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Pin-fin arrays are generally present in trailing-edge regions of gas-turbine blades for internal cooling purposes. An
elevated temperature is important to enhance the thermodynamic efficiency of gas-turbine cycles, and internal blade-
cooling mechanisms are employed to mitigate material failure at these high temperatures. It is also important to have
high heat transfer at a limited pressure drop to ensure that the overall cycle efficiency is not affected by power loss
from driving the flow through internal cooling circuits. A pin-fin shape optimization has been carried out, with the
array performance efficiency factor as the objective function, using surrogate modeling-based Bayesian methods.
Surrogate modeling/machine learning approaches are instrumental in exploring global solutions to optimization
problems using an exploration versus exploitation approach. This ensures prudent use of computational resources
for computationally expensive computational fluid dynamics simulations. By varying geometric parameters of the pin
fins, a three-dimensional design space has been explored to obtain an optimum pin-fin shape that has the maximum
efficiency in the developing region of the flow. An improvement in the efficiency parameter of 1.4 times that of the
baseline was obtained in a three-row pin-fin case, and the results were compared with those of genetic-algorithm-
based optimization (nondominated sorted genetic algorithm-II). Computation time for optimization was saved by
52%, as an optimum was obtained at lower number of iterations when compared to the genetic algorithm approach,
with a 1.2% higher objective function value. This shows an improvement in performance of the current novel

approach compared to another stochastic method.

Nomenclature

inlet cross-section area

pin geometric parameters

side length of square baseline

hydraulic diameter of pinned channel
hydraulic diameter of smooth channel
friction factor

inlet cross-section height of pinned channel
inlet cross-section height of smooth channel
convective heat transfer coefficient

thermal conductivity of air

mass flow rate

Nusselt number

= average velocity in duct
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op = pressure drop

n = thermal performance efficiency of pin-fin array
n' = normalized thermal performance efficiency

p = density

w, = inlet cross-section width of smooth channel

w = inlet cross-section width of pinned channel

I. Introduction

AS-TURBINE cycle efficiency can be improved by increasing

the hot gas path component temperature. The temperature,
however, is limited by component life as well as economic and
technological constraints. To prevent thermal failure, gas-turbine
blades have inbuilt internal and external means of convective cooling
mechanisms. Pins and rib turbulated internal cooling channels are
among the common designs used to enhance convective heat transfer
by means of high turbulent mixing. The chief objective behind opti-
mum design of such channels is to maintain high heat transfer with
minimum coolant use and pressure drop [1]. Bunker [2] summarizes
that for aviation engines, 20—30% of compressor air is diverted to the
high-pressure turbine for internal cooling purposes. It is important to
minimize the power loss due to these cooling circuits since it may
nullify the efficiency gained by the increase in blade temperature. Heat
transfer augmentation increases with increased turbulence due to the
presence of ribs, pin fins, or dimple/protrusions in the internal chan-
nels. This increased turbulence level is also responsible for a higher
amount of pressure drop. Design optimization plays an important role
to obtain configurations of internal cooling channels, which balance
between the heat transfer and pressure-drop factors. Webb and Eckert
[3] developed an efficiency parameter based on the average Nusselt
number and friction factor of high-aspect-ratio geometries with con-
stant mass flow rates. The ratio of the Nusselt number and friction
factor represents a compromise between heat transfer in the channel
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and power expenditure due to flow of coolant air causing pressure drop
across the channel. This efficiency factor has been used in the current
study for design optimization.

Pin-fin arrays are commonly used in turbine blade-cooling internal
trailing-edge geometries to enhance heat transfer [1,2]. Because of
the cramped space in the trailing-edge region, short pin-fin arrays are
obtained in the high aspect ratio of such channels. Hence, the pin fins
are more functional as turbulators rather than structures that increase
surface area for heat exchange. Acceleration of flow in the blockages
provided by the pin fins increases heat transfer along with secondary
vortex interactions due to trailing-edge separations in such pin fins. In
the last three decades, numerous experimental studies have been
carried out by varying shapes/sizes and spacing of pin-fin arrays.
Chyu [4] studied the heat transfer performance of staggered arrays as
opposed to inline arrays, and it was observed that higher heat transfer
occurred in staggered arrays, along with a higher-pressure drop as
compared to inline arrays. A pin endwall fillet was also found to be
undesirable in this study. VanFossen [5] performed heat transfer
experiments on two different geometries and obtained an array
averaged Nusselt number vs Reynolds number correlation.

