methodology presented in this paper. A key concept here is that, even though a measure-preserving dynamical system is
described by a transformation with time-varying eigenvalues, the absolute values of the eigenvectors remain time-
invariant under the ergodicity assumption [25]; the details are extensively reported by Cornfeld et al. [24]. The following
definitions, which are available in standard literature, are presented below for completeness of the paper and ease of its
readability.

Definition 1. Let Q be a nonempty set. A collection T of subsets of Q is called a topology and the members of T are called T-
open (or open) sets, provided that the following three conditions are satisfied.

eFgeTand Qe T

o Closure under finite intersection, i.e., (_Ex € T if B, e Tfork=1,....n Vne N£{1,2,3,...}.

o Closure under arbitrary (i.e., finite, countable, or uncountable) union, i.e., [J,E, € T if E, € T Vo € | that is an arbitrary
index set.

The pair (Q, T) is said to form a topological space, where the complement of an open set is called a closed set, i.e., if S is an
open set, then Q\ S is a closed set.

! The Receiver Operating Characteristic (ROC) curves [27] have been used in this paper for assessing the detection performance of MPT-based STSA relative to
that of HMM [4,5] and CUSUM |7].
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Definition 2. Let (Q, T) be a topological space. Then, a basis of (Q, T) is a (nonempty) collection 5 of (nonempty) subsets of Q
(called basis elements), provided that the following two conditions are satisfied.

o For every m € Q, there exists B € B such that w € B.
o If @ belongs to the intersection of two arbitrary basis elements By, B, € B, then there exists a basis element B; containing
 such that B; ¢ By N B,.

Definition 3. Let Q be a nonempty set. A collection £ of subsets of Q is called a g-algebra and the members of € are called &-
measurable (or measurable) sets provided that the following three conditions are satisfied.

e Qecé.
eIfEc& thenQ\Ec €

o A countable union of measurable sets is measurable, i.e., if {E;} is a countable collection of members of &, then | E; € €.

The pair (Q,€) is said to form a measurable space.

Definition 4. Let (Q, &) be a measurable space. Then, the value of the set function defined as P : € — [0, 1] is called a (prob-
ability) measure provided that the following two conditions are satisfied.

o P[Q=1.
o If {E;} is a countable collection of members of &, then

P[Usk} <Y PE]
k k

and the equality holds if the members of {E} are pairwise disjoint, i.e., if EENE = & Vi #j.

The triple (Q, &, P) is called a probability space.

Definition 5. If two measurable sets E. F € £ are such that P[E A F] = 0, then it is said that E=F P-almost everywhere (ab-
breviated as P-ae). Note: A is the symmetric difference on sets such that AAB2 (A\ B) U (B\ A).

Remark 6. All measurable sets that are equal P-ae form an equivalence class; members of this equivalence class are P-
almost equal sets.

Definition 7. Let (Q, &, P) be a probability space and let T : (Q, &,P) — (Q, &, P) be a transformation. Then, T is called measur-
able if T 'Ec EVE € €.

Definition 8. A measurable set E € £ is called T-invariant ifP[E AT lI:'] = 0, which implies that Tx ¢ E for P-almost all x € E.
Furthermore, a function f : Q — [0, c0) is called T-invariant if f(Tx) = f(x) for P-almost all x ¢ Q. A measurable transformation
Tis called a measure-preserving transformation (MPT) ifP[T 'E} =P[E] VEeé&.

Definition 9. A measure-preserving transformation T is called an endomorphism if T is surjective (i.e., onto). If T is bijective
(i.e., one-to-one and onto) and preserves measure, then it is called an automorphism.

Remark 10. The concept of MPT has been widely used to investigate the asymptotic properties of random sequences in sta-
tistical mechanics [24]. For an endomorphism T on a (finite) measure space (Q, &, P), every measurable set E has the recur-
rence property in the sense that once E is visited, it would be revisited infinitely many times [24]; that is, if x € E, then there
are infinitely many values of n such that T"x ¢ E.
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Definition 11. Let S be a (nonempty) set with a binary operation o. Then, S is called a semigroup if the following two con-
ditions are satisfied:

e Closure: o: SxS—S.
e Associativity: (Xxoy)oz=xo(yoz) VX, y.z€S.

Definition 12. [28] Let {T‘"’} be a one-parameter semigroup of endomorphisms on a probability space (Q,&,P). Then, a
function f € L;(P) is said to be an eigenfunction of {T"”} with the eigenvalue 2™ if f is a non-zero function and

f(T‘"’) =/"f P-aeforallneN.

Definition 13. [24] Let {T‘"'} be a one-parameter semigroup of endomorphisms on a probability space (Q,&, P). Then, the
sequence {T‘"’} is said to be ergodic if each T™-invariant set E ¢ € is trivial, i.e., either P[E] = 0 or P[E] = 1 Vn € N. Equiva-

lently, the measure P is said to be {T‘"’}fergodic.

Remark 14. The concept of ergodicity has been widely used in Statistical Mechanics and probabilistic modeling of dynam-
ical systems [24]. In an ergodic process, it is sufficient to have a single adequately-long realization in order to characterize
the statistics of the underlying process. Given any discrete-time realization {x,} of an ergodic process {X, : X, € Li(P)}, as
n — oo, the time average ,l‘z]":, X; converges P-ae and in L;(P) to the ensemble average |, X,dP [29].

Another useful formulation of ergodicity is as follows: Given a probability space (Q, &, P), the sequence of endomorphisms

{T‘"’} is ergodic if and only if every invariant measurable function is equal to a constant P-ae on Q. Based on this formula-
tion, it can be tested whether a sequence {T‘"J} is ergodic or not by looking at its eigenfunction f corresponding to the eigen-
value 2™ = 1, for which f(x) :f(T“”x) for P-almost all x € Q and for all n € N. Hence, fis an invariant function under {T“"}

and therefore is a constant P-ae if and only if {T‘”’} is ergodic. In this context, an ergodic sequence of endomorphisms has an
important property given by the following theorem [24].

