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Early Detection of Fatigue Crack
Damage in Ductile Materials: A
Projection-Based Probabilistic
Finite State Automata Approach
Fatigue failure occurs ubiquitously in mechanical structures when they are subjected to
cyclic loading well below the material’s yield stress. The tell-tale sign of a fatigue failure
is the emergence of cracks at the internal or surface defects. In general, a machinery com-
ponent has a finite fatigue life based on the number of cycles, it can sustain before a fracture
occurs. However, the estimated life is generally conservative and often a large factor of
safety is applied to make the component fail-safe. From the perspective of better utilization
of a machinery component, it is, however, desirable to have maximum usage of the compo-
nent without a catastrophic failure. It is, therefore, conducive to have a measure that can
capture precursors to failure to facilitate active diagnosis of the machinery health. In
this study, a precursor detection method is developed upon modifications of probabilistic
finite state automata (PFSA). The efficacy of the proposed method is demonstrated on
cold-rolled AL7075-T6 notched specimens in a computer-instrumented and computer-con-
trolled fatigue testing apparatus. The results show that the proposed method is capable of
detecting the emergence of cracks (at ∼95% accuracy) and also can capture precursors
with good fidelity. [DOI: 10.1115/1.4050183]

Keywords: polycrystalline aluminum alloy, fatigue damage, early detection, probabilistic
finite state automata (PFSA)

1 Introduction
Prediction of structural damage and estimation of remaining

useful life (RUL) are both critical for safe, reliable, and cost-
effective operation of mechanical systems that typically experience
fatigue damage during both nominal and off-nominal operations
[1]. Early detection of fatigue damage not only averts catastrophic
failures but also facilitates predictive maintenance strategies with
a significant reduction of the life cycle cost. In the current
state-of-the-art, while direct measurement of fatigue damage at an
early stage (e.g., crack initiation) is possible using sophisticated
custom-designed fatigue stages inside computed tomography
equipment, such measurement techniques may not be readily
deployed on operating machinery. An alternative is to use advanced
computational modeling; however, prediction of fatigue damage
evolution is often intractable through the sole usage of computa-
tional models, because such models grossly approximate the mech-
anisms of surface deformation, surface energy, stacking fault
energy, and anti-phase boundary energy. These approximations
result in a non-robust estimation of cyclic strain accumulation,
crack initiation, and small crack propagation. Furthermore, since
the operating environment may change continuously, it is very dif-
ficult to accurately predict the fatigue life of machinery a-priori.
One of the logical alternatives, therefore, is to employ an online

anomaly detection framework that will continuously monitor the
machinery health and alert the user of an impending failure. To
handle the challenge of online monitoring using field-deployable
sensors, low-cost sensing methods (e.g., ultrasonic, acoustic emis-
sion, and eddy current) have been reported in the literature [2,3].
Among all these techniques, ultrasonic transducers (UTs) are
widely used in industry, because they are responsive to small micro-
structural changes in early stages of fatigue damage [4]. Tools of
statistical pattern recognition, time-series analysis, and wavelet-

based feature detection, thereafter, can be applied on UT data for
online health monitoring in critical components [4,5].
The current paper reports major modifications of the standard

probabilistic finite state automata (PFSA) [4,6] method, where the
objective is to detect the emergence of an imminent fatigue crack
by using the ultrasonic data as described earlier. This is done by
computing a scalar-valued function that denotes the structural
health (i.e., fatigue crack damage) of the specimen and the discrimi-
nation is accomplished using a thresholded approach.
Contributions: Major contributions of the work reported in this

study are as follows:

(1) Modifications of the standard PFSA formulation [4,6]: These
modifications alleviate some of the inherent drawbacks in the
original formulation [4]. An example is orthogonal projec-
tion of the probability state vector, constructed from a test
time series, onto feature spaces corresponding to different
regimes. Another example is related to data normalization
prior to partitioning, which allows the signal texture to be
retained, but not necessarily the signal values.

