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ARTICLE INFO ABSTRACT

Communicated by J. Antoni The objective of the work reported in this paper is to make decisions on the current state of a
dynamical system for pattern classification and anomaly/fault detection, which is often achieved
by time series analyses of pertinent measured signals. In this context, one of the most commonly
used methods is hidden Markov model (HMM), while yet another popular method is neural
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Hidden Markov model networks (NN) in their various configurations; however, both of these methods may require
Neural networks large training data and computational time. An alternative feasible method is probabilistic
Chaotic systems finite state automata (PFSA), which is much faster for training and also for testing. In its

current state-of-the-art, the standard PFSA, called s-PFSA, has certain shortcomings that this
paper attempts to remedy. Therefore, s-PFSA is modified into the proposed projection-based
PFSA, abbreviated as p-PFSA, to yield better classification accuracy and robustness. Efficacy
of p-PFSA is first demonstrated on four different models of chaotic dynamical systems by
comparison with s-PFSA, HMM and NN, which are used to serve as baseline methods for
validation of classification performance; the NN models consist of two vanilla NNs and another
NN with long short term memory (LSTM). Then, these results of comparison are extended
to assess the relative performance of p-PFSA for a real-life application in terms of accuracy,
robustness, and computational complexity on a laboratory-scale apparatus that emulates the
essential characteristics of industrial-scale combustion systems.

1. Introduction

Data-driven pattern classification of time series has seen a large surge recently, with several standard methods of machine
learning (ML) being available [1]. One of the most common methods is hidden Markov model (HMM) [2] that has been used
in many applications including speech recognition, image classification, hand gesture recognition, and DNA sequence extraction.
Recently, Bhattacharya and Ray [3] have reported the usage of this framework in an attempt to solve the difficult (and largely
unexplored) problem of classifying multiple regimes in chaotic dynamical systems. However, it is a fact that the architecture of
HMM slows down both the training and testing processes due to complex and (sometimes) iterative mathematical operations.

Another popular method for time-series classification is neural networks (NN) in their various configurations, such as deep neural
networks (DNN) [4], recurrent neural networks (RNN) [5], or neural networks with long short term memory (LSTM) layers [6],
which have been used for text and audio analysis, among many other applications. Nevertheless, many of these NN techniques may
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not be suitable for online detection in dynamical systems that are restricted to use short lengths of time-series, or if there is no
sufficient training due to the substantial data resources that NNs may need for training.

An alternative feasible method is probabilistic finite state automata (PFSA) [7,8], which requires much less training time and data
resources, compared to both HMM and NN. The underlying principle of PFSA is built upon the concepts of reduced-order Markov
modeling in the setting of symbolic time series analysis (STSA) [9-12], which has been used for pattern classification in diverse
applications (e.g., combustion instabilities [13] and failure prognosis of structural materials [14]), as well as in sensor networks
for detection of moving targets [15]. However, the standard PFSA method [7,8], called s-PFSA, needs to be modified to have its
classification accuracy to be comparable to that of HMM and NN.

The current paper proposes major modifications to the architecture and algorithms of s-PFSA by alleviating some of its
shortcomings in order to significantly improve its performance (e.g., classification accuracy and robustness). To demonstrate the
efficacy of proposed modifications, the authors first address a difficult problem of classifying different regimes in chaotic dynamical
systems from their respective time-series [3].

In general, chaos has been studied in great details, having been initially observed in several natural phenomena like weather
fluctuations and climate changes [16], but now chaos is seen to exist in many human-engineered dynamical systems such as urban
traffic [17] and the stock market [18]. Since classification of data from chaotic systems is often very difficult, the results of the
proposed classification method have been compared to those of HMM-based classification presented in [3] as a baseline. Boulle
et al. [19] have recently reported similar type of work in the framework of a neural network (NN), where the prime objective is to
discriminate between chaotic and non-chaotic signals in a data-driven fashion by using a machine learning version of the well-known
0-1 test [20]. In order to provide further comparison with NN architectures, results using two vanilla NN models as well as a NN
with a LSTM layer have also been compared in the current paper. While the reported work has been restricted to shallow nets, its
extension to DNN and their various configurations is suggested as a topic of future research in Section 7.

The efficacy of p-PFSA for anomaly classification in real-life physical systems was previously demonstrated for fatigue crack
detection [21] by using a thresholded approach, whereas the current paper addresses thresholdless classification. The underlying
algorithms are validated on different experimental data from a laboratory-scale apparatus [22] that emulates the essential
characteristics of industrial-scale combustion systems. In these data sets, there are several pressure-wave time series corresponding
to: (i) stable operation (typically observed as low-amplitude chaotic signals); and (ii) unstable operation (seen as high-amplitude
ordered sinusoidal signals). The classification of these two types of signals has been widely addressed in several ways and with
different combustion data (e.g., [23]). In essence, a real-life application of the proposed thresholdless classification has been reported
here.

Contributions: Major contributions of the current paper are summarized below:

(1) Extensions of the standard PFSA (s-PFSA): The inherent shortcomings of s-PFSA are first identified; then, modifications are
proposed to alleviate them to a large extent. Based on the algebraic and geometric properties of state transition probability
matrices, accuracy and robustness of classification are significantly enhanced, especially for operating regimes that are
difficult to discriminate.

(2) Classification of chaotic signals: The proposed p-PFSA is compared with other standard classification methods (i.e., s-PFSA,
HMM and NN) on data sets of signals generated from four different chaotic dynamical systems, which have been rarely
attempted because of the difficulties to classify such systems.

(3) Regime classification related to combustion stability: This is a real-life engineering problem [23,24], where the efficacy of p-PFSA
is demonstrated by comparison with s-PFSA, HMM and NN on experimental data, collected from a combustor apparatus [22].

Organization: The paper is organized in seven sections, including the present one. Section 2 briefly introduces the basic concepts
of various data analysis methods that are used later. Section 3 formulates the proposed algorithm of the PFSA-based thresholdless
classification of operating regimes in dynamical systems. Section 4 modifies the procedure for normalization of raw time series data
prior to partitioning and symbolization. Section 5 describes generation of two types of data for algorithm validation: (i) synthetic data
from four standard models of chaotic dynamical systems, and (ii) experimental data of pressure-wave time-series from a combustor
apparatus. Section 6 validates the results along with discussions for both data sets. Section 7 summarizes and concludes the paper
with recommendations for future research.

2. Background and mathematical theory

This section provides the basic concepts of probabilistic finite state automata (PFSA), hidden Markov model (HMM), and neural
networks (NN) to provide the necessary backgrounds for the concepts presented in the sequel.