Theorem 15. Let (Q, £, P) be a probability space, and let {T“”} be a sequence of endomorphisms, where 0 € [0, 0c). Then, {T“”} is

ergodic if and only if the absolute value of every eigenfunction is a constant P-ae. That is, if f is an eigenfunction of the
endomorphism T"), then |f(x)| is a constant for P-almost all x ¢ Q.

Proof. The proof of the theorem is given in [24].

3. Symbolic time series analysis

Before delving into the technical approach and the algorithm therein, it is necessary to provide an adequate mathematical
background for describing dynamical stochastic systems from observed time series in a symbolic setting, which is a major
theme of the current paper. It is shown in this section how these symbolic systems can significantly reduce the complexity of
testing measure-invariance and ergodicity properties as well as generate Markov models of the underlying dynamical sys-
tems from observed time series data.

3.1. Measure-invariant symbolic systems

Let a dynamical system on the probability space (Q, &, P) be described by a quadruple (Q, £, P, T), where the transforma-
tion T: (Q,&,P) — (Q,&,P) is a P-measurable mapping of Q onto itself. A symbolic representation of the dynamical system
can be generated by partitioning the space (Q,&,P).

Definition 16. A partition of the probability space (Q,&,P) is a (non-empty) finite-cardinality family of pairwise disjoint
(non-empty) members of & whose union is Q.

Given a partition o = {A;,A;,... Ay} of (Q,&,P), an alphabet A = {a;,a,...., aj } is constructed, where the symbols a;'s
bear a one-to-one correspondence to the members A;’s of o.. Let F be the g-algebra generated by .4, and let v be a probability
measure such that v(a;) = P(A;) Va; € A, which defines the measure space (A, 7, v).

5
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Let A" denote the set of all one-sided semi-infinite symbol sequences, i.e., A" £ {s;,s;,...:5, € A and k € N}, where
N £ {1,2,3,...}. Hence, the transformation T : (Q,&,P) — (Q,&,P) and a partition « of the space (Q, £, P) together generate
a (left) shift operator X : A" — A" defined as:

(51,52, --2) = (52,53,.-.) (1)

Definition 17. Given a block of symbols (ay,...,0y), where o; € A and N € N, a cylinder Cg, ;. .nc N, generated by
,oy) is the collection of all members S € A" such that the symbol block (a7, ..., o) occurs at the location n, i.e.,

nN-1 = O'N} 2)

and is called a centered cylinder if it has the form C;m...

LON}"

Remark 18. A cylinder is both an open and a closed subset of A" [30]. Moreover, the centered cylinders C:S N e N, form

15058}
a topological basis for A" (see Definition 2).

Let (AN.]-‘n) denote the Cartesian product of countably infinitely many copies of the measurable space (A, ), where Fp
is the product g-algebra generated by the cylinders C;l_ oy forall n,N € N, corresponding to all feasible initial conditions of

the dynamical system (Q, &,P,T) [31]. Let m define a probability measure on Fy;, given by:
m(C'{a,. _w) LV(Sy = G1,...,50n 1 = ON) 3)

That is, the probability of a symbol block is equal to the measure of the cylinder generated by that symbol block. In this way,
a probability measure space (A", 1, m) and a shift system (A", 71, m, X) are defined. It follows from Eq. (3) that the sym-
bolic representation of the dynamical system (Q, &, P, T) is stationary if and only if the measure m of the generated cylinders
is n-invariant. In this context, a Stationary Symbolic System is the shift system (A“, Fn,m, %) whose cylinders are n-invariant.

A partition o of the probability space of the dynamical system {(9 &P, T‘"’) :ne N}, where {T‘”’} is a transformation
sequence, generates a (€ — Fy)-measurable coding map [24] (also called partitioning map) ®* : Q — A", defined for all
w € Q, as follows:

(®*(w)), = a; € A if and only if T"(w) € A; (4)

i.e.,, the n-th element of the symbol sequence ®*(w), € Q, is a; € A if and only if T" (w) € Ay, Ay € o

Let X,y be a stochastic process defined by the dynamical system {(Q &P, T‘"J) ne N}. Then, S, £ (®*(Xnen)), is a ran-
dom variable on the probability space (A, 7, v), and {S,} defines a symbolic stochastic process on the shift space (A"“A Fr,m).
Therefore, for every stochastic process {X,. }, there exists a symbolic representation {S,.} that can be identified by finding
a partition of the measure space of the original stochastic process”. If the underlying transformations {T‘"’} are measure-
preserving, the resulting symbolic representation is called a Measure-Invariant Symbolic System.

It is noted that the measure-invariance property of a sequence of transformations does not guarantee stationarity of the
corresponding symbolic stochastic process. Therefore, the probabilistic finite state automata (PFSA) (see Section 3.2) gener-
ated by partitioning the probability space of the dynamical system (Q. &P, T“") ine N}, are non-stationary in general.
Consequently, the resulting state transition probability matrices of D-Markov machines (see Section 3.3) are non-homoge-
neous in general.

3.2. Probabilistic finite state automata

As seen in Section 3.1, a partition of the probability space (Q, £, P) of a given dynamical system generates a symbol string
that is used to construct a probabilistic finite state automaton (PFSA). The PFSA model describes the statistics of the under-
lying stochastic process on the shift space (A", 7y, m). The probability of the generated PFSA states is given by the measure
of the corresponding cylinders in (A", Fy;,m). The following definitions, which are available in standard literature (e.g.,
[14,21]), are recalled here for completeness of the paper.