(2) Validation of the proposed crack detection method: The effi-
cacy of the detection method is demonstrated on an experi-
mental apparatus to perform classification of uncracked and
cracked specimens under cyclic load as well as to capture
precursors for early detection of imminent crack appearance.

Organization: The study is organized in six sections including
the present one. Section 2 introduces the mathematical background
for the reported work. Section 3 develops the proposed method of
PFSA-based projection for classification. Section 4 describes the
experimental apparatus and develops the fatigue crack detection
algorithm. Section 5 presents and discusses the results of experi-
mental validation of the fatigue crack detection method. Section 6
summarizes and concludes the reported work along with a few
recommendations for future research.
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2 Mathematical Background
While the details are available in current literature (e.g., Refs. [6–9]),

this section presents a very brief background for the work reported
in this study.

2.1 Introduction to Probabilistic Finite State Automata.
Probabilistic finite state automata (PFSA) are constructed by first
symbolizing (quantizing) time-series data with the usage of a parti-
tioning scheme [8]. This procedure converts a continuous-valued
time series into a discretized string of symbols from an alphabet,
where the cardinality of the alphabet is equal to the number of
cells used for quantization.
DEFINITION 1. A finite state automaton (FSA) G, having a deter-

ministic algebraic structure, is a triple A, Q, δ( ) where
• A is a (nonempty) finite alphabet, i.e., its cardinality |A| is a

positive integer.
• Q is a (nonempty) finite set of states, i.e., its cardinality |Q| is a

positive integer.
• δ:Q ×A → Q is a (deterministic) state transition map.

DEFINITION 2. A probabilistic finite state automaton (PFSA), J, is
a pair J= (G, π), where

• The deterministic FSA, G, is called the underlying FSA of the
PFSA, J.

• The probability map, π:Q ×A → [0, 1], is called the morph
function (also known as symbol generation probability func-
tion) that satisfies the condition:

∑
s∈A π(q, s) = 1 for each

q ∈Q. The map, π, can be represented by a |Q| × |A| stochas-
tic matrix, Π, (i.e., each element of Π is non-negative and each
row sum of Π is unity). In that case, the PFSA is a quadruple,
i.e., J = A, Q, δ, Π( ).

• The state transition probability mass function, τ : Q ×Q→ [0,
1], is constructed by combining δ and Π, which can be struc-
tured as a |Q| × |Q| state transition probability matrix, T. In
that case, the PFSA can also be described as a triple, i.e.,
J = A, Q, T( ).

Remark 1. Prior to partitioning, the time series is normalized to be
either zero-mean and unit-variance, or to unit-range. The rationale
for normalization is to mitigate the effects of bias and spurious
noise in the time series and to ensure that a fixed set of partition
boundaries can be used across the full range of data. The fixed par-
titioning allows comparison of different PFSAs as they evolve and
also eliminates the need to recompute the partitioning during
testing. Details are given in Sec. 3.2.

2.2 D-Markov Machines. The PFSA structure of a D-
Markov machine generates symbol strings {s1s2, . . . , sℓ:sj ∈
A and ℓ is a positive integer} on the underlying Markov process.
In the construction of a D-Markov machine, it is assumed that the
generation of the next symbol has a dependence only on a finite
history of the last D or less consecutive symbols, i.e., the (most
recent) symbol block of length not exceeding D. A D-Markov
machine [6] is defined as follows.
DEFINITION 3. A D-Markov machine [7] is a PFSA in the sense of

Definition 2 and it generates symbols that solely depend on the (most
recent) history of at most D consecutive symbols, where the positive
integer D is called the depth of the machine. Equivalently, a
D-Markov machine is a statistically stationary stochastic process
S=…s−1 s0 s1…, where the probability of occurrence of a new
symbol depends only on the last consecutive (at most) D symbols, i.e.,