2.1. Introduction to probabilistic finite state automata

In the setting of symbolic dynamics [25] for analysis of time series signals, the observed data are initially partitioned (quantized)
into a finite number of cells. Then, the time series is symbolized, where the symbol indicates the cell in which the value of the
continuous-signal data-point lies. This process converts the (continuous-valued) time series into a symbol string, where each symbol
in the string belongs to a (finite-cardinality) alphabet [26,27]. (It is noted that the cardinality of an alphabet is equal to the number
of cells used for quantization.) The final step in this process is the construction of the probabilistic finite state automaton (PFSA).
The following definitions are introduced toward this goal.
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Definition 1. A finite state automaton (FSA) G, having a deterministic algebraic structure, is a triple (A4, Q. §) where:

+ A is a (nonempty) finite alphabet, i.e., its cardinality |.A| is a positive integer.
+ QO is a (nonempty) finite set of states, i.e., its cardinality |Q| is a positive integer.
60X A— Q is a deterministic state transition map.

Definition 2. A symbol block, also called a word, is a finite-length string of symbols belonging to the alphabet .A, where the length
of a word w £ 5,5, -+ 5, with every s; € A is |w| = #, and the length of the empty word ¢ is |¢| = 0. The parameters of FSA are
extended as:

« The set of all words, constructed from the symbols in .4 and including the empty word ¢, is denoted as A*.
« The set of all words, whose suffix (respectively, prefix) is the word w, is denoted as .A4* w (respectively, w.4*).
« The set of all words of (finite) length #, where # is a positive integer, is denoted as A”

Remark 3. A symbol string (or word) is generated from a (finite-length) time series by symbolization.

Definition 4. A probabilistic finite state automaton (PFSA) J is a pair (G, ), where:

+ The deterministic FSA G is called the underlying FSA of the PFSA J.

+ The probability map = : Q x A — [0.1] is called the morph function (also known as symbol generation probability function)
that satisfies the condition: ¥ . , z(g.s) = 1 for each 4 € Q. The map r can be represented by a |Q| x |.A| stochastic matrix IT
(i.e., each element of IT is non-negative and each row sum of I7 is unity). In that case, the PFSA is a quadruple J = (A4, Q. §, IT).

+ The state transition probability mass function x : @xQ — [0, 1] is constructed by combining é and 17, which can be structured
as a |Q| x |Q] state transition probability matrix T. In that case, the PFSA can also be described as the triple J = (A,Q,T).

Remark 5. It is noted that, prior to partitioning, the time series is typically normalized to have zero-mean and unity-variance to
remove bias from the signal and to ensure that a fixed set of partition boundaries can be used across a wide range of data. A fixed
partitioning ensures that there is no need to recompute the partitioning boundaries at every step and also allows different PFSAs to
be compared, which is essential for classification. Details are provided in Section 4.

2.2. D-Markov machines

The PFSA structure of a D-Markov machine generates symbol strings {s;s; s, : ¢ € {1,2,3,...} and s; € A} based on the
underlying Markov process. In a D-Markov machine, it is assumed that generation of the next symbol depends only on a finite history
of last D or less consecutive symbols, i.e., the (most recent) symbol block of length not exceeding D. A D-Markov machine [8] is
defined as follows.

Definition 6. A D-Markov machine [7,8] is a PFSA in the sense of Definition 4 and it generates symbols that solely depend on the
(most recent) history of at most D consecutive symbols, where the positive integer D is called the depth of the machine. Equivalently,
a D-Markov machine is a statistically stationary stochastic process § = --- s_;sys, ---, where the probability of occurrence of a new
symbol depends only on the last consecutive (at most) D symbols, i.e.,

Pls, E Sy_p *** Sp_1] = Pls, I Sp—p *** Sn1l

Consequently, for w € AP (see Definition 2), the equivalence class A*w of all (finite-length) words, whose suffix is w, is qualified
to be a D-Markov state that can be denoted as w.

Remark 7. If the depth of the D-Markov machine is unity (i.e., D = 1), then the state set Q and symbol alphabet A become
equivalent; therefore, the morph matrix /7 and the state transition probability matrix T are also the same if D = 1. In that case,
equiprobability of every state (i.e., uniform probability distribution of the states) is ensured if maximum entropy partitioning (MEP)
of time series [26] is used for symbol generation. Thus, at least for the base regime (and possibly even others) the concept of
making them measure preserving [14,28] is being imposed. However, that restriction is not needed for the current work, making
the proposed method more versatile than the method using measure preserving transformations [14,28].

The procedure to generate the morph matrix 17 from a (finite-length) symbol string is as follows. Given a fixed alphabet size |.A|
and depth D, the maximum possible number of states is |.4|. For a (finite-length) symbol string .S, the occurrence of each state is
sequentially counted and let N;; denote the number of times the symbol s; € A is emitted from the state ¢; € Q. Thus;

N 1+ N
o =02 = A S, Ne o
The rationale for initializing the count of each element to 1 is that if no event is generated at a state ¢ € Q, then there should
be no preference to any particular symbol and it is logical to have z(g,s) = 1/]|A| Vs € A, i.e., the uniform distribution of event
generation at the state g. The above procedure guarantees that the PFSA, constructed from a (finite-length) symbol string, must
have an (element-wise) strictly positive morph map I7. This also ensures ergodicity and stochasticity of the morph matrix IT by
construction [14,28].
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Remark 8. Construction of the morph matrix IT and state transition probability matrix T guarantees that these matrices are both
stochastic (i.e., each matrix element is non-negative and each row sum is unity [29]) and ergodic (i.e. every state of the PFSA can
be reached in a finite number of iterations irrespective of the starting state). The stochasticity and ergodicity properties of these
matrices are key points in the mathematical theory of the modified projection-based PFSA (p-PFSA) developed in this paper.

2.3. Standard PFSA-based classification

The classification algorithms, based on the standard PFSA (s-PFSA), are developed for training and testing phases as described
below.

Training phase: The s-PFSA classification algorithm is trained on time-series from each of the C possible classes, based on the
user-specified parameters: window length W L, downsampling rate D.S, alphabet size |.4|, and depth D. The PFSA morph matrices
for each class is computed as IT¢, ¢ = 1, ..., C, by taking an average of the individual morph matrices obtained from each segmented
time series of window length W L.

Testing (or classification) phase: The s-PFSA algorithm is tested on a (single) data window of length WL from a time series,
belonging to an unknown class. The test time-series is symbolized using the same partitioning and the same parameters (i.e., .A,
D, WL, WS, and DS) as for training. The resulting morph matrix 17" is also generated by following the same procedure as in
the training phase. The distance (e.g., Kullback-Leibler divergence or Euclidean norm) of the classification morph matrix from each
of the C trained morph matrices are computed. The class that yields the smallest distance is classified to be the class the testing
time-series belongs to:

Identified Class = argmin ||IT"" — 1€ 2)
ce{l.2,....C}
Thus, the decision making in Eq. (2) is thresholdless. In this paper, s-PFSA has been used as one of the three standard benchmark
methods, where the other two are and shallow NN, to compare the results of the proposed PFSA-based projection method (p-PFSA)
which is presented later in Section 3. Algorithms for s-PFSA are available in [8].