2 If the stochastic process is defined over both positive and non-positive times, i.e., {X,: n¢ 2}, a coding map ®*: Q — A? can be used to generate a
symbolic representation given by the two-sided shift system (A”,Fy;,m.X). In this case, the centered cylinders take the form C(',f‘N_ 0 1,00,01 s}
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Definition 19. A finite state automaton (FSA) G, having a deterministic algebraic structure, is a triple (A, Q, ) where:

e A is a (nonempty) finite alphabet, i.e., |A| € N.
e Q is a (nonempty) finite set of states, i.e., |Q| € N.
e 5:Qx A— Qis a state transition map.

Definition 20. A symbol block, also called a word, is a finite-length string of symbols belonging to the alphabet A, where the
length of a word w £ 5;5, ...5, with s; € A is |w| = £, and the length of the empty word € is |¢| = 0. The parameters of FSA are
extended as:

o The set of all words, constructed from symbols in .4 and including the empty word ¢, is denoted as A*.
 The set of all words, whose suffix (respectively, prefix) is the word w, is denoted as .A*w (respectively, w.A*).
 The set of all words of (finite) length ¢, where ¢ € N, is denoted as A".

Remark 21. A symbol string (or word) w that occurs at time n generates a cylinder C}, in the symbol-sequence space 4", and
the probability of a string w is given by the measure of that cylinder, i.e. P(w) = m(C},) (see Section 3.1).

Definition 22. A probabilistic finite state automaton (PFSA) K is a pair (G, 7r), where:

o Deterministic FSA G is the underlying algebraic structure of PFSA K.
o The morph function (also known as the symbol generation probability function) 7 : Q x A — [0, 1] satisfies the condition:
S seaT(g,0) =1 forallqe Q.

The state transition probability mass function k : @ x Q — [0, 1] is constructed by combining ¢ and 7, which can be struc-
tured as a |Q| x |Q| matrix 7. In that case, the PFSA can be described as the triple K = (A, 9, 7).

It is noted that the |Q| x |Q| state transition probability matrix 7 is stochastic [32] (i.e., each element of 7 is non-negative
and each row sum is unity). Ergodicity of the symbolic dynamical system is equivalent to irreducibility of 7 [32], which
implies that 7 has exactly one eigenvalue at unity (i.e., 2 = 1) and that the rest of the eigenvalues are either on or within
the unit circle with center at 0 (i.e,, |4| < 1). The (sum-normalized) eigenvector v; corresponding to the unity eigenvalue
(i.e., 2= 1) represents the stationary state probability vector of the Markov chain [32]. In the probability space (Q, &, P) of
STSA, Q is the (finite) set of states Q. With symbols s € A occurring randomly, the state transition map 6 : Q x A — Q in Def-
inition 19 becomes a random transformation T : (Q,&,P) — (Q,&, P) such that T(q) yields a Q-valued random variable for
each g € Q. The state transition probability mass function x : @ x Q@ — [0, 1] satisfies the following condition:

P[T(q) €E] 2 K(q,q) VgeQ VE€&
qeE

where P denotes the transition probability with respect to the underlying probability space (Q, &, P), which implies that the
random variable T(q) has the probability mass function x(g. -). Then, the |Q| x |Q| state transition probability matrix 7 is a
stochastic representation of the random transformation T. A simple example from a previous publication [25] is presented
below to elucidate the concept of MPT.

Example 23. In the probability space (Q,&,P), let Q= {q,,q,} with the ¢-algebra £=2°2 (g, {a:},{q,},Q}, and
P:&—[0,1]. Let {T“"} be a sequence of mappings (Q,&,P) — (Q,&,P), such that the representation of T® by a 19l x |Q|

(k) _pl _ . .
stochastic matrix (see Definition 22) is: 70 — [] I—)iz“" I f’“‘p' ], where p¥, p® ¢ [0,1) can be arbitrary for any given k.
The eigenvalues of each stochastic (ergodic) matrix 7* are: 28‘7 =1 and iflk) = (p® +p® —1); and the corresponding

. . Bk 0 : .
absolute-sum-normalized left eigenvectors are: v(ﬂk’:{f—lj—({%m 2—3’;,{’-%1—)] that are k-variant, in general, and

(k) _ , ivar ®\ "ol = _ CANP I _
v} =05 ~05] that are k-invariant. Hence, P|(T%) "o| =P0]=1 and P|(T¥) "@| = P[] = 0. Furthermore, the
preimage of {q;} (i.e., (T‘k))il(qd) is either {q,} itself or {q,}; similar results hold for {g,}. Then, it follows that

P{(T“‘)) 45] = P[E] VE € & (i.e., the system is measure-preserving) if and only if P[{q,}] = P[{q,}] = 0.5, i.e., p¥) = p® in the
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matrix 7% vk. Moreover, with the restriction p®, p® e [0, 1), it also follows that {T“"} is ergodic, because the only T®-
invariant measurable sets (i.e., members of £) are ¢f and Q. Then, it follows from Definitions 8 and 13 that, in this example,
the sequence {T""} is measure-preserving and ergodic if and only if p® = p® and p¥) € [0,1) Vk .

Following Definition 13 and Definition 22, a PFSA sequence {K"} £ {(A, Q, T‘"))} on a probability space (Q,&,P) is

measure-preserving and ergodic if 7" is measure-preserving and ergodic ¥n € N. A straightforward result, which is central
to the current paper, follows from Theorem 15 for PFSA and is presented as the following corollary.