P[sn ∣ . . . sn−D . . . sn−1] = P[sn ∣ sn−D . . . sn−1]

Remark 2. If the depth of the D-Markov machine is unity (i.e., D=
1), then the state set, Q, and symbol alphabet, A, become

equivalent, i.e., the morph matrix, Π and the state transition proba-
bility matrix, T are identical if D= 1.
The maximum possible number of states is fixed to |A|D once the

alphabet size, |A|, and depth, D, are set. To generate the morph
matrix, Π, from a (finite-length) symbol string, S, the occurrence
of each state is sequentially counted. Let Nij denote the number of
times the symbol Aj ∈ A is emitted from the state qi∈Q. Thus,

Πij = π(qi, sj) ≜
1 + Nij

|A| +∑
ℓ Niℓ

(1)

Initializing the count of each element to 1 ensures that, if no event is
generated at a state q∈Q, there should be no preference to any par-
ticular symbol, making it logical to have π(q, s) = 1/|A| ∀s ∈ A,
i.e., the uniform distribution of event generation at the state, q.
This procedure guarantees that the PFSA, constructed from a (finite-
length) symbol string, must have an (element-wise) strictly positive
morph map, Π. This also ensures ergodicity and stochasticity of the
morph matrix, Π, by construction.
Remark 3. The mathematical logic used to generate the morph
matrix, Π, and state transition probability matrix, T, guarantees
that these matrices are both stochastic (i.e., each matrix element is
non-negative and each row sum is unity [10]) and ergodic (i.e.,
every state of the PFSA can be reached in a finite number of itera-
tions irrespective of the starting state [5,10]). These matrix proper-
ties of stochasticity and ergodicity are necessary for the
development of the mathematical theory of the modified method
of PFSA-based classification, presented in this study.

3 PFSA-Based Projection for Classification
This section develops the proposed method of PFSA-based pro-

jection, hereafter called p-PFSA. The state probability vector of the
PFSA is projected onto the feature hyperplanes corresponding to
different operating regimes of the dynamical system. The theme
of constructing the proposed p-PFSA is presented below.
Let T ∈ Rn×n, where n is a positive integer, be an ergodic sto-

chastic matrix [10]. Ergodicity of the stochastic matrix, T, implies
the existence of exactly one eigenvalue, λ0= 1, and the remain-
ing m≤ (n− 1) distinct eigenvalues are located on or inside the
unit circle (with center at 0) in the complex plane, i.e., |λi|≤ 1 for
i= 1, 2, …, m. If some of the eigenvalues are repeated, it is possi-
ble that there will be only m linearly independent left eigenvectors,
v′1,…, v′m and m linearly independent right eigenvectors, u1,…, um,
where 1≤m≤ (n− 1). Each of these eigenvectors could be normal-
ized and ordered for convenience as follows.

1 ≥ |λ1| ≥ · · · ≥ |λm| ≥ 0

It is noted that these eigenvalues are either real or pairs of complex
conjugates and their respective left eigenvectors, {v′i}, and right
eigenvectors, {ui}, are also either real or pairs of complex conju-
gates as seen follows:

v′iT = λiv
′
i ⇒ �v′iT = �λi�v

′
i and Tui = λiui ⇒ T�ui = �λi�ui

where �vi, �ui, and �λi are complex conjugates of vi, ui, and λi, respec-
tively. Let v′0 and u0 be, respectively, the (normalized) left and right
eigenvectors of T with respect to the unique eigenvalue, λ0= 1. The
remaining left and right eigenvectors are v′i and ui, respectively, cor-
responding to distinct eigenvalues, λi.
Claim: For distinct eigenvalues λi≠ λj, (i≠ j), i, j∈ {0, 1,…, m},

the inner product <vi, uj>= 0, i.e., vi⊥ uj.
Justification of Claim: Since λi≠ λj, at least one of them is

