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This letter focuses on two topics in engineering analysis, which are (1) degree-of-freedom
(DOF) in modeling of dynamical systems and (2) simultaneous time and frequency locali-
zation of signals. These issues are explained from the perspectives of decision and control
by making use of concepts from applied mathematics and theoretical physics. Specifically, a
new definition is proposed to clarify the notion of “DOF,” which is consistent with the

dimension of the state space of the dynamical system model. Relevant examples are pre-
sented on (finite-dimensional) vector spaces over the real field R and/or the complex
field C. [DOI: 10.1115/1.4051142]
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1 Introduction

In many engineering applications, mathematical models are con-
structed to represent the behavior of dynamical systems [1], and
tools of time-frequency analysis [2] are applied for processing the
measured signals (e.g., sensor time series). To this end, mathemat-
ical structures of dynamical system models and signal waveforms
are built upon both finite-dimensional and infinite-dimensional
vector spaces that are defined over a (complete') algebraic field
such as the real field R or the complex field C. The properties
(e.g., dimension) of a vector space are significantly dependent on
the choice of the algebraic field over which the vector space is con-
structed. In this context, interpretations of commonly used terms in
modeling of dynamical systems, such as degree-of-freedom (DOF),
may often become ambiguous. Another example of ambiguity in
signal processing is the uncertainty of simultaneous time and fre-
quency localization.

This letter elaborates the above two ambiguities, namely, DOF
and fime-frequency localization, which are relevant in physics-
based modeling of dynamical systems and data-driven analysis of
sensor signals, respectively. The underlying issues are explained
from the perspectives of decision and control by making use of con-
cepts from applied mathematics and theoretical physics. Relevant
engineering applications of these concepts in dynamic system mod-
eling [3] and signal processing [4—6] exist; and such applications are
constructed on vector spaces defined over the real field R and/or the
complex field C.

The letter is organized in four sections. Section 2 points out the
reasons for possible ambiguities in the relationships between
DOF and dimension of the state space, and it provides explanations
with well-known examples of mechanical systems. Section 3
addresses the issue of uncertainty in simultaneous time localization
and frequency localization of signals. Section 4 summarizes and
concludes the letter.

2 State-Space Representation of Degree-of-Freedom

This section first introduces the notion of DOF from the perspec-
tives of classical mechanics [7,8] and vibration theory [9-11]. Then,

'A metric space is called complete if every Cauchy sequence converges in the
space. In this sense, an example of an incomplete field is the field of rationals Q
with the usual metric, i.e., d(x, y)=|x—y| Vx,y € Q.
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the DOF is compared with the dimension of the state space that
represents the dynamical system model as a vector space con-
structed over the complex field C.

In the context of classical mechanics [7], the notion of DOF of a
dynamical system is presented as follows:

Let a dynamical system of (mutually non-interacting) N particles be
free from constraints. Then, the system has 3N DOFs, which implies
that the dynamical system is represented by 3N independent coordi-
nates. However, if there exist K holonomic constraints, where 0 <K
<3N, then the dynamical system is said to have (3N — K) DOFs.

The above notion of DOF has been widely used for vibration
analysis [9] in various engineering disciplines as follows:

The minimum number of independent coordinates needed to determine
completely the positions of all parts of a mechanical system at any
instant of time defines its DOF.

In state-variable representations of dynamical systems, the role of
an algebraic field is very critical in the construction of vector spaces,
because a given Abelian group of vectors generates two different
vector spaces when they are defined over two different algebraic
fields [12,13]. For example, the Abelian group of complex
numbers C forms a two-dimensional vector space over the real
field R, which is isomorphic to the two-dimensional real vector
space R2. The same Abelian group of complex numbers C forms
a one-dimensional vector space over the complex field C. The
implications of this fact on modeling of dynamical systems are illus-
trated below by well-known physical examples.

Figure 1(a) presents an unforced linear time-invariant
mass-spring-damper system with discrete passive [14] components
and having non-zero initial conditions. Such a system is said to have

Fig. 1 Schematic diagrams of unforced linear time-invariant
mass-spring-damper systems, where the model parameters are
mass m; viscous damping constant b; and spring constants k
and k: (a) single degree-of-freedom (SDOF) system and (b) aug-
mentation of the SDOF system with an additional spring
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SDOF [9] and is governed by the following second-order differen-
tial equation:

dy +0ly=0 1)
where, referring to Fig. 1(a), y is the time-dependent displacement;
w, 2 /k/m is the natural frequency; and ¢ 2 b/2+/mk is the
damping coefficient that has a range of (0 <{<0), in general,
and a range of (0 <{< 1) for underdamped systems.