2.4. Hidden Markov modeling for classification

There are various applications of hidden Markov modeling (HMM), which have shown high classification accuracy [2]. Therefore,
HMM has been chosen as one of the two baseline methods for performance evaluation of p-PFSA which is presented later in Section 3.

In the training phase of a HMM classification problem having C classes, the Baum—Welch algorithm [1] is used to learn a from
the time series belonging to each regime, i.e., classes ¢ = 1, ..., C. Similar to s-PFSA, the time series from each class is windowed at
user-specified window length (W L), window shift (W.S), and downsampling rate (D.S).

The testing phase takes time series from a window corresponding to an unknown regime, and the Forward Procedure [1] is used
to compute the loglikelihood, L¢, where ¢ = 1,...,C, of the given data to belong to each of the C classes. The final decision as to
which class the unknown data is most likely to belong is made by selecting the class with the largest loglikelihood as follows, i.e,
this method is also thresholdless:

Identified Class = argmax L 3)
ce{1,2,....C}
A continuous formulation has been used in this paper, which uses a Gaussian mixture model with M Gaussian components to model
the emission and there are N hidden states. Detailed algorithms for are available in [1].

2.5. Neural networks for classification

Neural networks are very versatile and have been widely used for different applications, including object recognition [30], system
modeling and analysis [31], time series classification [32] and many more.

The mathematical theory behind neural networks is well known [1,33] and has not been included in this paper for brevity. The
important point to note is that the neural network is an arrangement of an input layer that receives the data to be classified, hidden
layers with their respective weight matrices and activation functions, and an output layer that produces the decision. The weight
matrices are learned from the data, and inherently the neural network algorithm is thresholded, i.e., it learns thresholds for itself
that provides the optimal separation of the data among the C classes.

In the current paper, the authors have reported three NN architectures for a comparative performance evaluation of p-PFSA
that is presented next in Section 3. The first two NNs are shallow fully connected nets while the third is a shallow fully connected
net, preceded by an additional LSTM layer. The LSTM layer is used to learn the temporal evolution by back-propagating through
time [34]. In all these NNs, the dense layers except the output have the rectified linear unit (ReLU) activation; output layers have
the Softmax activation; and the cells in the LSTM layers have the tangent hyperbolic (tanh) activation functions.
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3. Projection-based PFSA for classification

This section develops a thresholdless classification algorithm, which is built on the concept of projection-based PFSA, called
p-PFSA. The key idea is as follows.

A hyperplane in the feature space is computed from the time series of each regime (i.e., class). The projection of a feature
(obtained from the data to be classified) is projected onto each hyperplane to achieve thresholdless classification [35]. The
core concept is explained below.

Let T € RI2XIQI where |Q| is the cardinality of the set of PFSA states (see Definition 1), be an ergodic stochastic matrix [29]. The
ergodic property of the stochastic matrix T guarantees the existence of exactly one eigenvalue 4, = | while the remaining (|Q| — 1)
eigenvalues are located on or inside the unit circle (with center at 0) in the complex plane, i.e., [4;| <1 fori=1.2,... (|Q| - 1.
In the situation that some of the eigenvalues are repeated, it is possible that there will be only m linearly independent (1 x |Q])
left eigenvectors, vy, ...,v,,, and m linearly independent(|Q| x 1) right eigenvectors, u, ..., u,, where 1 < m < (|Q| — 1). Let v, and
uy be respectively the (normalized) left and right eigenvectors of T with respect to the unique eigenvalue 4, = 1. The remaining
left and right eigenvectors are respectively v; and «; corresponding to the distinct eigenvalues 4,. These eigenvalues are ordered for
convenience as: 1 > [4,| > - >[4,]| > 0. It is noted that these eigenvalues are either real or pairs of complex conjugates and their
respective left eigenvectors {v,} and right eigenvectors {u,} are also either real or pairs of complex conjugates as seen below.

Since T is a real matrix, 0,7 = 4,0 = 0,7 = 4,0;; and Tu; = Au; = Ta; = A;ii;, where o, i; and 1; are complex conjugates of
v;, u; and 4;, respectively.

Claim. For distinct eigenvalues A; # A;, (i # j), i,j € {0,1,...,m}, the inner product (v},u;) =0, i.e., v Llu;.
Justification of Claim: Since A; # 4;, at least one of them is non-zero. Without loss of generality, one may set 4; # 0. Then,
(V). u;) = vu; = ALEU,TMJ— = j_—iv,ui = i_':(”;’”) = (1 - %)(v:u ) =0. Given 4; # 4; and 4; # 0, it follows that (v/,u;) = 0 = v} Lu;.
End of Justification

The above claim leads to the conclusion that, for a PFSA of a given class ¢ € {I,...,C}, vf)J.uj corresponding to each distinct
eigenvalue /Lj, Jj=12,...,m In the training phase, therefore, one may identify v(f) and u; Vj=1,...,m° Ve € [l,...,C}. During the
testing phase, in contrast, it is necessary to identify only the vector v* (corresponding to the unknown regime (i.e., class) to which
the test data belongs) for detection and classification of anomalous events, if any. In the absence of any anomaly, the vector v
should be (nearly) coincident with v! and thus (nearly) orthogonal to the subspace spanned by uJ! Vj =1,....m! (of the nominal
regime ¢ = 1), which has already been identified in the training phase. However, if an anomaly occurs, ¢/ should very likely deviate

0
from v, that corresponds to the nominal phase and the task is identify the regime (i.e., the class ¢ # 1) to which the test time series

belongs.
The main objective here is quantification of the anomaly as a deviation of v(f)" from g where ¢ € {1,...,C}. This is achieved

by projecting vj;" onto each of the C subspaces spanned by u Vj =1,....m". From the perspectives of energy distribution, for each

regime ¢ € {1,....C}, the absolute values |{| of the eigenvalues signify the energy associated with the (normalized) eigenvector
c. A
¢ &
u}’s were generated as normalized vectors. For a general ergodic stochastic matrix T, the right eigenvectors may not be orthogonal

uS; therefore, each u, j =1,....,m" is weighted as a |49] uf. The normalized version of the vector /|4{] uf is uS, because the
to each other [29]. Therefore, for each class ¢ € {1,...,C}, the (linearly independent) vectors , /|A;\ “§= j=1,...,m" are further

transformed by Gram-Schmidt orthogonalization as a set of mutually orthogonal vectors ﬁfi, j=1..,mie., (ﬁf,ﬂ;) =0Vi#k.
The procedure follows for each class ¢ € {1,...,C} as:

% 2 Vgl s ®

and for i =2, ..., m":

i—1
a2 st = 3 (\flagas. \J1ache Yus

Jj=1
i1
- ug\(u; -3 (uf,,/‘\llﬂld;)uj) )
Jj=i
For each class ¢ € {1,...,C}, having identified the m mutually orthogonal n-dimensional vectors i, the n-dimensional weighted

error vector £° is obtained by projection of the vector UG" onto the m-dimensional subspace, spanned by &, i = 1,...,m, where
1<m® <(|Q] - 1), as:

me

m
£2 Z(U(I)ﬂs’:‘f)ﬂf with [|&°| = E [(U:iﬁ’ﬂﬂlz .
i=1 =

Remark 9. Conceptually, the proposed p — PFSA algorithm is equivalent to projection onto the null space of v*’. However,
having computed the eigenvalues and eigenvectors of the state transition probability matrices, the proposed p — PFSA algorithm
is numerically more efficient than projection onto the null space of ¢v'*. Furthermore, p — PFS A is expected to yield more robust

0
classification than if u"]‘" were simply compared with v Vee [, Cl
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3.1. The projection PFSA algorithm: p-PFSA

This section applies the concept of projection, described above, to the classification task that requires discrimination among a
total number of C regimes (i.e., classes). In the training phase, a PFSA is generated for each class as described in Section 2.1. For
each class ¢ € {1.2,...,C}, the (|Q| x |Q|) state transition probability matrix T° is treated as the class feature for the class c. In this
paper, T¢ is equivalent to I7¢ because the PFSA is constructed with D = 1 (see Remark 7). Further, each T is ergodic and stochastic
(see Remark 8); therefore, for T¢, there exists a set of orthogonalized right eigenvectors {i}, where for each class ¢, i = 1,...,m",
and 1 £ m¢ £(|Q] — 1) is the number of linearly independent eigenvectors for class ¢. Hyperplanes of dimension m¢ are generated
from each set of orthogonalized right eigenvectors {i{} corresponding to each trained class, and it is expected that, for different
classes that represent distinct operational regimes, the hyperplanes will be distinct, i.e, a hyperplane belonging to class ¢ will have
its distinct normal direction v;. Classes that are close to each other will have directions close to each other but they are still expected
to be distinct.

For the testing (i.e., classification) phase, a time series is observed, which belongs to an unknown class; and then its state
transition probability matrix 7% is computed. It follows from Section 2 that the left eigenvector (u:)“)’ of the (stochastic and ergodic)
T's!-matrix is obtained corresponding to 116“ = 1. Then, u:]‘“ is projected onto each of the C hyperplanes that were generated in
the training phase; and the norm of the error vector in each hyperplane is computed as ||&¢||, where ¢ € {1,...,C}. The class
corresponding to the lowest error magnitude is identified to be the class to which the testing time series belongs. This makes p-PFSA
thresholdless as seen below.

Identified Class = argmin | &°|| @)
cefl2,...C}
Algorithms for both training and classification phases of p-PFSA are provided as Algorithms 1 and 2, respectively. Similar to s-PFSA,
the p-PFSA algorithms are tested on a (single) data window of length W L from a time series, belonging to an unknown class. The
test time-series (of the unknown class) is symbolized using the same partitioning and the parameters (i.e., A, D, WL, W S, and DS)
as for training.

Algorithm 1 Training of p-PFSA
Input: Windowed (of length W L) & downsampled (with rate DS) time-series data corresponding to each of C classes;
Label of the class (c¢) for each time series window.
Initialization: C counters (n°) set to 0.
User-set PFSA parameters: | A| and D.
Output: C sets of orthogonalized right eigenvectors forming a hyperplane for each class ¢ € {1.--,C}.
1: for j = 1 to total number of windows do
2:  Symbolize time-series segment j and generate PFSA
3:  Store state transition matrices Tf as the extracted feature where c¢ is the labeled class (using Eq. (1))
4 nf=n+1
s: end for
6T =L3" Teveec
7 forjlltocdo
8:  Compute eigenvalues ({1{}), left eigenvectors ({¢¢}) and right eigenvalues ({u{}) for T*
9:  Compute and store orthogonalized basis vectors to form hyperplane for class ¢ € {1, -,C}, called {i} (using Egs. (4) and
(3))
10: end for
1: return Hyperplanes for C classes Han

—

Algorithm 2 Regime Classification by p-PFSA

Input: A single window (of length W L) of downsampled data (with rate DS) from the observed time-series belonging to an
unknown regime
Orthogonalized surfaces for C classes ({#“}) obtained using the procedure in Algorithm 1
User-set PFSA parameters: | A| and D.

Output: : Regime class ¢ € {1,---,C}.

: Symbolize given time-series segment from unknown regime, generate PFSA and state transition matrix (T")

: Compute the left eigenvector (¢")" corresponding to the eigenvalue A:f' =1 for T*

: Compute projection error for each class (||€¢||) (following Eq. (6))

: Classify data window to belong to class with lowest value of ||£¢]| (as per Eq. (7))

: return Identified the regime class ¢ € {1,---,C}.

[ I S o R S R

Example 10. Fig. 1 displays a simple example to elucidate the underlying concept of p-PFSA. For ease of understanding, the

surfaces have been shown to be 2-D planes with four classes (i.e., m* =2 and ¢ = I. ..., IV), which would be true if the dimension

of each T-matrix is 3 x 3 (e.g., the alphabet size |A| = 3 and D = 1), and each T-matrix has 3 linearly independent eigenvectors. ah\
‘Vp.,._

6



C. Bhattacharya and A. Ray Mechanical Systems and Signal Processing 164 (2022) 108213

4

Orthogonal

Hyperplane
forClass 11 -

Orthogonal Hyperplane
for Class I ]

4 "
vy’ |

I

I

Orthogonal

Hyperplane mﬁ
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Fig. 1. Graphical representation of the PFSA-based projection algorithm p-PFSA with parameters: |A| =3, D=1, and C =4.

Each class ¢ has its corresponding left eigenvector for the eigenvalue 1, = 1, denoted as (vf))’, ¢ = I,.... IV in the four individual
plates of Fig. 1 as indicated by arrowed dashed lines. By construction, these eigenvectors are normal to the 2-D planes. For an
unknown time-series, the corresponding left eigenvector for A* = 1 is shown as (v;")" (denoted by the arrow with the solid line).
The yg" is projected onto all four hyperplanes and the corresponding error vectors, denoted as £°, are also drawn in each plate of
Fig. 1 and the corresponding norms ||£°|| are magnitudes of the projected error vectors.

It is observed, in this example, that the magnitude ||£7|| is the smallest, with [|£/Y|| being the second lowest. Also, by a visual
inspection of the deviation between u{f’ and the eigenvectors uf), c=1,11,111,1V,itisseen that the vectors uff’ and u{)’ are closest
to each other. Thus, the unknown vector ¢/* is identified to belong to class I1.

0

Remark 11. It is possible to encounter a matrix ¢ with two or more repeated eigenvalues, where m“ < (|Q| — 1), i.e., the (|Q| - 1)
right eigenvectors are not linearly independent. In such a situation or where a pair of eigenvectors are almost co-linear, the
application of Gram-Schmidt orthogonalization would cause the projection of one of the two (almost) co-linear eigenvectors to
vanish in magnitude. Thus, the rest of the computation would remain the same, yielding nearly zero weightage for a (nearly)
linearly dependent eigenvector. Thus, the provided theory is robust to this situation.