non-zero. Without loss of generality, one may set λi≠ 0. Then,

〈vi, uj〉 = v′iuj =
1
λi
v′iTuj =

λj
λi
v′iuj =

λj
λi
〈vi, uj〉

⇒ 1 −
λj
λi

( )
〈vi, uj〉 = 0

Since λi≠ λj, it follows that
(
1 − λj

λi

)
≠ 0 ⇒ 〈vi, uj〉 = 0.
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End of Justification: From the above claim, it is concluded that
v0⊥uj corresponding to the eigenvalues,λj, j∈ {1, 2,…,m}.Therefore,
in the training phase, v0 and uj ∀j ∈ {1, . . . , m} are identified. In the
testing phase; it is necessary to identify only vtst0 (corresponding to
an observed test time series belonging to an unknown class) for detec-
tion and classification of anomalous events, if any. If there is no
anomaly, the vector, vtst0 should be nearly coincident with v0 and,
thus, nearly orthogonal to the m-dimensional subspace spanned by
uj, j∈ {1, 2,…, m}, which has already been identified in the training
phase. However, in the presence of an anomaly, vtst0 should very
likely deviate from v0 that corresponds to the nominal phase.
The key idea behind the development of p-PFSA is to quantify

the anomaly as a deviation of vtst0 from v0 by using the projection
of vtst0 onto the space spanned by uj ∀j = 1, . . . , m. From the per-
spectives of energy distribution, the absolute values, |λi|, of the
eigenvalues signify the energy associated with the (normalized)
eigenvector ui; therefore, each ui, i= 1, …, m is weighted as����|λi|
√

ui. The normalized version of
����|λi|

√
ui is ui, because the

ui’s were originally generated as normalized vectors.
For a general ergodic stochastic matrix T, the right eigenvectors

may not be orthogonal to each other. Therefore, the (linearly inde-
pendent) vectors

����|λi|
√

ui, i = 1, . . . , m, are further transformed by
Gram–Schmidt orthogonalization as a set of mutually orthogonal
vectors ũi, i = 1, . . . , m, i.e., 〈ũi, ũj〉 = 0 ∀i ≠ j. Having identified
the m mutually orthogonal n-dimensional vectors ũi, the
n-dimensional weighted error vector, E, is obtained by projection
of the vector vtst0 onto the m-dimensional subspace, spanned by
ũi, i = 1, . . . , m, where 1≤m≤ (n− 1), as

E ≜
∑m
i=1

〈vtst0 , ũi〉ui with ‖E‖ =

����������������∑m
i=1

|〈vtst0 , ũi〉|2
√

(2)

3.1 The PFSA-Based Projection Algorithm: p-PFSA. This
section addresses a classification problem with a total number of
C classes (i.e., regimes). In the training phase, a PFSA is generated
for each class as described in Sec. 2.1. The state transition probabil-
ity matrix, Tc of each class, c ∈ {1, 2, . . . , C} is treated as the
feature for the respective class (i.e., regime). In this study, Tc is
equivalent to Πc because the PFSA is constructed with D= 1 (see
Remark 2), and each Tc is ergodic and stochastic (see Remark 3);
therefore, for each Tc, there exists a set of orthogonalized right
eigenvectors, {ũci }, where for each class c, i= 1, …, mc, and 1≤
mc≤ (n− 1) is the number of linearly independent eigenvectors
for class c. Each set of orthogonalized right eigenvectors, {ũci }, gen-
erates a hyperplane of dimension, mc, respectively. It is expected
that, for different classes representing distinct operational
regimes, the hyperplanes will be distinct. That is, a hyperplane
belonging to class, c, will have its distinct normal direction, vc0.
Classes that are close to each other will have directions close to
each other, but they are still expected to be distinct.
In the testing (i.e., classification) phase, a time series is observed,

which belongs to an unknown class. The (stochastic and ergodic)
state transition probability matrix, Ttst, is generated for this time
series, and the left eigenvector (vtst0 )′ of the Ttst-matrix is obtained
corresponding to the unique eigenvalue λtst0 = 1. Then, vtst0 is pro-
jected onto each of the C hyperplanes that are generated in the train-
ing phase, and the norm of the error vector in each hyperplane is
computed as ‖Ec‖, where c = 1, . . . , C. The class corresponding
to the lowest error magnitude is identified to be the class to which
the testing time series belongs, i.e.,