A state-space representation of Eq. (1) for an underdamped
system in the two-dimensional vector space R (over the real
field R) is given as follows:

dfx]_ £ wy

de | x —/1-2 w,
where the two state variables are chosen as x; = {w,, y + (dy/dt) and
X =—v/1—¢? w,y, and the associated state matrix is

Vl_gz (Un:| e R2?2

_C Wy

_z: @y 2

mwn:“:xl} o

_C wy
Y 1- §2 @y
which maps R? into R2.
Next, let us construct a vector space of the same physical system
(see Fig. 1(a) and Eq. (1)) over the complex field C instead of the
real field R. To this end, let us define a complex-valued state vari-
able as z(r) 2 x,(t) +i x(r), where i =+/—1 and x; and x, are as
defined above. Then, it follows that

d)C] _dX2 2
E+1E=<—C(u,,x1+\/l—§ wnx2>
+ i(—‘/ 1-¢% w, x1 —Cw, x2>

which reduces to

%[Xl +ixp] = [-(C +iy/1 - Cz)wn] [x) + ix2]

Consequently, the state-space representation of the above under-
damped system in the one-dimensional vector space C' (defined
over the complex field C) is

%[z] = [—(cm/ 1- c2> wn] [z] 2)

where the state matrix [—(& + iv/1 — ¢Dw,] € c! maps C! into
C!. 1t is noted that, in the disciplines of mechanical engineering
and classical mechanics, such a second-order underdamped
system is often referred to as a SDOF system. Here, we have
shown that an underdamped system is equivalently represented on
a vector space of dimension 2 over R or on a vector space of dimen-
sion 1 over C as an SDOF system. In both representations, the
system models are linear.

Next, we consider an overdamped system, i.e., the damping coef-
ficient {>1 in Eq. (1). A state-space representation of the over-
damped system in the two-dimensional vector space R? (over the
real field R) is given as follows:

i |:xl ] _ _C @y
dr | X A% 2:2 -1 (2
where a choice for the states is x;={w,y+(dy/dt) and
_ 2 . -
X, =/ — 1 w,y, and the associated state matrix is

2 —
&=l i| € R¥? mapping R%into R?

(1b)

Jﬁ——lwn}[x,}

_g Wy X2
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Similar to what was done for the underdamped system, the vector
space is now constructed over the complex field C instead of the
real field R. The complex-valued state is defined as z(¢) 2 x,(¢) +
i x(r), where i =+/—1 and x; and x, are as defined in Eq. (1b).
Then it follows that

dx; | .dxy [2
E-HE_(_@)"XH_ 4 —la),,x2>
+l<\/ Cz_lwn X1 _gwn Xz)

which reduces to

d
g o +inl= ((—axl +y -1 xz)
+i(,/§2 -1 x —é’xz>) Wy,

Consequently, the state-space representation of the above over-
damped system in the one-dimensional vector space C' (over the
complex field C) is given as

%[z] = [—(c — iy - 1) wn][z] -[iVe-1aic-21 0

where 7 is the complex conjugation of z € C'. It is noted that the
operation of complex conjugation in Eq. (3) is not linear because,
given any z,% y € C, it follows that z+yZ =7 +7Z instead of
having the linear relationship of complex conjugation, i.e.,
Z+ yZ =7 + %, which is false because 7 # y, in general.

For a critically damped system (i.e., { = 1), the results cannot be
obtained simply by substituting { =1 in Eq. (2) or Eq. (3), because
the two states (in the real-field representation) are coupled, which
gives rise to a state matrix in the Jordan form [12] as follows:

dix | _|-on op |[x

dr | x2 0 -w, ||x
where a choice for the states is x; =, y and x, = @, y + (dy/d¢) and
On - On | g g2 maps R? into R%

0 —Wy
Letting z(r) £ x,(7) + ix,(t), it follows that

(1c)

the associated state matrix |

d Wy -
Sl ==, - [ 2 |1~ 2] @

which, although one-dimensional, is not a linear representation of
the physical system in Fig. 1(a). It is noticed that Eq. (4) is structu-
rally similar to Eq. (3).

In view of the above observations, we examine how the DOF of
the dynamical system can be related to the dimension of the state
space, i.e., the vector space over C. Now, we delineate the following
notions regarding DOF and linearity in the vector space over C.