Chyu et al. [6] studied the effect of cross-sectional geometric
variations of square-, circular-, and diamond-shaped pins on heat
transfer and pressure drop. The diamond pins were found to have
highest heat transfer, followed by the square and the round pin fins.
Due to higher-pressure drop in the sharp-edged geometries, the highest
efficiency was obtained in the circular pin fins as a tradeoff between
pressure loss and heat transfer enhancement. Streamwise heat transfer
was studied by Metzger et al. [7] in staggered arrays. The heat transfer
coefficients were found to peak at the third row of pins. Metzger and
Haley [8] studied the turbulence characteristics of similar geometries
using flow visualizations, which were also consistent with the heat
transfer characteristics. Ames and Dvorak [9] performed hot-wire
experiments and computational fluid dynamics (CFD) simulations to
better understand turbulence-related transport phenomena in staggered
pin-fin arrays. Armstrong and Winstanley [10] concluded that pin-fin
arrays reach their peak heat transfer coefficients at rows 3-5 and are
dependent on the Reynolds number raised to a power of 0.6 to 0.7.

Several studies exist on optimization of fins and other components
to improve their thermal performance. Elitism-based [11] and genetic-
algorithm-based studies were performed on fin geometries [12—15].
The elitism-based JAYA algorithm was used by Venkata Rao et al.
[11] for a multiobjective optimization study of heat pipes. Structural
parameters were varied to increase heat transfer and reduce thermal
resistance in this work. Multiobjective shape optimization in micro
pin-fin arrays were carried out by Reddy et al. [16]. Entropy gener-
ation minimization techniques were used by Hamadneh et al. [17]
to achieve minimum pressure drop and maximum enhancement of
convective heat transfer.

Gradient-based methods have also been used extensively for
various thermal-fluid optimization problems. Bezier parameter-based
parametric polynomials were used by Eyi et al. [18,19] to optimize
hypersonic vehicle designs. Of late, a lot of interest has been shown in
the interdisciplinary fields of machine learning assisted modeling and
optimization [20-22]. Particularly, surrogate assisted optimization
[23,24] has been widely used by different researchers for learning
metamodels for computationally expensive experiments/simulations
in engineering design. Such design problems often involve optimiza-
tion of an output objective for which the functional relationships
with the inputs are not well defined, and hence they invoke the need
of gradient-free optimizers in a black-box setting. These are often
referred to as high-dimensional expensive black-box problems [25]
for which surrogate statistical models can be learned that, in turn, can
serve as reliable estimates for the true functions. Of the different
surrogate models used by the researchers, one popular method of
modeling nonlinear input output relationships is via a Bayesian non-
parametric statistical tool called Gaussian processes (GPs) [26]. A GP
is a stochastic process that assumes that any (finite) linear combination
of random variables has a multivariate jointly Gaussian probability
distribution. GPs can be used to model a wide range of relations
between the input parameters and system response without assuming
any functional relationship beforehand. Being a Bayesian method, GPs

also quantify the uncertainties in predictions resulting from possible
measurement/modeling noise and variance associated with estimation
of the parameters/hyperparameters in the statistical model. Tradition-
ally, machine learning techniques like neural networks have been
widely used as a popular choice in prediction problems by modeling
nonparametric input output relationships [27,28]. Despite the simplic-
ity of usage, such techniques generally rely on a huge volume of data,
and naive applications of such methods in limited datasets can often
result in poor predictive models that lack generalizability due to over-
fitting. On the other hand, probabilistic ML techniques like Gaussian
processes offer the advantages of interpretability and applicability in
limited data regimes, and their applications in surrogate-based model-
ing and optimization have been relatively less explored, particularly in
multiphysics problems as discussed in this paper.

II. Mathematical Background and Applications
A. Problem Definition

Chyu et al. [6] experimented with various shapes of pin fins in an
array to study the effects on heat transfer and pressure drop. Among
the square-, circular-, and diamond-shaped pins, a variation of per-
formance efficiency was obtained. The sharp-edged square and dia-
mond pins had a high heat transfer, but pressure drop was lower in the
circular pin fins. For the Reynolds number of 12,000, the square pin
was found to have the highest efficiency. The current study uses a
baseline case consisting of the same exact square-shaped pins (Fig. 1)
and the given flow rate. Spanwise and streamwise distances were both
equal to 2.5 times the side of the baseline geometry shape. Each
segment of line in the baseline square shape consisted of a three-point
circular arc. Hence, changing the coordinates of the midpoints of the
trailing edge, leading edge, and sidewall of the square-shaped pin fins
gave rise to a variety of shapes as seen in Fig. 2. By varying geometric
parameters a, b, and ¢ from 3.2 to 6 mm, a three-dimensional design
space has been explored to obtain an optimum pin-fin shape that has
the maximum efficiency in the developing region of the flow. Flow
simulation of each turbulent heat transfer case requires significant
computation time. Usage of a surrogate model-based Bayesian opti-
mization technique ensures intelligent sampling, thereby using the
available computation power efficiently.