Corollary 24. Let {IC"”} be a sequence of measure-preserving and ergodic PFSA on a probability space (Q, &, P). Then, the (sum-

)

normalized) left eigenvector vg‘ , corresponding to the eigenvalue ig” = 1, is uniformly distributed, i.e.,

Remark 25. Following Remark 14, given any discrete-time realization {x,} of an ergodic process {X, : X, € L;(P)},as n — oo,
the time average ﬁzj":l X; converges P-ae and in L; (P) to the ensemble average [, X,dP. On the other hand, ergodicity of the
corresponding symbolic system is much easier to check; it is equivalent to irreducibility of the state transition probability
matrix. Following Corollary 24, both ergodicity and measure-invariance can be checked from the state transition probability
matrix.

3.3. D-Markov machines

When constructing a D-Markov machine, the generation of the next symbol is assumed to depend only on a finite history
of at most D consecutive symbols, i.e., a symbol block not exceeding the specified length D. In this context, a D-Markov
machine [14,21] is defined as follows.

Definition 26. A D-Markov machine is a PFSA, in the sense of Definition 22, which generates symbols that solely depend on
the (most recent) history of at most D consecutive symbols, where the positive integer D is called the depth of the machine.
Equivalently, a D-Markov machine is a stochastic process S=...s 15ps1 ..., where the probability of occurrence of a new
symbol depends only on the last consecutive (at most) D symbols, i.e.,

Plsu|...Sn-p...Sn-1] = P[Sn|Sn-p ... Sn-1] (5)

Consequently, for w € A” (see Definition 20), the equivalence class .A*w of all (finite-length) words, whose suffix is w, is
qualified to be a D-Markov state that is denoted as w.

The PFSA of a D-Markov machine generates symbol strings having the form {sis,...s;}, where s; € A and ¢ is a positive
integer. Both morph function 7 and state transition probability matrix 7 implicitly support the fact that PFSA satisfies the
Markov condition, where generation of a symbol depends only on the current state that is a symbol string of at most D con-
secutive symbols [21]. For the proposed D-Markov-based methodology, there are four primary choices as enumerated
below:

. Alphabet size (|.A|): Larger is the alphabet size more distinct are the different regimes, but more training data would be
needed. A critical step of PFSA construction is selection of the alphabet size | A|; while there are several algorithms for the
choice of optimal alphabet size (e.g., [17,21]), the alphabet size has been chosen to be very small (e.g., |A| = 2 and |A| = 3)
in this paper so that the number of states |Q| is also small to limit the required window length L. However, |4| could be
larger for other applications.

Partitioning Method: While there are many data partitioning techniques, maximum entropy partitioning (MEP)
[15,16,21] and K-means partitioning [33] have been chosen here as they are commonly used for partitioning of time
series.

Depth (D) in the D-Markov machine: In this paper, D = 1 and D = 2 have been chosen for PFSA construction to limit the
window length L. Higher values of D may lead to better results at the expense of increased computational time due to
larger dimension of the feature space and need for more data [21].

Choice of Feature: The feature needs to be the one that adequately captures the texture of the signal and that is not com-
putationally expensive.

N

LY

el

3.4. Anomaly detection in the setting of a standard STSA

D-Markov machines provide an efficient and convenient way of modeling a dynamical system from the perspectives of
discrete-time measurements and their discrete-space symbolization. In this setting, a time series {x,} is first symbolized

8
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using symbols from a finite-cardinality alphabet A. The resulting symbol string {s,} is then used to construct a PFSA, which
in turn generates low-dimensional feature vectors that are used for anomaly detection. The process is detailed in the follow-
ing procedures:

[

Choose a nominal time series, for which the system is under a nominal operating condition.

. Construct a partitioning for the nominal time series to generate a symbol string which is used to construct a nominal PFSA
model. The state transition probability matrix of the generated PFSA model is constructed (e.g. by frequency counting
[21]) which is used to produce a quasi-stationary probability vector x° that represents the nominal pattern.

Select a new time series block up to the current time n and symbolize it using the learned nominal partition. This yields a
new PFSA with a new quasi-stationary probability vector that represents the feature vector u" of the system at the time
epoch n.

. Compute the scalar-valued anomaly metric 0(n) at a time epoch n by having a string of divergences between the nominal
feature £° and current feature 1™, and by sliding the block of data N times as:

o

S

1 o1
0(n) = N Z di (#Dnﬂm) (6)

where dy.(e,e) is the Kullback-Leibler divergence [34] and the positive integer N serves the sole purpose of data
smoothing.

4. Technical approach

Earlier publications [17,21] have reported identification of two afore-mentioned parameters of D-Markov machines,
namely, Markov depth D and the alphabet size |.A| for construction of PFSA. This paper proposes a methodology for identi-
fying the remaining aforesaid parameter, namely, the minimum window length L, for symbolic analysis of observed time
series, which is required to train Markov models generated from short-length windows of time series. In this framework,
the underlying stochastic process is assumed to be an ergodic sequence of endomorphisms (i.e., surjective measure-
preserving transformations (MPT)) [24]; and the developed model is a time-inhomogeneous Markov chain, in general, which
is constructed by relying on the spectral properties of the underlying physical process.

Based on the above rationale, this paper presents a methodology for constructing PFSA from short-length time series,
which generate non-homogeneous Markov chain models for describing the uncertain dynamics of the physical process.
As a result, the time-invariance of the eigenvectors, which reflects measure-invariance of the dynamical system, is used
to decide the window length of the time series required to construct PFSA. Unlike the standard STSA [14,21] that requires
increasing the window length until the resulting PFSA is no longer significantly changing, the proposed MPT-based STSA
selects a minimum window length for which absolute values of the eigenvectors are (nearly) uniformly distributed. The
rationale is that anomalies are usually associated with a change in the system’s total energy, which naturally makes the sys-
tem no longer measure-invariant and thus the eigenvectors absolute values are no longer time-invariant. Along this line, a
metric of variability for absolute values of the eigenvectors is proposed as a measure of anomaly. This paper also develops an
MPT-based metric to quantify the divergence of evolving PFSA from the nominal PFSA; this information is then used for pat-
tern classification and anomaly detection with low-delay tolerance.