4, Modification of data normalization

This section modifies the procedure for normalization of the raw time series data prior to partitioning and symbolization (see
Remark 5). The rationale for this normalization is to remove signal bias and to construct a fixed finite set of global partitioning
boundaries to be applicable across all data sets encountered in the classification problem, where the individual data sets may have
different maximum and minimum values. There are primarily two ways in which normalization procedure can be executed:

(1) The time series is normalized to have a fixed range (i.e., the difference between maximum and minimum values), typically
within a unit range so that the normalized data have a minimum value of 0 and a maximum of 1. However, any other set of
bounds can also be used.

(2) The time series is normalized to have zero mean and unit variance. This method is preferable since it does not allow a few
outliers to cause incorrect normalization, which the fixed range partitioning is prone to do.

However, the above process of normalization removes the information of the signal magnitude while retaining only the
information about the signal texture (i.e., waveform), as seen in Fig. 2. The top row of Fig. 2 shows three sinusoidal signals having
identical frequencies, but the left-hand and middle signals have an amplitude 10 units while the right-hand signal has an amplitude
20. Further, the left-hand and right-hand have signal means at 0 while the middle signal has a mean at 10 units. The equivalent
normalized signals are shown in the bottom row of Fig. 2, where the three normalized zero-mean and unit-variance signals are
identical. This implies that the PFSA constructed from these normalized signals will also be identical; therefore, it is impossible for
5-PFSA to discriminate between these three signals although the original signals were different before normalization.

This paper proposes a modification of the normalization procedure to resolve this issue, which stores the numerical values of the
mean and standard deviation of the raw (i.e., before normalization) time series in the training phase for each of the C classes, namely ah\
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Fig. 2. Demonstration of the drawback of data normalization prior to symbolization showing signals prior to normalization (top row) and signals after zero

mean, unit variance normalizing (bottom row).

u¢ and o¢ for ¢ = 1, ..., C. Subsequently, during the testing phase, the mean (x’*") and standard deviation (¢**") of the observed time
series are computed. Accordingly Egs. (2) and (7) are respectively modified as:

Classg ppgp = argmin H(T”",y"’,u"“) — (T, u, 0%
ee{l,....C}

CIaSSp-PFSA = a_rgmln ||(€J‘S{.E’ u.’s!, a_r.ﬁ) — (0, pt, GC)H
cef cl

(8)

(€)]

where the information of each PFSA is augmented to a triplet including the respective mean and standard deviation of the time
series both during training and testing. It is also noted that £**¢ in Eq. (9) denotes the error computed by projecting v onto the
hyperplane of class ¢ (see Section 3.1). The corresponding right hand entry is 0 because the error due to projection of ¢ onto the

hyperplane of class ¢ is zero.

NOTE: The PFSA algorithm in its current form is designed to be able to study and classify statistically quasi stationary time-series
data (e.g., signals arising from sensors in cyber—physical systems). However, HMM and NN are also further capable of learning
long-term dependencies as well as complicated time-varying signals due to the much more complex mathematical algorithms
governing them, which implies higher computational times as well as requirement of more data to learn a good model. Therefore,
for ‘statistically quasi stationary’ signals, it is expected that the proposed p-PFSA would compare well to state-of-the-art methods like

HMM and NN.

5. Generation of data for algorithm validation

This section generates data in the form of time series for validation of the proposed pattern classification algorithm p-PFSA.
Two types of data have been generated: (i) synthetic data (see Section 5.1) from four standard chaotic systems; this is a largely
unexplored problem due to inherent difficulties of class separation; and (ii) experimental data of pressure-wave time-series (see
Section 5.2) from a combustor apparatus to demonstrate a real-life engineering application.

5.1. Time series data from chaotic systems

This subsection generates data sets of time series from four well-known chaotic dynamical systems, namely, Hénon map [36],
forced Duffing [37], Rossler attractor [38], and Lorenz attractor [39]. The objective here is to demonstrate efficacy of the proposed
p-PFSA and compare its performance to those of s-PFSA, HMM, and NN. Although chaotic dynamical systems are essentially
deterministic, they are sensitive to initial conditions and some of the system parameters. These chaotic data have been generated
by varying pertinent parameters (see Table 1 for details) and are identical to those studied in a previous publication [3], where the
efficacy of HMM in classifying chaotic conditions has been investigated.

The four chaotic dynamical systems, considered in this paper, are now briefly presented. The first chaotic system is Hénon
map [36] that is characterized by the following pair of first-order coupled difference equations:

2 .
Xpp = 1 —ax, +y,;

Y1 = bxn

"
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Table 1
Case studies for different chaotic maps; listing fixed and varying parameters and initial conditions for training and test data.
Case Chaotic Fixed parameter Varying parameter values Initial conditions for Initial conditions for
system values training data testing data

I Henon bh=1023 a =1 to 1.4 in increments of 0.05 (xg, ¥y =(1,1) (xg. o) = (1. 1)

A Henon b=023 a =1 to 1.4 in increments of 0.05 (xg, ¥p) =(1,1) (xg. ¥p) = (0,0)

i Duffing y =026 =05, @ = 0 to 2 in increments of 0.5 (x,Xp) = (0,0) (xq. %) = (0,0)
a=1f=-1

II-A Duffing y =026 =05, @ = 0 to 2 in increments of 0.5 (x.Xp) = (0,0) (x4, %) = (0.1,0)
a=1p=-1

iig Duffing a=-1,8=1, ¥ = 0.2 to 0.60 in increments of 0.1 (0, %) = (0,0) (X0s X0) = (0.0)
5=03, =12

v Duffing a=-1,p=1, y = 0.2, 0.28, 0.29, 0.37, 0.50 & 0.65 (X, %g) = (0,0) (xg: %) = (0,0)
5=03, =12

v Duffing a=1 =1, & = 0.1 to 0.35 in increments of 0.05 (X, Xp) = (0,0) (x4, Xp) = (0,0)
y=22, =5

VI Rossler b=2,c=4 a = 0.25 to 0.55 in increments of 0.05 (g ¥pr 29) = (1L L, 1) (xg> Yo» 29) = (I, 1, 1)

VI-A Rossler b=2e=4 a = 0.25 to 0.55 in increments of 0.05 s YaiZo) = (1,1, 1) (xg Yo- 20) = (0,1, 1)

vIL Rossler b=2¢c=4 a = 0.3547, 0.398, 0.41, 0.4582, (X Yoo Z0) = (1,1, 1) (X Yoy Z0) = (1,1, 1)

0.5031 & 0.55

VIIL Rossler a=02¢=57 b = 0.2 to 1.8 in increments of 0.4 (Xgs Yos Z9) = (0,0,0) (Xgs Yo- Z9) = (0,0,0)