The aim of the current study was to find the optimum shape of the
pins to maximize the thermal performance efficiency parameter [3]
[Eq. (1]

n= (Nu/Nu,)[(f/f)' 1

where Nu = hD/k is the array averaged Nusselt number of the pin-
fin array. Traditionally, and in the current study, Nu, is the average
wall surface Nusselt number of a smooth pipe of the same dimen-
sions. Also, f = (8P)/(0.5pU?) for the array, and f, is the friction
factor of the smooth duct.

Study of the aforementioned efficiency expression can be found in
detail in the work of Webb and Eckert [3]. The power required to
pump fluid through an internal channel can be expressed as

Power = (m/p)AP = AU(f0.5pU’L/D,) « fAU>  (2)
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Fig. 1 Representations of a) baseline geometry and parameters defini-
tion (for baseline, a = b = ¢ = 3.2 mm; a’, b’, and ¢’ are morphed
parameters; and side length D = 2 a) and b) layout for pin-fin array
(flow from right to left).
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Fig.2 Different geometries of the pin (flow direction from right to left).

where A is the area of cross section of the channel, and L is the
channel length:

foA U, = fFAU? 3
For high-aspect-ratio channels with the same area of cross section,

folf =AU*/A, U} “)

For high-aspect-ratio channels, D, = 2H, where “H” is the chan-
nel height:

h/h, = NukDy,/Nu kD, ~ (Nu/Nu,)/(2H,/2H)  (5)

Since channel width is constant in current scenario (w = w,), the
above equation can be reduced to:

(Nu/Nuy)(wU/w,U,) = (Nu/Nu,)/(U/U,)
= (Nu/Nu,)/(f/f)' (6)

B. Mathematical Background

In this section, a brief overview of the mathematical foundations
involved in this paper has been discussed. The surrogate modeling
structure in this paper is based on a nonparametric regression technique
called Gaussian processes [26]. Gaussian processes assume any finite
combination of random variables have a jointly Gaussian distribution.
For example, for the function f(x) with input x, a finite subcollection

{x1,x,5,...,x7} yields the outputs { f (x1), f(x5), ..., f(x7)} that, by
GP assumption, are distributed as jointly Gaussian:
fx) m(x;) k(xy,x1) - k(xy,x7)
N B : o
flxr) m(xr)

k(er,xy) -+ k(xr, x7)

GPs are completely characterized by a mean function
m(x) = E[f(x)] and a covariance function

k(xe,x 1) £ E[(f(x) = m(x)) (f (x7) = m(x7))]

The posterior predictive distribution at the test data points for a GP
prior as specified by Eq. (7) is also a Gaussian distribution [26]. In
particular,

ytst|ytm sl st NN(”ts! Ztst) (8)
where
”tst — K(x“‘, x"“)[K(x‘m,x‘m) + 62[]—1ytm (9)

st — K(x‘s‘,xm) _ K(xtst,xtm)[K(xtm,xtm) + 02]]—1K(xtm’ xtst)
(10)

Here, x"™ and y"™ correspond to the training data for input and output
variables, respectively, and x* and y*' denote the input and output
variables for the test data. The noise in the observation outputs is
assumed to be additive, and it is modeled using independent and
identically distributed Gaussian distributions with zero mean and
variance ¢2. One of the most critical elements in formulating a GP
model is the choice of an appropriate covariance kernel function,
which models the correlation between any two points in the input
space. An automatic relevance determination (ARD) formulation of
the Matérn covariance function has been used in this work. The ARD
formulation facilitates learning a length scale for each input dimension
to deal with directional anisotropies in the dataset, and it has a shape
parameter that can be tuned in order to control the smoothness of the
correlation function in the input space. A shape parameter of 5/2 has
been used, which leads to the mathematical form

k(x,x';0) = 0]20(1 + V5 + gi’z) exp(—+/5r)

where

The hyperparameters in the kemel are @ = [07, (5,,)},], where D
is the dimensionality of the data set; and o, and o, are the scaling
coefficient and the characteristic length-scales, respectively.