Selected Class = argmin
c∈{1,2,...,C}

‖Ec‖ (3)

3.2 Modification of Time Series Normalization. As
described in Remark 1, prior to partitioning and symbolization,
the numerical (i.e., real-valued) time-series is typically normalized,
which also allows a fixed set of global finitely many partitioning
boundaries to be applicable across all data in the classification

problem, where each of the data set might have different
maximum and minimum values. A common way of data normaliza-
tion is to have zero mean and unit variance of the data, which unfor-
tunately removes the information of the signal magnitude while
retaining only the information about the signal texture (i.e., wave-
form), as seen in Fig. 1. The three plates in the top row of Fig. 1
display three sinusoidal signals having identical frequencies but dif-
ferent means and amplitudes, and the three plates in the bottom row
show the equivalent normalized signals that are identical and hence
indistinguishable. This implies that the PFSAs constructed from
these normalized signals will also be (almost) identical. Therefore,
it would be impossible for the standard PFSA approach to distin-
guish between these three signals although the original signals
could be significantly different, as seen in the top row of Fig. 1.
In this study, the authors propose a modification to solve the

above problem by retaining the numerical values of the signal mag-
nitudes to a large extent. This is accomplished by storing the mean
and standard deviation of the raw signal (i.e., original time series)
for each of the C classes, namely μc and σc for c = 1, . . . , C, along
with the (PFSA) features. Subsequently, during testing, the mean
and standard deviation of the observed data are also computed
(μtst and σtst). Thus, Eq. (3) is modified as:

Class = argmin
c∈{1,2,...,C}

∣∣∣∣∣∣(Etst,c, μtst , σtst) − (0, μc, σc)
∣∣∣∣∣∣ (4)

where each PFSA observation is now augmented to a triplet that
includes the entries of the mean (μ) and standard deviation (σ) of the
signal both during training and testing. It is noted that Etst,c denotes
the error for projecting the left eigenvector of the observed data on
the hyperplane of class, c. The corresponding left hand entry in the
second term of Eq. (4) is 0, because the projection of an eigenvector
on the hyperplane of the same class is 0, as described in Sec. 3.1.

4 Experimental Procedure and Algorithm
Development
This section describes the experimental procedure and develops

the fatigue crack detection algorithm. Experiments were designed
to validate the algorithm, and these experiments have been con-
ducted on a computer-instrumented and computer-controlled
fatigue testing apparatus (MTS Systems Corporation, Berlin, NJ;
see Fig. 2(a)) using notched AL7075-T6 specimens (see
Fig. 2(b)). Each of the specimens is 3mm thick with a 50mm
wide gauge section, where the flanges with three holes on both
ends are 76.5mm wide and were designed to fix the specimens
on the test apparatus by using custom grips.
During the tests, 17 specimens were subjected to a

constant-amplitude sinusoidal tensile loading at a frequency of
50 Hz with a mean force of 9000N and an amplitude of 1000N,
which results in a nominal mean stress of 86.5MPa and a stress
amplitude of 9.5MPa in the specimens. The same load amplitude