Let a dynamical system be represented by a sequence of measure-preserving transformations {7"} acting on the proba-
bility space generated by STSA (see Example 23 in Section 3.2). A major issue in the standard STSA-based anomaly detection
is that it may require a long time series to construct the stationary state transition probability matrix 7", from which the sta-
tionary probability vector »is generated to serve as a feature vector. However, many real-life applications may require low-
delay detection of anomalous events, for which short-length time series of measurements must be used. For example, ther-
moacoustic instabilities (TAI) in combustion systems typically develop within tens of milliseconds, which mandate an early
and fast detection using short-length sensor time series [35,36].

A modification of the standard STSA technique (see Section 3.4) is now proposed as MPT-based STSA by relying on vari-
ations in the absolute values of eigenvectors. Table 1 lists major differences between a standard STSA [21] and the MPT-
based STSA.

For MPT-based STSA, Algorithm 1 presents a procedure that provides: (i) identification of an optimal length of data win-
dows for anomaly detection, and (ii) decision-making on whether the system is nominal or anomalous by using an optimal
window length. The threshold parameter 7, is used to select an optimal widow length L. As a result, Algorithm 1 provides a
method for detecting anomalous patterns using short-length time series by constructing a D-Markov machine model of the
underlying stochastic process, given the alphabet size |.4| and the Markov depth D. Thus, an anomaly is detected online when
the metric p, which represents ergodicity and measure-preservation, exceeds the threshold parameter 7,. Fig. 1 presents a
flowchart of Algorithm 1.
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Table 1
Comparison of standard STSA and MPT-based STSA.
Standard STSA MPT-based STSA
1 Time-invariance of the nominal-phase PFSA Time-invariance of absolute values of left eigenvectors of the nominal-
phase PFSA, which are time-varying, in general
2 Generation of homogeneous Markov-chain models Generatation of non-homogeneous Markov-chain models
3 Anomaly quantification by divergence of the current PFSA from the Anomaly quantification by variability of left eigenvectors of the
nominal PFSA evolving PFSA
4 Requirement of relatively long time series for modeling the underlying ~Requirement of relatively short time series for modeling the underlying
process dynamics process dynamics
5 Less robust to parametric changes in data partitioning and detection ~ More robust to parametric changes in data partitioning and detection
system (e.g., alphabet size |.4| and Markov depth D) system (e.g., alphabet size |.4| and Markov depth D)

INPUT: Alphabet 4, Markov depth D, a time series
generated by a measure-invariant ergodic process, number
of sliding windows N, increment AL of the window length
in cach teration, and thresholds 7, , T, > 0

al window length L

[[Conversion of time series to a string of symbols__|

[ D-Markov machine consiruction for cach substring of length L

Computation of the left eigenvectors for each state transition
probability matrix for each one of the generated D-Markov

machines

Computation of the anomaly measure p as the | | norm of the
difference of the generated eigenvectors from their mean value

Declare the system
as anomalous

Fig. 1. Flowchart for Algorithm 1.

Algorithm 1: MPT-Based Anomaly Detection

INPUT: Alphabet .4, Markov depth D, a training time series {xi"} generated in the nominal phase, and a family of test
time series {x&, 1, number of sliding windows N € N, increment of the window length AL in each iteration in the
training phase, and two thresholds 7y, 7, > 0.

OUTPUT: A decision on whether the system is nominal or anomalous.

1: Choose an initial window size L.

2: Convert time series blocks {x™, ., 1,n=0,1,..., N — 1, into symbol strings {Sp.1.x:1}, Si € A, using one of the STSA
partitioning methods.

3: Using frequency counting, construct a D-Markov machine based on each s, 1.,,, to obtain state transition probability
matrices {T["’}A

4: Find the left eigenvectors {#(n)}, corresponding to eigenvalue /o = 1, for each one of the state transition probability

matrices.

5: 74 ',:’73 |v(n)|, where |2(n)| is the vector of absolute values of components of »(n).

6: 0 — A N5 l(1wm)] - D).
7: p <10l
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Algorithm 1 (Continued)

8:ifp > 74

9: L« L+ AL and GOTO 2.

10: else

11:  Repeat Steps 2 to 7 by replacing the training time series {x'" , ,} with the test time series {x&! , ,}.
12: ifp>1y

13: declare the system as anomalous.

14: else

15; declare the system as nominal.

16: end if

17: end if

Remark 27. The threshold parameters 7, and T, are inter-dependent in the sense that a smaller 7; would result in a larger
window length L (i.e., a larger delay), which would require a smaller 7, under a fixed maximum allowable false positive rate
(FPR) for similar quality of decisions on anomaly detection. It is noted that both parameters, namely, tolerated delay and
maximum allowable FPR, are generally application-dependent. In this regard, Pareto optimization for selection of the (user-
set) threshold parameters 7; and 7, is recommended as a topic of future research in Section 6.

Remark 28. Algorithm 1 utilizes the left eigenvector corresponding to the unique eigenvalue /, = 1. However, depending on
the application, other eigenvectors could also be information-bearing for discrimination of anomalous behavior from the
nominal.