IX Rossler a=01,5=01 ¢ = 5 to 45 in increments of 5 (xp, Yo, 7o) = (02,0.3,0.2) (%9, ¥o- 29) = (0.2,0.3,0.2)

X Lorenz c =10, f = 8/3 p = 50 to 250 in increments of 20 (xg, Yo, 29) = (1,1, 1) (xg: Y0, 29) = (L L 1)

X-A Lorenz o =10, p =8/3 p = 50 to 250 in increments of 20 (xgs Yos 20) = (1,1, 1) (%9 Yo» 29) = (0,1, 1)

XI Lorenz =10, =8/3 p = 13, 14, 15, 28, 99.96, 100.3, 155, (X0sYor Zg) = (1, 1,1) (X Yor Z0) = (1,1, 1)

193, 228, 229, 230.5 & 240

The second chaotic system is forced Duffing [37], representing the dynamics of a nonlinear spring, whose governing equation is
given as:

4 6%+ ax + fx° = ycoswr (11)

The third chaotic system is Rossler attractor [38], representing chemical reaction kinetics, which has the following three coupled
first-order differential equations:

X==-y—1z
y=x+ay
z=b+z(x—c) a2

The fourth chaotic system is Lorenz attractor, which is derived by reducing the order of Navier-Stokes equation [39], and is
governed by the following three coupled first-order differential equations:

x=0(y—x)
y=x(p—2z)—y
z=xy—fz (13)

Since these chaotic systems are sensitive to the parametric values in Egs. (10), (11), (12) and (13), the evolution of the system state
variables may drastically change with a slight perturbation in any one of these parameters. In this context, regime classification
would imply being able to identify which regime (i.e., the class represented by a set of system parameters) does the time series of
an unknown signal belong to. However, this task is not straightforward, because multiple classes may end up being very close to
each other (i.e., may have quite similar signal forms).

This difficulty can be easily appreciated by observing phase diagrams of the Rossler system in Fig. 3, which demonstrates how
a small perturbation in the parameter ¢ in Eq. (12) and keeping the other system parameters fixed at @ = 0.1 and » = 0.1) can
lead to a change in the signal switching between periodic and chaotic signals. Similarly, Figs. 4 and 5 show a segment of different
time-series from Case IX (Rossler system) and Case X (Lorenz System), respectively. These two figures display how complex these
chaotic signals are, while it is also observed that the signals between classes are almost visually indistinguishable in some cases.
Thus, the class discrimination can be extremely difficult, which is probably the reason why there has not been much attempt to
address the classification problem in chaotic dynamical systems.

5.2. Time series of data from a combustor apparatus

This subsection addresses signal generation for investigation of thermoacoustic instability (TAI) [40], which is a well-known
problem encountered in enclosed combustors under certain operational conditions (e.g., Mondal et al. [23] and Bhattacharya
et al. [24]). TAI is caused by constructive interference between fluid flow and thermal energy release; if they become phase &
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Fig. 3. Phase diagrams of the Réssler system for varying parameter ‘¢’ indicating the system regime for that value, a = 0.1, b= 0.1, (x, ¥5.2,) = (0,0,0).
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Fig. 4. Time-series of the Rossler system evolution for varying parameter ‘¢’ (Case IX), a = 0.1, b= 0.1, (x,, ¥,. z,) = (0.2,0.3,0.2).

frequency aligned, then large-amplitude well-ordered pressure oscillations may occur. This causes mechanical stresses and vibrations

in the structural components, none of which are desirable.
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Fig. 6. Schematic diagram of the combustion apparatus.

Ensembles of pressure-wave time-series, corresponding to a variety of operational parameters, have been generated from a
laboratory-scale combustor apparatus [22]. Fig. 6 shows a schematic diagram of the swirl-stabilized, lean-premixed, variable-length
combustor apparatus that consists of an inlet section, an injector, a combustion chamber, and an exhaust section. There is an optically
accessible quartz section followed by a variable length steel section which is set to have various lengths between ~ 25-59 inches
(~ 64-150 mm) with ~ 1 inch (~ 25 mm) increments. A compressor supplies high pressure air which is preheated to 250 °C by an
electric heater with the air flow rate ranging from 25 to 30 m/s with increments of 5 m/s. The fuel is natural gas (approximately
95% methane), the flowrate of which is adjusted to obtain fuel-air equivalence ratios (¢) of 0.525, 0.55, 0.60 and 0.65.

A total of 780 eight-second long time-series of pressure-wave signals exist for various combinations of the operational parameters
(sampled at 8192 Hz using pressure transducers). Fig. 7 shows a comparison between typical stable and unstable time-series. It had
been observed experimentally that the combustor becomes unstable once the root mean square (RMS) value of the pressure signal
exceeds 0.07 psi (483 pascal). This knowledge has been used as the ground truth for training and testing the algorithms in this paper.
It is important to note that a lot of these signals belong close to the borderline of this threshold and are not easy to classify [23].
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Fig. 7. Typical pressure time-series plots for various operating conditions: Top two plots represent stable operation; Bottom two plots represent unstable operation
(TAI). It is noted that the range of the ordinate in the bottom-most plot is from -2 to +2 psi (-13,790 to 13,790 pascal), while that for the remaining three
plots is —0.4 to +0.4 psi (-2,758 to +2,758 pascal).

It is seen in Fig. 7 that RMS values of the displayed pressure-wave signals tend to increase from top to bottom. The top-most
plate represent stable operation, the second plate from top shows the ‘border-line’ operation, while the bottom two plates show
unstable operation. It is evident that the top-most plate in Fig. 7 is the most stable with low-amplitude noise data. In the next plate,
the signal amplitude is larger and begins to get ordered (i.e., tends toward instability although the RMS value is below the threshold
of 0.07 psi). Such a case is prone to misclassification even if one uses typical state-of-the-art methods like HMM, NN, or visibility
maps [23] as well as symbolic time series analysis [24]. In these border-line cases, the signals contain characteristics of both stable
and unstable operation, leading to poor classification as compared to the visibly stable and unstable signals. The bottom two plates
show large-amplitude highly ordered signals (i.e., full-blown instability). It is noted that the amplitude of the bottom-plate signal is
5 times the amplitude of the signal above it.

6. Results of algorithm validation

This section presents and discusses the results of validation of p-PFSA on the data sets, generated in both Sections 5.1 and 5.2 ;
these results are compared with those for s-PFSA, HMM, and NN.