(1) Following Eq. (2), if the system in Fig. 1(a) is underdamped
(i.e., 0<¢<1), then it can be represented as a first-order
linear system in the vector space C'. Therefore, the notion
of SDOF (i.e., DOF = 1) is in agreement with that of the one-
dimensional linear system in Eq. (2). By extending this
concept to finite-dimensional (linear) underdamped multi-
DOF systems in the usual sense (e.g., see Ref. [9]), the
notion of DOF can be made equivalent to that of the dimen-
sion of the state space, constructed over C.

(2) If the system in Fig. 1(a) is critically damped (i.e., {=1) or
overdamped (i.e., {>1), then the vector space representation
over C may not be represented as a linear system, while the
linearity in the R? space is still retained (see Eqs. (15) and
(1¢)). Apparently, there is no clear notion of DOF, including
that of SDOF, for {>1.
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2.1 Extension to a State-Space of Higher Dimension. This
subsection investigates how the notion of SDOF could be affected
if the dynamical system in Fig. 1(a) is augmented with an additional
(passive) component. In Fig. 1(b), an additional spring, having
spring constant k, is inserted in tandem with the dashpot. Following
Fig. 1(b), the governing equations are obtained as

dzy

dy
d2+k(y V+ky=0 and bd——k(y ¥) (5)
where the parameters m, b, k, and k are as defined in the caption of
Fig. 1.

Now let us first construct a vector space over R by choosing the
three state variables as x; =y, x; =(dy/dt), and x3 =9. Then, a
(three-dimensional) state-space representation (over R) of the
mass-spring-damper system in Fig. 1(b) is

X1 0 10 X
PP X | = —(kj— kym 0 k[m X (5a)
T x k/b 0 —k/b || x

It is obvious that the system, represented by Eq. (5a), is not SDOF
[9]. Then, what is the number of DOFs of this discrete-parameter
linear system—should it be called a two degrees-of-freedom
(TDOF) system? Apparently, the literature on vibration analysis,
such as Refs. [9-11], would not classify such a system as TDOF.

Before delving further into the above discussion, let us examine
the role of the parameter k in Fig. 1(b), which has apparently
changed the SDOF property of the dynamical system in Fig. 1(a).
The following observations are made in this context:

e As the parameter k — oo in Fig. 1(b), an application of the
principle of singular perturbation [14], reduces the dimension
of the state space (over R) from 3 to 2 and degenerates the
system in Fig. 1(b) into that in Fig. 1(a). A physical interpre-
tation is that, as k — oo, the spring in tandem with the dashpot
in Fig. 1(b) becomes a rigid (massless) link. Similarly, as
k — 0, the system in Fig. 1(b) degenerates into a (non-
dissipative and SDOF) mass-spring system.

e The examination of a state-space representation (over C) of the
system in Fig. 1(b) would reveal that the resulting state vector
belongs to €2, in general. Such a state-space can be con-
structed by two linearly independent combinations (over C)
of the three states in Eq. (5a). Moreover, in Fig. 1(b), if the
parameter k — oo or if k — 0, then applications of singular
perturbation [14] would reduce the dimension of the
(complex) state space from 2 to 1 in each case.

As a conclusion of this section, the notion of state-space repre-
sentation over the real field R should be emphasized when (first-
time) introducing the topic of dynamic system modeling, by avoid-
ing the concept of DOF; the rationale is that although the notion of
DOF provides nice physical intuitions in some cases, it is not pre-
cisely defined in the author’s opinion. An alternative precise defini-
tion of DOF, which may not always be in agreement with the
conventional notion of DOF as reported in the literature (e.g., see
Ref. [9]), is proposed as follows:

DerNITION 2.1. The DOF of a (finite-dimensional) dynamical

system is the dimension of the state space when the underlying
vector space is constructed over the complex field C.
Remark 2.1. The dynamical system in Definition 2.1 could be time-
varying and/or nonlinear (i.e., not restricted to be linear time-
invariant as in Fig. 1). An example of a time-varying dynamical
system is a rocket launched into the outer space from the planet
earth, where the total mass of the rocket may significantly change
with time because the rate of fuel depletion in the rocket engine
is very high. Examples of nonlinear dynamics are (i) cubic force—
displacement characteristics of a spring and (ii) Coulomb friction
in a damper.
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3 Signal Analysis in Time and Frequency Domains

This section addresses the topic of time-frequency analysis of
signals in data-driven dynamical systems, which often complements
that of dynamic modeling in engineering analysis of decision and
control systems. The topic is discussed here from the perspectives
of theoretical physics, where the signals are often analyzed using
vector spaces, constructed over the complex field C, as explained
below.