Fig. 1 Zero-mean, unit-variance data normalization (a) signals
prior to normalization and (b) signals after normalization
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and frequency were used for all data. To enable early detection of
fatigue crack damage, the specimens were fitted with transmitters
and receivers of ultrasonic transducers (OLYMPUS, Shinjuku,
Tokyo, Japan; see Fig. 2(b)). Such transducers are capable of detect-
ing subtle changes in the material impedance due to the ensuing
fatigue damage long before any visible crack propagation is noticed.
The sensor outputs, which encode the information about specimen

damage, are stored as time-series data for early detection of fatigue
damage. Moreover, the test apparatus in Fig. 2(a) is equipped with
a traveling digital optical microscope (QUESTAR®, New Hope,
Pennsylvania, PA) that captures images near the notch base at
regular intervals. These images provide visual evidence of the
onset of crack formation and are used to corroborate the correspond-
ing temporal location in the ultrasonic signals.
A sample time-series of the ultrasonic signal is provided in

Fig. 2(c) to illustrate the texture of the signal dynamics. The vertical
dotted line denotes the location of the temporal point at which the
crack is observed by the microscope; signals to left and right of the
point of macro-crack initiation are defined as uncracked and
cracked regimes, respectively. The amplitude and texture of the ultra-
sonic signal are functions of the applied load but (possibly) not the
frequency.

4.1 Algorithm for Detection of Fatigue Crack Damage. In
the proposed p-PFSA method, PFSA models are trained for two
classes, namely, uncracked (i.e., prior to cracks observed by the
optical microscope) and cracked. This training is done using 13 spe-
cimen time-series (i.e., ∼65% of the available data) in each trial, and
the remaining four specimen time-series are used for testing. Since a
thresholded approach has been chosen, the final decision-making
during testing is done by modifying Eq. (4). A single scalar-valued
metric, ρ, is computed by considering two types of error that are
computed in terms of the difference of the observed testing
regime from the (trained) uncracked and cracked regimes. Further-
more, the error in the cracked regime is weighted more heavily than
that for the uncracked regime, because the objective here is to
capture a change into the cracked regime early, and therefore, mag-
nifying the error by a weight w (where w> 1) for the cracked regime
would help identify the change promptly. To this end, the (signed)
measure ρ is defined as follows:

ρ ≜ ||(Etst,uncrack, μtst , σtst) − (0, μuncrack, σuncrack||
− w × ||(Etst,crack, μtst , σtst) − (0, μcrack, σcrack)||

(5)

where the weight is chosen to be w= 10 in this study.
The next step is to identify an appropriate threshold [11] for ρ to

discriminate between the uncracked and cracked regimes. The
optimal threshold is obtained by using receiver operating character-
istic (ROC) curves [12], where the measure ρ yields the lowest total

error (false-alarm and missed detection) for training and is set as the
optimal threshold (θ) for discrimination of the uncracked and
cracked regimes.
By construction of the algorithm, ρ remains near its peak value

until just before the crack begins to appear (i.e., when the specimen
is still uncracked) and ρ begins decreasing thereafter. The true point
of crack appearance is estimated by the microscope as described in
Sec. 4, which is used to learn the threshold parameter θ that can
serve as a metric for discriminating between a uncracked and
cracked specimen.
Although the terms in the time-series of the (computed) measure

ρ are largely similar in the uncracked regime for each specimen, the
exact magnitudes may not always match. In order to facilitate the
usage of a common threshold across all specimens, the terms in
the time-series of ρ are normalized by the average of its values
over the first several cycles (e.g., 5000 time-steps in this study).
During this time span, the specimen is expected not to have any
cracks. This process ensures that the range of ρ has a maximum
value of ∼1.

5 Results and Discussions
This section presents and discusses the results of experimental

validation of the proposed fatigue crack detection method
p-PFSA. As described in Sec. 4.1, each train-test trial consists of
splitting the available ultrasonic signal time series data of the 17
specimens into a 65–35 split (13 time-series for training the
uncracked and cracked regimes and 4 for testing). To study the
average performance of the crack detection algorithm, the confusion
matrix for classification between the uncracked and cracked
regimes is presented in Table 1, where the results are averaged
over 20 individual trials; in each of these cases, the train-test split
is done randomly to remove any possible bias. The time series
data are first downsampled by a factor of 2, and then are averaged
with a window length of 600 data points and a window shift of
100 points. The p-PFSA models are trained for both uncracked
and cracked regimes with an alphabet size (|A|) of 10, and depth
(D) of 1 as discussed in Remark 2. The average error of classifica-
tion is ∼5%, as seen in Table 1.