5. Experimental validation: results & discussion

This section validates the MPT-based STSA methodology (see Section 4) on experimental data, generated from a labora-
tory apparatus for predicting thermoacoustic instabilities (TAI) in combustion systems. The objective here is to evaluate the
performance of the proposed MPT-based STSA, presented in Algorithm 1, for anomaly detection using short-length time ser-
ies and low-dimensional feature vectors, and its robustness to changes in the parameters of data partitioning and the algo-
rithm. In this regard, performance of MPT-based STSA is compared with those of HMM (e.g., [5]) and CUSUM [7] on the same
sets of experimental data.

5.1. The laboratory apparatus and experimental data

Fig. 2 depicts the experimental apparatus for emulation of thermoacoustic instabilities (TAI) on an electrically heated
Rijke tube apparatus [37], which has been widely used in the study of TAI, because electrical heating is easier to operate
in the laboratory environment compared to a fuel burning-based combustor, and yet it can emulate the salient properties
of TAI in real-life combustors [38]. The Rijke tube apparatus in Fig. 2 consists of a 1.5 m long horizontal tube with an external
cross-section of 10 cm x 10 cm with a wall thickness of 6.5 mm. It is equipped with an air-flow controller that regulates the
flow of air at atmospheric pressure through the tube. It has a heating element placed at quarter length of the tube from the
air-input end. A programmable DC power supply controls the power input to the heater [37]. The experiments were con-
ducted in the following manner:

—_

. For every run, the air flow-rate was set at a constant value. Different runs were performed with flow-rates ranging from
130 liters per minute (LPM) to 250 LPM at increments of 20 LPM.

First the Rijke tube system was heated to a steady state with a primary heater power input of ~200 W.

Then the power input was abruptly increased to a higher value that shows limit cycle behavior as depicted in the stability
chart reported by Mondal et al. [37].

W

Fifteen (15) experiments have been conducted on the Rijke tube, where the process starts with stable behavior, gradually
becoming anomalous and eventually unstable. For each experiment, a time series of pressure oscillations (sampled at
8192 Hz) was collected over 30 s, followed by a filtering process in order to mitigate the effects of environmental acoustics.
Two samples of pressure time series are presented in Fig. 3.

When the signal space is partitioned in the stable part, the resulting symbol sequences can be described by a (generally)
time-varying, measure-preserving and ergodic PFSA, where there is no significant energy change in the system, and each



N.F. Ghalyan and A. Ray Mechanical Systems and Signal Processing 159 (2021) 107746

Fig. 2. The electrically heated Rijke tube apparatus.
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Fig. 3. Unsteady pressure signals showing the transition from stable (nominal) to unstable limit cycle (anomalous) behavior: (a) input power abruptly
increased to 1800 W with air flow rate 210 LPM; (b) input power abruptly increased to 2000 W with air flow rate 250 LPM.

state is expected to be revisited infinitely many times, if the system (hypothetically) stays ergodic (i.e., stable) forever. Once
the transient phase starts, more energy is added to the system, and some of the PFSA states are no longer revisited many
times. Therefore, in the transient phase, both measure-preservation and ergodicity properties are presumed to be lost.

5.2. Results of experimental data analysis

An ensemble of pressure time series have been generated for the nominal (stable) operation and for the anomalous (tran-
sient to unstable) operation. The left eigenvector, 2, of 7, corresponding to the eigenvalue 4, = 1, serves as the feature vec-
tor. The effects of different values of window length L are investigated in the plates of Fig. 4, while the other two parameters
are set at |A| = 2 and D = 1. Therefore, the number of D-Markov states is |Q| = 2 (see Section 3); consequently, the (sum-
normalized) eigenvector is 2-dimensional in the form of »;(n) = [z1:1(n) (1 — 211(n))] and only the (scalar) values of
v11(n) are plotted.” Fig. 4 shows how the absolute value of the left eigenvector (corresponding to 4o = 1) converges to a nearly
constant vector [0.5 0.5] for the stable phase as the window size L is increased, while characteristics of the transient zone remain
time-varying. In view of Corollary 24 in Section 3.2, this observation supports the postulation that the stable phase is considered
to be ergodic and measure-preserving while the transient phase is not. The unstable zones are ignored in Fig. 4, because the
main objective here is to detect the onset of transience from the stable condition.

Fig. 5 shows the convergent behavior of the absolute value of the left eigenvector (corresponding to /o = 1) in the stable
phase with |A| = 3,D =1 (i.e,, |Q| = 3), and different window length L’s. It follows from Fig. 5 that the absolute value of the
left eigenvectors converge to a nearly constant vector [1/3 1/3 1/3] as the window length L is increased, which is supported
by Corollary 24 in Section 3.2.

3 The eigenvectors are absolute-sum-normalized, i.e., for a |Q|-dimensional eigenvector, only (|Q|-1) elements need to be specified.

12
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Fig. 4. For the MPT-based STSA, convergence of the left eigenvector #; = [v;; (1 — 2,,)], corresponding to the eigenvalue (/o = 1), to an approximately
constant function in the stable combustion phase, and to an oscillating function for transience to the unstable phase (|A| =2,D = 1).
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Fig. 5. For MPT-based STSA, convergence of the left eigenvector ; = [y, 215 (1~ 1 — 1)), corresponding to the eigenvalue 4 = 1, to the uniform
distribution [1/3 1/3 1/3] in the stable combustion phase (|.4| = 3,D = 1).

o

©

&
o

Ergodicity Metric p
o
o
AUC
o
©
Difference Norm

o
o

0
0 100 200 300 5 100 200 300 0 2000 4000 6000 8000 10000
Window Length L Window Length L Window Length L

Fig. 6. Comparison of convergence of MPT-based STSA (using left eigenvectors corresponding to the eigenvalue /i, = 1) to that of standard STSA (K-means
has been used for partitioning in both methods with |.4| = 2 and D = 1): (a) convergence of the ergodicity metric p as L increases for a typical time series; (b)
increase of area under curve (AUC) of the ROC, using Algorithm 1 for the same time series, as L increases; and (c) convergence of the difference norm of
consecutive state transition probability matrices for the same time series.