6.1. Algorithm validation with chaotic data

This subsection validates the algorithms of p-PFSA with synthetic data generated from four chaotic systems. Before presenting
the results with normalization fix (see Section 4) on comparison of the proposed p-PFSA alongside s-PFSA, HMM, and NN, it is
necessary to explain the specific nature of the data that are used for validating the algorithms (see Section 3.1). These chaotic data
are identical to those reported by Bhattacharya and Ray [3], and the system parameters are listed in Table 1. For example, the signal
data are generated by forward difference in the Hénon map (see Eq. (10)) and by fourth-order Runge-Kutta integration with a fixed
time-step size of 1 ms for Duffing, Rossler and Lorenz systems (see Eqgs. (11), (12) and (13)). For each parameter set, 5,000 s long data
have been generated for both training and testing phases, yielding 5,000,000 data points per condition. Additionally, the signals are
artificially contaminated with 10% noise (amplitude ratio formulation), which corresponds to a signal-to-noise ratio (SNR) of 20 dB.
Table 1 also lists the initial conditions used to generate the training and testing data. These parameters and their ranges are taken
from cited research publications (e.g., [7,36-39,41,42]), and are reported here for reproducibility of the results. The parameters of
PFSA (i.e., both p-PFSA and s-PFSA) and HMM, namely, the alphabet size (|.A| and the Markov depth D = 1), number of Gaussian
components (M) and number of hidden states (N), need to be assigned. It is noted that higher depths (i.e., D > 1) of PFSA have
not improved the results significantly.

The optimal values of parameters for each system of equations are slightly different. For a fair comparison, two values for each
of the parameters |A| and N are studied, which are 10 and 30. The parameter M=4 is maintained across all trials of HMM. For
NN, three different nets are considered: (i) the first net, called NN-1, with 1 hidden layer consisting of 100 neurons; (ii) the second
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Table 2
Results of case studies for the different chaotic maps; comparing the three NN methods and the HMM, s-PFSA (in presence and absence of the normalization
fix) and p-PFSA methods for two values of alphabet size (|.A|) and number of hidden states (N).

Case Chaotic DS = 100, WL = 1000
system
NN-1 NN-2 NN-LSTM  |A| =N =10 |A| =N =30
error error error
HMM s-PFSA error p-PFSA HMM s-PFSA error Dp-PFSA
error error error error
Without With fix Without With fix
fix fix
I Henon 0.00% 0.00% 16.95% 1.03% 7.59% 3.64% 1.73% 0.97% 6.93% 3.25% 1.44%
I-A Henon 31.61% 29.53% 41.27% 11.83% 7.33% 14.59% 12.47% 12.24% 8.31% 14.73% 12.98%
i Duffing 0.00% 0.00% 79.99% 0.00% 2.67% 0.78% 0.00% 0.00% 8.67% 0.44% 0.00%
II-A Duffing 0.00% 0.00% 79.99% 0.00% 3.63% 0.41% 0.00% 0.00% 8.19% 0.59% 0.00%
I Duffing 0.00% 0.00% 39.49% 23.11% 25.15% 21.48% 2233 4.48% 30.07% 28.59 23.11%
v Duffing 0.03% 0.00% 1.23% 17.81%  10.06% 10.40% 4.20% 1.11% 13.70% 13.06% 2.93%
v Duffing 21.41% 1.91% 8.51% 46.33%  32.87% 30.43% 22.87% 30.77%  29.72% 26.70% 9.48%
VI Rossler 0.00% 0.00% 85.71% 6.06% 24.47% 5.48% 4.34% 1.69% 19.23% 4.02% 5.11%
VI-A Rossler 2.06% 1.98% 0.01% 6.51% 23.84% 4.74% 3.47% 1.69% 18.70% 3.44% 3.62%
VII Rossler 0.00% 0.09% 0.84% 2.44% 10.12% 2.62% 1.51% 1.17% 5.19% 2.50% 1.57%
VI Rossler 0.00% 0.00% 0.0% 0.00% 21.22% 1.48% 1.11% 0.85% 21.93% 0.07% 0.96%
IX Rossler 9.65% 9.82% 0.82% 0.37% 51.42% 0.93% 0.93% 0.10% 46.15 0.91% 0.93%
X Lorenz 0.00% 8.00% 0.0% 0.00% 0.76% 0.11% 0.20% 0.00% 1.65% 0.17% 0.20%
X-A Lorenz 61.66% 61.35% 0.0% 8.98% 1.02% 0.26% 0.39% 0.00% 2.31% 0.33% 0.41%
XI Lorenz 25.69% 28.04% 0.0% 6.59% 23.28% 1.44% 5.17% 0.00% 25.57% 3.56% 5.22%
Average error 10.14% 9.38% 23.66% 8.74% 16.36% 6.59% 5.38% 3.67% 16.42% 6.82% 4.53%

net, called NN-2, having 2 hidden layers of respective sizes 100 and 20 neurons; and (iii) the third net, called NN-LSTM, that has a
single LSTM layer with 100 hidden units, followed by 2 fully connected dense layers, which consist of 2 hidden layers of sizes 100
and 20 neurons, respectively. Each net is trained over 100 training epochs.

6.1.1. Fixed window size and downsampling rate

Tabulated comparisons of the total percentage error in classification for NN, HMM, s-PFSA and p-PFSA are presented in Table 2.
For all of the above methods to be compared, the time series data are first downsampled by DS = 100. This is necessary because
the time-step of integration is intentionally made small to assure the accuracy of integration, which leads to oversampling. The
processed data are then windowed with a moving window formulation (see Section 2) for a window size of WL = 1,000 and a
window shift value of WS = 100 data points as seen in [3]. The parameters DS, W L, and WS are held constant across all training
and test cases. It is seen in Table 2 that, across the board, there is no preferred algorithm that performs the best in all of the cases.
Both the HMM and PFSA-based algorithms work better for higher values of number of hidden states (N) and alphabet size (A),
respectively. It is apparent that s-PFSA without the normalization fix does not fare too well with an average error of about ~ 16%
for both values of |A|.

Significantly different results are seen after the normalization fix is introduced (see Section 4), which causes the accuracy of
s-PFSA to improve to an error of about ~ 6%. classification accuracy for p-PFSA (with the normalization fix included), in general,
is superior to that for s-PFSA in nearly all data-sets with marked improvements in some cases (e.g., Case IV). The rationale is that
inclusion of the signal amplitude and mean values in the classification metric allows the algorithm to compare both signal shape
and value. The absence of normalization fix is a drawback of the s-PFSA formulation.