Let a particle of (constant) mass m, constrained to move along the
x-axis, be subjected to a time-dependent force F(x, r), where the
vector space is defined over the real field R. One of the objectives
in classical mechanics [7] is to determine the position x(¢) of the par-
ticle at any given time t. Then, we obtain the velocity v(t) dx/dz,
the momentum p(t) 2 m v(¢), and the kinetic energy T(¢) = (1/2)m
% (t) On the other hand, the wave function y(x, ¢) in quantum
mechanics [15,16] is a complex-valued function of the position x
of a particle at time #, which belongs to a Hilbert space as defined
over the complex field C. A statistical interpretation of the
(complex-valued) wave function y(x, t) is that ly(x, N2 is the prob-
ablhty dens1ty of finding the particle at a given position x at time ¢,
ie., f dx |y(x, H|*> =1 for all time 1.

The state of a particle in classical Hamiltonian mechanics [7],
where the vector space is defined over the real field R, is speci-
fied by both position x and momentum p. In contrast, the state of
a particle in quantum mechanics, where the vector space is
defined over the complex field C, depends on only one of the
two variables, namely, either x or p [16]. The information on
momentum p is contained in the wave function y(x, t). A conve-
nient way to extract this information on p as a Fourier transform
of w(x, t) is to construct the momentum wave function at any
given time :

1 o0
Pip, 2 ﬂj dxexp( h” )w(x, )

where the Planck constant 7 = 1.054572 x 1073* Joules and the
original Plank constant = 2zh.

The above Fourier transform can be inverted to generate the
information on position x from y(p, t) at any given time ¢ as

00

1
l//(x’ t) - ,—2][;1 J_m

1 +i27p
—ﬁf,md”""p< ) ve.n

Now let us fix the time parameter 7 and, with a slight abuse of nota-
tion, let us denote y(x, ) and W (p, ) as w(x) and y(p), respectively.
Therefore, the position waveform w(x) and the momentum wave-
form y(p) contain precisely the same information about a
quantum state at a given time instant. By Plancherel theorem [1],
in the inner product space L, defined over the complex field C,
the same information is obtained in either position domain or
momentum domain as

dp exp( )w(p 1)

0

(0. w) = (9. 9)) & (J dx w(x)ep(x) =J dp W(p)@(p))

—00

©)

In essence, the information about the momentum of a quantum par-
ticle can be obtained from the momentum wave function in the same
way that information about its position can be obtained from the
position wave function as explained later.
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Let the position wave function have a compact support, i.e., y(x)
vanishes outside a finite interval x; <x<x,; similarly, let the
momentum wave function have a compact support, i.e., y(p)
vanishes outside a finite interval p; <p <p,. Therefore, it is safe
to say that the quantum particle does not lie outside a position inter-
val and a momentum interval. However, we may not be able to
specify precise (i.e., deterministic) values of the position and
momentum within these intervals. This issue is further examined
in the next section from the perspectives of both quantum mechan-
ics and signal processing.

3.1 Uncertainty Principle and Signal Analysis. In the disci-
pline of signal processing, it is a well-known mathematical fact [2]
that

A narrow (time-domain) waveform yields a wide-band frequency
spectrum and a wide (time-domain) waveform yields a narrow-band
frequency spectrum.

It is possible that both time and frequency bands can be narrow,
but the probability densities of time and frequency localization
cannot be made simultaneously arbitrarily narrow, i.e., their var-
iances cannot be made simultaneously arbitrarily small.

In both quantum mechanics and signal processing, the uncer-
tainty principle applies to a pair of variables whose associated oper-
ators do not commute (i.e., their commutator is not identically equal
to zero) [15,16].

In the physics literature,

Position operator: y = (x)

P=

Momentum operator :

The commutator of y and P on an arbitrary C' (i.e., continuously
differentiable) test function f(x) is defined as

x. P1 = 4P - Py

=[x Plfx) = x(—zh )f(x) + z‘h (xf(x))

— (xgl 2 f(x)> — i)

h

=y, Pl=ih or [y, Pl=i—
2

Similarly, in the signal processing literature,
id
2mdé
—id
2mdt

The commutator of § and Z on an arbitrary C' (i.e., continuously
differentiable) signal s() is defined as

1>

Time operator: < = (7)

1>

Frequency operator :

E=@©

[1]
[1]
[1]

3

d
= I3, &l SO‘)‘U)(;@) Ok (f)@(fs(f))

ds
ﬂ(td_l_td_l_ (t)) S(l)

_ i
El=—

2

[S, B2 S E-

=[S,
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Defining the commutator of J and =E on the Fourier transform
5(&) of the signal s(¢) yields the same result:

[
8]

3 3

=[S, Bl 3= (2*&)(5)9(@ (é)(zfd?S(é))

<<§) 53{%5) )

I
>

(S,

The previous discussion evinces that the mathematical structure
of the commutator of time and frequency operators is identical to
that of the position and momentum operators in the discipline of
quantum mechanics. This fact leads to the notion of simultaneous
time-frequency localization in the next section.