Bayesian optimization is a surrogate modeling-based approach
in which the black-box objective function is queried sequentially
via active learning, and the posterior prediction of the GPs are
updated with every new observation. Acquisition functions identify
the new candidate points by striking a balance between exploration
and exploitation. A high exploitation value suggests potentially high
objective function values (for a maximization problem), whereas
high exploration potential is exhibited by unexplored regions with
high uncertainty. Expected improvement (EI) has been used to evalu-
ate acquisition function values.

According to the formulation of Mockus [29] and Jones et al. [30],
the EI acquisition function can be written as

El(x) = (u(x) — f(x+) = O)p(2) + 0(x)D(2),
if o(x) >0 and EI(x)=0, if6=0 (11)
where
Z = ((ux) = f(x*) =) /o(x).
if o(x)>0and Z=0if 6 =0 (12)
where
x" = argmax, e, f(x;)
is the input corresponding to the maximum functional value sampled
until iteration 7. Also, { > 0 controls the tradeoff between global
search and local optimization. Note that (x) and o(x) are the mean

and variance, respectively, predicted by the GP for the input point x.
Also, ¢ and ® are the probability density function and cumulative
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distribution function of the standard normal distribution, respec-
tively. A demonstration of this process has been provided in Fig. 3,
where the following equation has been fitted by the GP:

y(x) = xsin(7zx) (13)

The blue line is the original function, and the red line is the
posterior predictive mean of the GP. At each step, the optimization
algorithm samples a new point based on the peak of the EI until
convergence is reached in 15 steps (position of the optimum is shown
with a red cross in Fig. 3). Confidence intervals are depicted by
the yellow regions. It is noted that the uncertainty is lowest where a
sample point exists. The confidence intervals become tighter as more
points are sampled in the sequence (Fig. 3). The new point is sampled
where the acquisition function hits a peak at

x" = argmax, e, f(x;)

C. Application of Bayesian Optimization Framework

Taking the square-shaped pin fin as the baseline (Fig. 1), each
shape parameter (a, b, and c) was varied from 3.2 to 6 mm from the
center of the square. A Python script was used to automate the
workflow using ANSYS workbench (Fig. 4). For each design point,
parametric changes in the design would translate to changes in the
geometry, and subsequently the mesh. This would be followed by
simulation in Fluent and return of the Nusselt number and friction
factors for calculating the array efficiency.

An initial design of experiments (DOE) is selected using Latin
hypercube sampling (LHS). A Reynolds-averaged Navier—Stokes
(RANS) simulation is carried out for each of those design points.
The surrogate model is initially trained with respect to this initial
population. New design points are selected according to the acquis-
ition function output after this initial training. Objective function
values at these points are evaluated by performing a RANS simulation
and a new surrogate model is obtained, which is improved by the
Bayesian update. Three-row and four-row models of the pin-fin array
were studied in the current problem, as rows 3—4 comprise the devel-
oping region of pin-fin arrays; and the highest heat transfer coefficients

Iteration 1

b)

0.10 i
L
Bl 0.05 §
1
0.00 H )
1 0 1. e
a) X
Iteration 11
f(x)
E[(X) 0.001
0.000 1
-1 0 1
c) X

are observed in row 3 [4]. Since the optimization is carried out with a
baseline case consisting of square-cross-section pin fins, the thermal
performance efficiency is normalized with respect to (Nu;/f i/ 3),
where Nu; and f; are the Nusselt number and friction factor values
of the square ribbed geometries. The normalized objective function is
henceforth represented as ':

n' = (Nu/Nu)/(f[f)'? (14)

III. Results and Discussions

Figure 5 displays the input for the design of experiment points,
which are used to train the GP surrogate model (blue dots) along with
the optimal selection in the Bayesian optimization (BO) routine (red
dots). A search space of 6000 points in three dimensions has been
employed. Fifty-four initial points and five optimization points have
been chosen in the routine according to a predefined budget. For the
three-row model, 108 h of computation time was allotted to the initial
DOE of 54 points. Each data point approximately consumed 2 h of wall
time. Additionally, 10 h were assigned for the optimization routine. For
the more computationally expensive four-row model, a cumulative
311 h of computation time was spent on the initial DOE of 64 points
and 25 Bayesian optimization updates. The simulations were run on a
computer with a six-core Intel core i-7 processor and 8 GB of RAM.