Fig. 2 Operational schematic diagram of the computer-instrumented and computer-controlled fatigue testing apparatus:
(a) fatigue testing apparatus, equipped with ultrasonic transducers and a digital microscope, (b) AL7075-T6 U-notched specimen,
ultrasonic transducers and microscope; all dimensions are in mm (not to scale), and (c) a typical ultrasonic time-series signal
showing crack initiation point as observed by the microscope

Table 1 Confusion Matrix showing the average classification
accuracy of the proposed algorithm

Classified uncracked Classified cracked

Truly uncracked 94.74% 5.26%
Truly cracked 3.15% 96.85%

041003-4 / Vol. 1, OCTOBER 2021 Transactions of the ASME



The optimal threshold (θ) is seen to have a value of ∼0.90 on
average. By construction, during the uncracked regime, the
measure ρ≈ 1; hence, the other fixed early detection threshold
parameter is set as θ̃ = 0.95. Since there is no particular ground
truth related to emergence of any precursor, θ̃ can be fine-tuned
as desired. Figure 3 shows the evolution of the measure ρ as a
typical specimen progresses to the cracked regime from the initial
uncracked regime. The predicted regime (using the thresholded
approach) is shown along with the true (uncracked) regime which
is generated from the microscope data. It is noted that the precursor
in the cracked regime has no ground truth. The idea here is to be
able to detect the imminent crack before it actually happens.
Figure 3 shows that, for both time-series, the proposed algorithm

is capable of detecting the emergence of cracks with good accuracy
(e.g., ∼95%). Furthermore, the algorithm can detect an imminent
crack ahead of its actual happening (e.g., ∼4500 time-steps ahead
for Time-series #1 and ∼4000 time-steps ahead for Time-series
#2). Thus, the proposed method p-PFSA is apparently useful for
health monitoring of critical structural components without
having to wait for a visible crack to appear.

6 Summary, Conclusions, and Future Work
This study has reported the development and experimental vali-

dation of a novel fatigue crack detection method, called p-PFSA,
which is data-driven and is capable of discriminating between
uncracked and cracked regimes of mechanical structures before

the appearance of a visible crack. The underlying algorithm is
built upon the concept of projection-based probabilistic finite
state automata (PFSA) and quantifies the emergence of imminent
crack damage in terms of a signed measure. The efficacy of the pro-
posed p-PFSA is demonstrated on a fatigue testing apparatus using
cold-rolled AL7075-T6 specimens.
While there are many areas of research to enhance the work

reported here, the following topics are suggested to be conducted
in the near future:

(1) Performance comparison of p-PFSA with other data-driven
methods (e.g., hidden Markov modeling (HMM) and artifi-
cial neural networks (ANN)).

(2) Verification of p-PFSA with additional experimental data,
where knowledge of micro-crack emergence is available.

Acknowledgment
The authors are grateful to Dr. Najah F. Ghalyan and Dr. Eric

E. Keller who have kindly provided the experimental data. The
work reported in this paper has been supported in part by U.S.
Air Force Office of Scientific Research (AFOSR) under Grant
No. FA9550-15-1-0400 in the area of dynamic data-driven applica-
tion systems (DDDAS). The work is also supported in part by
Mechanical Engineering Department of Pennsylvania State Univer-
sity, University Park, PA 16802.

Conflict of Interest
There are no conflicts of interest.

References
[1] Suresh, S., 1998, Fatigue of Materials, Cambridge University Press, Cambridge

UK.
[2] Ciang, C. C., Lee, J.-R., and Bang, H.-J., 2008, “Structural Health Monitoring for

a Wind Turbine System: A Review of Damage Detection Methods,” Meas. Sci.
Technol., 19(12), p. 122001.