3.2 Time-Frequency Localization for Signal Analysis. Let
us consider a unit energy signal s(f) € L,(R), i.e., fio dr | s(t) |?
=1 and j iooo d£ | 3(¢) |* =1 by following Plancherel theorem [1]. In
line with the concepts in quantum mechanics, | s()I* and | (&) |
are taken as the probability densities of time localization and fre-
quency localization, respectively. By appropriate time translation
and frequency modulation, it follows that

r d1s0)P =0 and r 4z 13 P £=0

—00

without loss of generality. Let us define the so-called variances of time
localization and frequency localization as

GZij at| s £ and agij 4150 P &

THeoreM 3.1 (Uncertainty of time-frequency localization). If the
signal s(t) € Lr(R) (equivalently, s(t) decays to zero faster than
1= as t > +o0), then 0,0 > 1/4r and the equality holds for
Gaussian signals s(t) 2 JaJzexp (—at?) for arbitrary a € (0, ).
Proof. By Cauchy—Schwarz inequality [1], it follows that

joo dr <Z Y(l)%)

The first integral on the right-hand side of Eq. (7) is equal to ¢2.
Taking Fourier transform of the signal F(ds/df) =i2z£8(8) and
using Plancherel theorem (i.e., equality of signal energy in the time-
domain and frequency domain as fio dt|s(0)|*= f io dé|3(&))?), the
second integral on the right-hand side of Eq. (7) is expressed as

o0

2 )
sJ' dtlts(t)IQJ dr

—00

ds|?

a )

j e j d¢ [127E3(0)” = 2n)'0? ®)

Therefore,

(1 s(e)Xds/dn)| < 2z0i0. Now, integration by
parts yields

o0 o )
J dt <t s(t)%) :%J dt(z dlsc(li)l )

_1 200 (= 2 _ 1_
=5t 1@ ‘_W—E[_mdtls(m =0-5=-3

1
= 0,0¢ > i )
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The Cauchy—Schwarz inequality in Eq. (7) becomes an equality if ¢
s(¢) and ds/dt are collinear. For Gaussian signals,

ds d /[ ja 2
PPy (\/;exp (—at ))

= 2at \/éexp (—atz) = —2ats(t)
n

Hence, 6,0: = 1/4n for s(t) = /a/x exp (—ar?) for arbitrary a €
(0, o). u

The results of Theorem 3.1 form a key concept for selection of
filter parameters in time-frequency analyses, such as windowed
Fourier transform and wavelet transform [4], of signals. Such prob-
lems are encountered in data-driven analysis of dynamical systems
in the discipline of machine learning [17,18].

4 Summary and Conclusions

This letter is intended to clarify two ambiguities that are fre-
quently encountered in decision and control of dynamical
systems. The first ambiguity lies in the relationship between the
dimension of the state space and the DOF for state-space modeling
of dynamical systems. The second ambiguity is related to the uncer-
tainty associated with time localization and frequency localization
of signals for filter design in data-driven analysis of dynamical
systems. These two ambiguities are addressed by applying elemen-
tary concepts of abstract algebra [12,13] and Heisenberg uncertainty
principle in quantum mechanics [15,16], respectively.

A new definition is proposed to clarify the concept of DOF,
which is consistent with the dimension of the state space when
the dynamical system is modeled in the state-variable setting on a
vector space defined over the complex field C. In this definition,
the dynamical system is not restricted to be linear time-invariant,
i.e., the underlying state-space model could be nonlinear and/or
time-varying. However, the proposed definition of DOF may not
always be in agreement with the conventional notion of DOF, as
reported in the literature [9]. Therefore, in this regard, the following
topics of future work are recommended:

e Extension of the analysis on DOF to various dynamical
systems (e.g., with holonomic constraints).

e Evaluation of the proposed definition of DOF (Definition 2.1)
for acceptance by the scientific community in dynamical
systems and control.
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