Algorithm 1 is validated in Fig. 6, where the ergodicity metric p is evaluated for different values of L for the pressure time
series from a typical experiment, and the area under the curve (AUC) of the ROC curve is obtained by using Algorithm 1 for
the same experiment and the same values of L, with parameters |.4| = 2,D = 1, and K-means partitioning.”

As seen in plates (a) and (b) of Fig. 6, the profile of ROC performance (e.g., AUC) is strongly correlated to that of the ergod-
icity metric p in Algorithm 1; it is concluded that smaller is the value of p, more accurate is the D-Markov model of the
stochastic process and hence better ROC performance is achieved by the D-Markov model. This conclusion demonstrates
the efficacy of Algorithm 1 for selection of the window length L based on the value of the ergodicity metric p. In practice,
one may use a number of time series from several experiments to construct a family of plots. Then, the threshold parameter
7, in Algorithm 1 can be identified by specifying the desired performance in terms of the areas under the ROC curves. That is,
T, can be chosen such that the corresponding area under the ROC curve for each experiment (alternatively, the average area
of the ROC curves) is equal to or greater than the desired AUC.

4 Itis noted that K-means is an iterative clustering technique that relies on minimization of the clusters’ distortion [33]. There are two main hyperparameters
in K-means, namely, number of clusters and initial locations of the clusters’ centroids. In this paper, number of clusters = [.4|, which is specified in the sequel for
each one of the plots. The other hyperparameter is initial locations of the clusters centroids that are determined based on K-means++ algorithm [39], which is a

i algorithm for improving the performance and computation time of the conventional K-means [33].

13



N.F. Ghalyan and A. Ray Mechanical Systems and Signal Processing 159 (2021) 107746

A comparison of the two plates (a) and (c) in Fig. 6 reveals the rate of convergence of the ergodicity metric p, proposed in
Algorithm 1, relative to that of the state transition probability matrices {T‘"’}, when the window length L is monotonically
increased. This comparison shows that the convergence of p is much faster than that of the norm of differences in consec-
utive state transition probability matrices {T‘"'}, and the profile of p is also more smooth. In particular, plates (a) and (b)

suggest that if we want to use MPT-STSA for this typical experiment, we need a time series observation window of length
L ~ 160 in order to achieve AUC ~ 1. However, plate (c) suggests that we need an observation window of length L ~ 10,000
in order to achieve a comparable performance, i.e. AUC ~ 1, if we want to use the standard STSA. Notice the large delay
reduction we gain by using MPT-based STSA over the standard STSA. In summary, Fig. 6 suggests the following:

The window length L required for constructing a time-inhomogeneous Markov model by relying on MPT-based STSA is
much smaller than that required for a comparably accurate time-homogeneous Markov model by using a standard STSA
with a stationary state transition probability matrix [14].

Figs. 7 and 8 exhibit a family of ROC curves generated by Algorithm 1 with K-means and MEP, respectively. The individual
plates in these two figures show performance comparison of MPT-based STSA, HMM, and CUSUM for different combinations
of alphabet size |.4|, Markov depth D, and window length L. Since the results of standard STSA are significantly inferior to
those of both HMM and CUSUM due to short window lengths L (and small values of |A|), the plots of standard STSA are
not included in Figs. 7 and 8.

Before delving into the details of comparison in Figs. 7 and 8, we very briefly present how the two well-known detection
methods, HMM and CUSUM, have been used to generate the results that serve as benchmarks.

e Hidden Markov Model (HMM): A standard version of HMM [33] has been used in this paper by computing the joint like-
lihood of L observations, where L is the window length, conditioned on a null HMM trained on the stable phase. Then, N
such joint likelihoods are computed by sliding the window N times, whose average serves as the anomaly measure, as
detailed by Miller et al. [6].

Cumulative Sum (CUSUM): A standardized version of CUSUM [7] returns the first index of the time series {x;} that has
drifted k standard deviations away from the nominal mean; this detection approach is suitable for a deviation in the mean
only. As seen in Fig. 3, since the data under consideration show changes in variance, a slightly modified version [6] of
CUSUM has been adopted here to account for deviations in variance. The stopping rule of the modified CUSUM algorithm
follows:

No n
0% = ﬁin and p(n) = x} —naj (7)
07 tia k=1

where N is the number of samples taken from the nominal state with the data shifted to have zero mean so that ¢3 is an
unbiased variance estimate. Given the window length L, the measure p(n) is computed upon a data window X,.,,; 1; this
window is then slid N times to generate N values for p. Based on the averaged measure p,,, anomaly decisions are made
by using the following stopping rule:

Niiop = inf{n - |p,,(n)| > o} 8)

where N, is the stopping time at which a change detection is declared, and ¢ is a threshold that is set to achieve a spec-
ified false positive rate (FPR). Since we use ROC for computation of detection performance, the threshold ¢ is adjusted [27]
in the range (0, c0) to generate the ROC curves for CUSUM. Further details on how the ROC curves are constructed and
used to choose detection thresholds are provided later in Section 5.3.

It is noted that each of the three methods, HMM, CUSUM, and MPT-Based STSA, is a function of both L and N, whose values
influence the delay tolerated at the given application. In Figs. 7 and 8, we consider L = 50 and L = 100, while N = 30 is kept
fixed for all cases therein.