The initial points are selected by the LHS method based on an
initially defined random seed, which ensures a decent spread in the
search space for the initial DOE. The optimal points are sampled using
the El acquisition function at each stage of BO. The efficiency of each
point is obtained from CFD simulations and passed into the GP model
for training. Once the initial learning phase is over, the optimization
iterations begin. Based on the predictions of the model in the global
search space, the acquisition function selects the next point to sample
based on a tradeoff between exploitation and exploration. Once an
optimal point is selected, its efficiency is calculated using CFD and
returned to the surrogate GP for retraining of parameters. Thus, the
sequential process continues until a budget of five optimization steps
isreached. As we can see from Fig. 5, the BO routine almost instantly
picks up high-efficiency design points from the first optimization
stage itself. A design point with the highest efficiency index of 1.472

Iteration 2

0.10

Ell) 0,05

0.00

0.00

-1 0 1
X

d)
Fig. 3 Example of an iterative active learning problem: a) iteration 1, b) iteration 2, c) iteration 11, and d) iteration 15.
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Select initial DOE
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using LHS
L 2

Output parameters
obtained for initial
model training

!

Train surrogate

A 4

v

*

Call acquisition
function and search for
optimum point in
global design space

RANS CFD simulation
in ANSYS Fluent

F 3

Y

Obtain new design
point

Yes

!}

Obtain output
parameter

Budget
remainng?

Stop

Fig. 4 Architecture of the proposed two-tier decision and control system.

that has (a, b, ¢) = (5.983 mm, 5.902 mm, 3.382 mm) is picked
up in the third optimization stage using this framework. A study
was further performed to understand the effect of mesh size and the
number of rows on the optimization results. Figure 6 lists the dimen-
sions of the optimum pin fin, which were obtained with variations in
the number of rows and mesh size in the baseline CFD model. Figure 5
shows the optimization results from the three-row model (case 2 from
the table in Fig. 6). Similar types of shapes were obtained in all three
cases with different base sizes and numbers of rows.

1.5 1
..... Best from initial DOE ______  e%s .
1.4
L ] [ ]
[ ]
131 , .
[ ] L] -
1.21 .
[ ] ) L]
11| e ¢ o ¢
= . * o . °
* o * o
1.0 . L -
* ° e o°
0.9  ®
= [ ] N - L ]
0.8 e o . .
0 10 20 30 40 50 60

Sample number

Fig. 5 Initial DOE points (blue dots), followed by the ones selected by
Bayesian optimization (red dots). Dashed line shows baseline efficiency
(maximum obtained from the initial DOE).

A. Comparison of Bayesian Optimization to Genetic-Algorithm-Based
Optimization

The performance of the Bayesian optimization in finding optimal
geometries has been compared with a multiobjective genetic algo-
rithm (MOGA) optimizer inbuilt in ANSYS Workbench. The MOGA
[31]is based on the nondominated sorted genetic algorithm—II (known
as NSGA-II). Forty initial samples were generated, and the CFD
solutions were calculated. Based on results of the objective function,
10 new samples were created in each iteration based on the fitness of
each offspring. Five iterations were required to get a converged result.
New offspring/populations are created by selection, crossover, or
mutation. Each sample has a genetic representation, which is called
achromosome. This representation is usually an array of binary digits.
The fitness function score is usually the objective function values
possessed by each sample. Selection enables passing the current
generation of samples to the next by selecting those with high fitness
function values. Crossover combines two sets of parent chromosomes

Case  Base !\lo_ of rows Optimum Optimum
element in model parameters, mm
. shape
size, mm
1 12 3 a=5.89,b=598,c:323 (P
2 0.9 3 a=5.89, b=5.90, c=3.38 .
3 0.2 4 a=5.89, b=5.15, c=3.54 .

Fig.6 Variation of optimum shapes with change in mesh size/number of
rows in array.
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Fig.7 Flowchart explaining schematics of MOGA.
1.45
1.40
1.35
=
1.30
1.25
1.20 b

0 10 20 30 40
Optimization number

Fig. 8 Optimization cycle of MOGA: 50 sample points consist of five
iterations with 10 samples in each iteration.

to produce a new offspring based on a user defined crossover prob-
ability, whereas mutation alters one or more gene values in a parent
chromosome set, depending on the mutation probability. A crossover
probability of 0.98 and a mutation probability of 0.01 were used.
A high probability of crossover creates superior offspring but takes
more time to converge. High mutation probabilities, on the other hand,
create random populations. Figure 7 shows a flowchart explaining the
operational principal of the MOGA.