[3] Papazian, J. M., Nardiello, J., Silberstein, R. P., Welsh, G., Grundy, D., Craven,
C., Evans, L., Goldfine, N., Michaels, J. E., Michaels, T. E., Li, Y, Laird, C.,
2007, “Sensors for Monitoring Early Stage Fatigue Cracking,” Int. J. Fatigue.,
29(9–11), pp. 1668–1680.

[4] Gupta, S., and Ray, A., 2007, “Real-Time Fatigue Life Estimation in Mechanical
Structures,” Meas. Sci. Technol., 18(7), p. 1947.

[5] Ghalyan, N. F., and Ray, A., 2020, “Symbolic Time Series Analysis for Anomaly
Detection in Measure-Invariant Ergodic Systems,” ASME J. Dyn. Syst. Meas.
Control., 142(6), p. 061003.

[6] Mukherjee, K., and Ray, A., 2014, “State Splitting and Merging in Probabilistic
Finite State Automata for Signal Representation and Analysis,” Signal Process.,
104, pp. 105–119.

[7] Ray, A., 2004, “Symbolic Dynamic Analysis of Complex Systems for Anomaly
Detection,” Signal Process., 84(7), pp. 1115–1130.

[8] Rajagopalan, V., and Ray, A., 2006, “Symbolic Time Series Analysis Via
Wavelet-Based Partitioning,” Signal Process., 86(11), pp. 3309–3320.

[9] Bhattacharya, C., and Ray, A., 2020, “Online Discovery and Classification of
Operational Regimes From An Ensemble of Time Series Data,” ASME J. Dyn.
Syst. Meas. Control., 142(11), p. 114501.

[10] Berman, A., and Plemmons, R., 1994, Nonnegative Matrices in the Mathematical
Sciences, SIAM, Philadelphia, PA.

[11] Pastor, D., and Nguyen, Q.-T., 2013, “Random Distortion Testing and Optimality
of Thresholding Tests,” IEEE Trans. Signal Process., 61(16), pp. 4161–4171.

[12] Poor, H., 1994, An Introduction to Signal Detection and Estimation,
Springer-Verlag, New York.

Fig. 3 Measure (ρ) of two sample ultrasonic time-series, over-
layed with the threshold-based regime prediction: (a) time-series
#1: (top) signal and (bottom) measure (ρ) and (b) time-series #2:
(top) signal and (bottom) measure (ρ)

ASME Letters in Dynamic Systems and Control OCTOBER 2021, Vol. 1 / 041003-5

http://dx.doi.org/10.1088/0957-0233/19/12/122001
http://dx.doi.org/10.1088/0957-0233/19/12/122001
http://dx.doi.org/10.1016/j.ijfatigue.2007.01.023
http://dx.doi.org/10.1088/0957-0233/18/7/022
http://dx.doi.org/10.1115/1.4046156
http://dx.doi.org/10.1115/1.4046156
http://dx.doi.org/10.1016/j.sigpro.2014.03.045
http://dx.doi.org/10.1016/j.sigpro.2004.03.011
http://dx.doi.org/10.1016/j.sigpro.2006.01.014
http://dx.doi.org/10.1115/1.4047449
http://dx.doi.org/10.1115/1.4047449
http://dx.doi.org/10.1109/TSP.2013.2265680

	1  Introduction
	2  Mathematical Background
	2.1  Introduction to Probabilistic Finite State Automata
	2.2  D-Markov Machines

	3  PFSA-Based Projection for Classification
	3.1  The PFSA-Based Projection Algorithm: p-PFSA
	3.2  Modification of Time Series Normalization

	4  Experimental Procedure and Algorithm Development
	4.1  Algorithm for Detection of Fatigue Crack Damage

	5  Results and Discussions
	6  Summary, Conclusions, and Future Work
	 Acknowledgment
	 Conflict of Interest
	 References