Referring back to the subject of performance comparison, it is seen in Figs. 7 and 8 that the performance of all three detec-
tion methods generally improve as the window length L is increased; CUSUM has slightly better performance compared to
HMM for L = 50, while HMM achieves slightly better performance for L = 100. In summary, a comparison of Figs. 7 and 8
consistently shows that:

1. Both HMM and CUSUM are outperformed by MPT-based STSA in all cases.
2. MPT-based STSA achieves excellent performance for both K-means and MEP, which demonstrates that the algorithm of
MPT-based STSA is robust to an appropriate choice of time series partitioning for symbolization.
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Fig. 7. Comparison of ROC performance of HMM and CUSUM with that of MPT-based STSA (having K-means partitioning) by using eigenvectors

corresponding to the eigenvalue /o = 1.
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Table 2
Statistics of CPU execution time (sec) per window for online anomaly detection.
Ccusum MPT-based STSA HMM

Parameters & partitioning method Mean Std dev Mean Std dev Mean Std dev
|A| =2, D=1, L= 50, MEP 6.127e-06 7.834e-07 1.737e-04 1.316e-05 2.625e-03 2.104e-05
|A| =2, D=1, L~ 100, MEP 9.883e-06 6.615e-06 3.001e-04 2221e-05 4.266e-03 3.391e-05
|A| =2, D=2, L= 100, MEP 9.883e-06 6.615e—-06 6.441e-04 4.727e-05 4.778e-03 3.803e-05
|A| =3, D=1, L= 100, MEP 9.883e-06 6.615e-06 5.723e-04 4.119e-05 4.570e-03 3.487e-05
|A| =2, D=1, L= 50K-means 6.127e-07 7.834e-07 4.379e-04 3.240e-05 2.666e-03 2.138e-05
|A| =2, D=1, L= 100,K-means 9.883e-06 6.615e—-06 5.662e-04 4.174e-05 4.275e-03 3.378e-05
|A| =2, D=2, L~ 100.K-means 9.883e-06 6.615e-06 9.152e-04 6.744e-05 4.689e--03 4.013e-05
|A| =3, D=1, L=100.K-means 9.883e-06 6.615e-06 8.300e-04 6.004e-05 4.471e-03 3.168e-05

5.3. Threshold parameters t; and T in Algorithm 1

This subsection suggests a procedure for selecting the threshold parameters 7, and 7, in Algorithm 1 from the receiver
operator characteristic (ROC) curves. Rigorous statistical analysis in this direction is suggested as a topic of future research in
Section 6.

The ROC curves in Figs. 7 and 8 have been generated via Algorithm 1 by varying the threshold parameter 7, [27]. Each
point in the ROC curve corresponds to a specific value of 7,. As a result, the design parameter 7, can be chosen from the
ROC curve by fixing a maximum false positive rate (FPR); however, this assertion is typically application-dependent. For
example, in applications where the cost of a positive false alarm is relatively low, the maximum FPR could be increased.
In contrast, if the cost of a positive false alarm is high, the maximum allowable FPR should be decreased. The value of the
threshold 7, in Algorithm 1 can be decided by specifying a maximum delay determined by the window length L.

5.4. Computational time for algorithm execution

Table 2 lists the second-order statistics of CPU execution time® of CUSUM, MPT-based STSA, and HMM for anomaly detec-
tion using the same ensemble of time series data. It is seen that, on the average, the execution time of CUSUM is approximately
two orders of magnitude less than that of MPT-based STSA. In contrast, MPT-based STSA is about one order of magnitude faster
than HMM especially if MEP is used for partitioning instead of K-means in the MPT-based STSA; the rationale is that K-means is
iterative while MEP is not.

Table 2 also shows that as the window length L is increased, standard deviation of the CPU execution time tends to
increase initially and eventually stabilizes. The rationale is that, as L is increased, the number of total windows for the same
time series would decrease resulting in a higher standard deviation. Referring to the detection performance in the ROC
curves of Figs. 7 and 8, it s seen that each of HMM and CUSUM would require much longer window lengths (L) of time series
to achieve similar performance in comparison to MPT-based STSA. This implies that MPT-based STSA would be subjected to
much less time delay, compared to HMM and CUSUM, to acquire the requisite data for online anomaly detection.

6. Summary, conclusion and future work

This paper has presented and validated a symbolic time series analysis (STSA) methodology for pattern classification and
online anomaly detection in uncertain dynamical systems, where the underlying concept is built upon spectral analysis of
ergodic sequence of measure-preserving transformations. Rather than constructing a homogeneous (i.e., time-invariant)
Markov-chain model, which may require a longer window of time series, a non-homogeneous Markov-chain model is con-
structed, for which consecutive stochastic matrices might be different but they share nearly the same (absolute) values of the
eigenvectors’ components. Based on this information, Markov-chain models are constructed using short windows of time
series to facilitate online anomaly detection. The proposed methodology of pattern classification and anomaly detection,
called MPT-based STSA, has been validated by comparison with well-known methods of hidden Markov model (HMM)
[5] and cumulative sum (CUSUM) [7,40] on experimental data generated from a laboratory apparatus for detection of ther-
moacoustic instabilities (TAI) in combustion systems. In this application, MPT-based STSA is consistently seen to be superior
to both HMM and CUSUM.

While there are many areas of theoretical and experimental research to enhance the work reported in this paper, the
authors suggest the following topics for future research:

“ The experimental results were generated on a DELL PRECISION T3400 with an Intel (R) Core (TM)2 Quad CPU Q9550 at 2.83 GHz, with 8 GB RAM, running
under Windows 10.
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. Rigorous statistical analysis [41] and Pareto optimization [42] for selection of the threshold parameters t; and 7, in Algo-
rithm 1.

. Investigation on usage of a commutator operator on ergodic matrices instead of the norm of eigenvector difference for
enhancement of computational efficiency.

. Experimental validation of MPT-based STSA in diverse industrial applications for pattern classification and anomaly
detection.
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