Figure 5 shows the effectiveness of Bayesian optimization in find-
ing optimal design locations with limited computational expense.
It can be observed that within five iterations, it is possible to obtain
a design corresponding to an efficiency of 1.472, whereas, it takes
30 iterations to reach a similar value (within 1.2%) of efficiency for
the genetic-algorithm-based optimizer (Fig. 8). This showcases the
computational advantage of the proposed optimization scheme under

a)

budget limitations, whereby optimal search locations can be possible
to sample very early in the optimization stage. The MOGA optimi-
zation took 90 iterations (40 initial +50 optimization steps) to con-
verge, whereas the Bayesian optimization took only 59 iterations to
find an optimal design with efficiency 1.2% higher than that found by
the MOGA. The surrogate model-based BO thereby saves computa-
tion time by 52%.

B. CFD Model and Mesh

The model of a four-row pin-fin array has been shown in Fig. 9.
Sidewalls and the center planes have symmetry boundary conditions,
whereas the endwall and pin surfaces have a constant-temperature
no-slip condition. The CFD model used symmetry planes on two
sidewalls as well as the middle plane of the geometry (Table 1).
Symmetry planes help reduce the computational budget by reducing
the domain size of the current problem. In the present scenario, it
attempts to emulate an array that consists of multiple pin fins extend-
ing laterally to the sides. The symmetry boundary condition in the
midplane further cuts down the wall-to-wall pin-fin domain into half.
A velocity inlet was used with a fixed velocity of 12 m/s along with
a zero-pressure outlet. A k — » shear-stress transport turbulence
model was employed to predict this highly turbulent flow, dominated
by vortex structures from trailing-edge separation. Wall y+ values
were less than three (Fig. 10). The CFD results were validated against
experimental data from Chyu et al. [6] for the fully developed Nusselt
number in the fourth row of the pin-fin array. The simulation under-
predicted experimental data by 30%. This discrepancy can be attrib-
uted to both turbulence modeling errors and different downstream
conditions for the experimental conditions as compared to the four-row
CFD model. Ames and Dvorak [9] observed a RANS underprediction
of the average Nusselt number by about 37% for the cylindrical pin-fin
case at a similar Reynolds number when compared to the experimental
case (which had an experimental uncertainty of 8%).

C. Comparison of CFD Results Between Optimal and Baseline Cases

Flow in pin-fin arrays is heavily dominated by vortex structures
and local flow accelerations due to high amounts of blockage. A row
averaged Nusselt number plot (Fig. 11) shows higher magnitudes in
every location for the baseline case when compared to the optimum
shape with higher-performance efficiency. The higher row-wise pres-
sure-drop values (Fig. 12) of the baseline case can directly be attrib-
uted to the more aerodynamic shape of the optimum pin as compared
to the bluff square baseline with its sharp edges. Since the efficiency
parameter is a ratio between the Nusselt number and friction factor,
the optimum case has a higher efficiency due to significant penalty of
a higher-pressure drop in the baseline case.

Isometric Nusselt number contours are plotted to understand the
local variations in heat transfer for the baseline and optimum shapes
(Fig. 13). Isometric pressure contours of both the pin geometries show
pressure peaks created at the stagnation points in the upstream sides of
the pin fins due to impinging cooling air (Fig. 14). The same stagna-
tion point can also be seen in the symmetry plane velocity contours
(Fig. 15) and pressure contours (Fig. 16) along with low-pressure
zones on the sidewalls of the pins. Midplane velocity contours

Outlet %

Top Symmetry Plane

Sidewalls

Inlet

b)
Fig. 9 Representations of a) zoomed-in view of mesh at pin with inflation layers and b) CFD domain with boundary conditions.
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Table 1 CFD model details

Name of quantity/boundary Description/number
Number of cells 1.1 million
Number of inflation layers 12

Base cell size 0.2 mm

Inlet condition Constant velocity with 12 m/s;

temperature = 300 K

Bottom wall No-slip conditions; temperature = 350 K
Pins No-slip conditions; temperature = 350 K
Side and top walls Symmetry
Wall y+
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- .
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Fig. 10 Wall y+ values of baseline case.
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Fig. 11 Row-wise plot of Nusselt number for baseline and optimum
cases.

(Fig. 15) show a separation zone forming at the same location as this
pressure drop, which is represented in a deep-blue-colored low-veloc-
ity bubble. It should be noted that a larger separation bubble is visible
in the baseline case due to flow detachment from the sharp corners of
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Fig. 12 Row-wise plot of pressure for baseline and optimum cases.
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Fig. 13 Isometric plot of Nusselt number for a) optimized case and
b) baseline case.
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Fig. 14 Isometric plot of pressure for a) optimized case and b) baseline
case.

Velocity magnitude (m/s)
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Fig.15 Contour plot of a) midplane velocity optimized case and b) base-
line case.

the square pins. Local acceleration is caused due to these flow
separations, and they act as quasi blockages in addition to the flow
obstacles created by the solid pin fins. Due to bigger separation zones
in the baseline case, higher peaks of velocity can be seen compared to
the optimum case (Fig. 15). Impingement of this locally accelerated
flow in the downstream staggered pins is partially responsible for the
higher heat transfer for the square baseline as seen in the isometric
Nusselt number plots (Fig. 13).

To better understand the various flow phenomena behind heat
transfer, row-wise heat transfer from pins and bottom walls were
plotted separately for the two cases (Fig. 17). The change in pin-fin
cross-section shapes was reflected more in the endwall heat transfer as
compared to the heat loss from pins. In both cases, the endwall had a
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Fig. 16 Midplane pressure profile for baseline case of a) optimized case
and b) baseline case.
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Fig. 17 Row-wise plot of heat transfer from pins and endwall.

higher heat transfer compared to the pin fins. Endwall Nusselt number
plots (Fig. 18) showed peaks in the stagnation regions in the leading
portions of the pins and in the regions with high blockage near the pin
sidewalls, which coincides with the high-velocity flow regions
(Fig. 19). Lower values are noticed beneath the separation bubble
regions. However, the highest magnitude of the heat flux (Fig. 20) and
Nusselt number is seen in the stagnation zones in horseshoe-like
shapes. A near-wall plane of Q-criterion contours (Fig. 21) depicts
the formation of coherent vortices for both the geometries. Jeong
and Hussain [32] identified the Q criterion and Lambda-2 as the two
most effective ways to identify coherent structures in turbulent flows.
The vorticity magnitude is inadequate when it comes to identifying
vortex cores, which contribute to the heat transfer augmentation in
vortex-dominated turbulent flows. A threshold of the Q criterion and
Lambda-2 criterion of the highest magnitude coherent structures were
plotted to visually understand the horseshoe-type vortices at the
leading edges. These vortices can be seen to extend beyond the pins,
interact with the staggered pin downstream, and coincide with high
heat transfer regions in Fig. 20 and high turbulent kinetic energy

Nusselt number
0 56 110 165 220 275

Velocity Magnitude (m/s)
0 9.4 18.9 28.4 37.8 47.3

Fig.19 Near-wall velocity magnitude for a) optimized case and b) base-
line case.

Boundary heat flux (W/m?)
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h_/° —

4 A/

Fig. 20 Endwall heat flux: a) optimized case and b) baseline case.

Q Criterion (1/s?)
10’ 12x107 2.4x107 3.64x107

Fig. 21 Near-wall two-dimensional Q-criterion contours showing
coherent vortex structures of a) optimized case and b) baseline case
shown by isosurfaces of Lambda-2 criterion.

regions in Fig. 22. The threshold magnitudes were chosen to isolate
the strong coherent structures from the other three-dimensional phe-
nomena in this flow. Both the strength and size of these structures are
greater in the square baseline case.

Turbulent Kinetic Energy (J/kg)
0 7.5 15 22.5 30 37.5

Fig.18 Contour plot of endwall Nusselt numbers: a) optimized case and
b) baseline case.

Fig. 22 Near-wall turbulent kinetic energy: a) optimized case and
b) baseline case.
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a) b)

Fig. 23 Large vortical structures of a) optimized case and b) baseline
case shown by isosurfaces of Lambda-2 criterion.

The Q criterion can be expressed as
Q= 1/2(1Q - ISP (15)

where Q is the vorticity tensor, and S is the rate of strain tensor. Three-
dimensional isosurfaces of the Lambda-2 criterion have also been
used to obtain a global picture of coherent vortices as seen in Fig. 23.
The Lambda-2 criterion is the second eigenvalue of the matrix
comprising the sum of squares of the vorticity tensor and strain
tensor; Q2 + S2. The higher presence of vortices results in higher
turbulent mixing, as seen in the near-wall turbulent kinetic energy
plots (Fig. 20) in the case of the square baseline pins. Hence, along
with local flow accelerations due to blockages, such structures are
also responsible for a higher loss of pressure in addition to increased
heat transfer.

Most objective functions in real-world design problems have
ablack-box-type nature where a multidimensional design space needs
to be explored in order to find a global optimum with a set of
constraints. The current problem has a similar nature, except the
constraint and the main objective variable have been lumped into
one parameter based on existing literature [3]. The active learning
approach that balances exploration vs exploitation to look for global
optima can thus be a promising alternative to apply to practical
optimization problems instead of existing gradient-based and gradient
free optimization techniques. Besides predicting the optimum, BO
can also create a surrogate model based on existing CFD results. Such
a model has the potential to predict outputs at previously unknown
design points with low computational time. This is another feature

Rz score = 0.996
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Predicted Value of Efficiency
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a) for the Queried points

lacked by existing methods like the MOGA and is discussed further in
the next section.

D. Training and Testing Performance of the Surrogate Model

A parity plot has been drawn to evaluate the accuracy of the
surrogate model formed from the initial LHS and the Bayesian
updates. It compares the value of the real simulation outputs with
the predicted outputs. The four-row pin-fin array was used for train-
ing the surrogate model. Sixty-five initial points obtained from LHS
were used to train the surrogate model initially, followed by 24
Bayesian updates. A high training R-squared score of 0.996 (Fig. 24a)
suggests that the surrogate model has been properly trained, whereas
a test R-squared score of 0.944 (Fig. 24b) shows that the model does
not overfit and is capable of producing quite accurate predictions of
the objective function. Overfitting occurs when the surrogate model
is incapable of predicting data points outside of the training set, which
results in a low test R-squared score. In the present study, R-squared
scores of the training phase and the testing phase are within 5% of
each other.

To further examine the effectiveness of the surrogate model, it
was trained on the initial LHS space and an additional five Bayesian
updates. The remaining 20 design points, which were the last 20
Bayesian updates in the optimization process, were used as input to
this trained surrogate to examine the accuracy of prediction. The
second parity plot shows the predicted vs actual values of the objec-
tive function for the last 20 Bayesian updates. A high R-squared score
of 0.944 (Fig. 24b) suggests that the attempt to replace the CFD model
with a surrogate trained from initial LHS and Bayesian optimization
is promising. The surrogate model only takes a small fraction of the
time compared to that of an actual CFD simulation. This has the
potential to facilitate a method of efficient and time-saving prediction.

The novel surrogate model-based active learning approach dem-
onstrated in the current work can be further improved by introducing
a multifidelity approach that combines the results of high- and low-
fidelity CFD models. Figure 25 shows the pressure drop vs Nusselt
number plot for all the Bayesian update points. This plot demon-
strates that a higher Nusselt number results in a higher-pressure drop
too, and hence a constraint problem exists. A new approach modeling
the pressure drop and Nusselt number using two different surrogate
models will add more flexibility to the approach compared to the
lumped approach in the current study. Another area of future work can
be the inclusion of perforations in the pin fins. Maji et al. [33]
concluded that porous pins of different shapes and pore shapes have
a better heat transfer rate and a lower-pressure drop as compared to
solid pins of similar shapes. The variation of pore shapes along with
pin-fin shapes can lead to a more efficient pin-fin shape compared to
the one obtained in this paper.

IV. Conclusions

A shape optimization has been carried out in the current study
using surrogate modeling-based Bayesian optimization to improve

R2 score = 0.944
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Fig. 24 Parity plots for the four-row CFD model: a) testing and b) training datasets.
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Fig.25 Pressure drop vs Nusselt number (based on hydraulic diameter
of channel) for the Bayesian updates.

thermal performance of a pin-fin array. A square-pin-fin rib geometry
was considered as a baseline case to model the developing region of
such an array. A three-dimensional design space has been explored by
varying geometric parameters of each pin cross section. After training
a Gaussian-process-based regression on the initial samples generated
from Latin hypercube sampling, an exploration vs exploitation
approach has been considered to reach an optimum. The results were
then compared to the multiobjective genetic algorithm in ANSYS
Workbench. The optimum objective function from Bayesian optimi-
zation was found to be 1.2% higher with 52% cheaper computational
time, thereby indicating the efficacy of surrogate-based optimization
in finding optimal design locations under budget limitations. The
optimum pin-fin shape was found to have a smaller separation region
size, ensuring uniform heat transfer and lower-pressure loss. The flow
phenomenon governing the heat transfer was investigated by study-
ing vortex structures using isosurfaces of Lambda-2 criterion. The
more aerodynamic optimum shape attains a favorable compromise
between pressure loss and heat transfer, thereby resulting in a higher
value of the lumped efficiency parameter, which is effectively a ratio
between heat transfer and pressure loss.
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