Table 2 lists the results generated from the four chaotic systems in Egs. (10) to (13) with the same parameter values as those
reported in [3], where HMM was chosen as a baseline method for testing the classification accuracy. It is seen in Table 2 that both
5-PFSA and p-PFSA yield accuracy comparable to that of HMM after applying the normalization fix, where the average performance
of p-PFSA is better than that of s-PFSA. While the two neural networks outperformed both HMM and PFSA-based methods in some
cases (e.g., Cases III and V), they performed poorly in some other cases (e.g., Cases I-A, X-A and XI). It is noted that, for Case III
except the neural networks, none of the other methods had good classification accuracy, with the exception of HMM with N = 30
to some extent. A possible reason is that the signals for some of the values of a varying parameter are almost identical, but when its
values are chosen such that there is some change in the signals (Case IV). All cases perform better for HMM with N = 30 and p-PFSA
with |.A| = 30 doing the best. Interestingly, a similar trend is seen in other data sets, where the signals are of similar characteristics;
for example, Case V (see [3]), p-PFSA significantly outperforms HMM at both values of alphabet size / hidden states, while the NN
methods do well only when there are 2 hidden layers (NN-2). The results of NN-LSTM are very interesting where, for some cases,
namely, I, II, IIT and VI, this network performs very poorly as seen in Table 2, while it largely outperforms the other methods in a
majority of the remaining cases. The rationale is probably the fact that the networks were not optimized in terms of their depths
and neurons per layer, i.e., the network architectures were not optimized. The procedure of architecture optimization is a general
problem in the NN literature and is a drawback by itself, because of the large training times needed as the process of exhaustive
parameter search is very slow.
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Table 3
Results of p-PFSA for case studies of four chaotic maps with optimal D.S and W L along with normalization
fix and two different values of alphabet size (|.4]).

Case Chaotic system Optimal DS and WL

| Al =10 Al =30

s-PFSA error p-PFSA error s-PFSA error p-PFSA error
1 Henon 2.25% 0.56% 2.05% 0.52%
I-A Henon 3.06% 0.42% 2.03% 0.48%
il Duffing 0.52% 0.00% 1.42% 0.00%
I-A Duffing 0.37% 0.00% 1.88% 0.00%
III Duffing 21.33% 22.65% 28.23% 23.50%
w Duffing 8.42% 3.12% 9.89% 1.38%
v Duffing 17.31% 6.29% 6.34% 0.85%
VI Rossler 5.08% 4.72% 3.86% 4.71%
VI-A Rossler 4.37% 3.54% 3.30% 3.54%
Vil Rossler 3.04% 1.44% 3.29% 1.33%
VI Rossler 1.56% 1.17% 0.00% 0.42%
X Rossler 0.78% 0.78% 0.77% 0.78%
X Lorenz 0.09% 0.09% 0.03% 0.09%
X-A Lorenz 0.20% 0.21% 0.11% 0.19%
XI Lorenz 0.44% 0.46% 0.22% 0.32%

Average error 4.59% 3.03% 4.23% 2.54%

Considering the average errors across all cases as an overall performance metric of each method, it is seen that HMM with N = 30
does the best, while p-PFSA with |.A4| = 30 and 10 come a very close second and third, respectively. The worst performance is seen
by s-PFSA without the normalization fix.

6.1.2. Optimal window size and downsampling rate

One of the reasons for the PFSA-based methods (i.e., s-PFSA and p-PFSA) lagging behind HMM is the inherent sensitivity of PFSA
to the window length (W L) and downsampling rate (D.5). The construction of PFSA dictates that oversampling of the data could
lead to “self looping" in the graph of PFSA (i.e., “strong diagonals™ in the state transition probability matrix T), while undersampling
does not capture the signal form well; both situations degrade the classification power. Regarding the window length WL, since
PFSA is an algebraic method that uses the knowledge of the texture of a signal wave-form, a sufficient window-length is needed to
accurately analyze the signal.

In view of the above, fixed values of the parameters W L and D.S would not work across all cases. A logical method is proposed
for choosing a reasonably good value of these the parameters WL and D.S, which should be conducted in the training phase. In
order to allow for correct sampling, each complete periodic waveform needs to be sampled at an adequate rate, i.e., enough discrete
signal values from a single complete wave. For capturing a sufficient number of waveforms, the window length would need to be
such that several complete cycles are seen for appropriate averaging.

In order to arrive at the exact values of W L and D.S, a FFT based analysis of the training signals has been conducted to find the
dominant frequencies from the ensemble of data. Taking an inverse of these frequencies yields a set of prominent wavelengths in
the data, where DS is set such that the highest frequency wave (i.e., shortest wavelength) is sampled for at least 40 points, while
WL is set to be at least 60 times the longest wavelength. Finally, to allow for a fair comparison to the results in Section 6.1.1, it is
ensured that the value of the product WL x DS is less than or equal to 1,000 x 100 = 10°. If the product exceeded this value, WL
and DS must be adjusted to be less than 10°, while a lower bound of D.S,,, = 10 is set. These values of bounds have been obtained
by several tested trials and apparently produced the highest accuracy. A comparison of the classification accuracy for both s-PFSA
and p-PFSA using these optimal values of WL and D.S is presented in Table 3, where it is seen that an optimal selection of W L
and DS with normalization fix improves the performance of both s-PFSA and p-PFSA. It is noted that the accuracy of p-PFSA in
Table 3 exceeds that of HMM with fixed WL and DS in Table 2. Classification by HMM has not been attempted in this paper for
optimal W L and DS, because of the requirements of much larger training and testing times of HMM; this topic is further discussed
in Section 6.1.3 and is suggested as atop[c of future research in Section 7. Optimal values of W L and D.S may often lead to very
large values of W L and/or low values of D.S or both, resulting in each window to have large data points, which would slow down
the training of HMM. Similarly, the NN method was also not attempted for optimal WL and DS.

6.1.3. Time complexity

The PFSA architecture, adopted for both s-PFSA and p-PFSA is essentially algebraic and does not require any recursion (see
Sections 2.1 and 2.2), which has the advantage of having fast execution time for both training and testing. This architecture was
used by the authors in [43] for online discovery and detection of classes. In contrast, HMM uses an iterative maximization method
for both training and testing phases, which are computationally more complex (see Section 2.4), leading to much larger training
and testing times. Similarly. the NN-based methods are relatively slow to train due to the large number of parameters to be learnt
(e.g., via gradient descent), but are relatively faster than HMM, though still slower than PFSA-based methods. Previously, literature
has been lenient to this fact, because of relatively high accuracy of HMM and NN. However, it is shown in this paper that p-PFSA
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Table 4
Time complexity chart for comparison of NN-1, NN-2, HMM and s-PFSA with
p-PESA for two values of alphabet size (|.4|) and number of hidden states (N).

Mean training Mean testing

time (in ms) time (in ms)

NN-1 19.96 6.97
NN-2 20.48 6.83
NN-LSTM 2224.34 7.65

HMM 946.29 41.83
|A|=N=10 s-PFSA 0.34 0.48
p-PFSA 0.47 0.46

HMM 2037.21 93.02
|A| =N =30 s-PFSA 0.42 1.32
p-PFSA 1.25 1.12

(and even s-PFSA in a few cases) can provide similar or superior accuracy for time-series classification with significantly smaller
training and testing times.

Table 4 compares the training and testing times of NN-1, NN-2, NN-LSTM and HMM with those of p-PFSA for two selected values
of the parameters |.A| and N, while the other the parameters are held fixed at WL = 1,000 and DS = 100. It is seen that the training
time for HMM is approximately 3 orders of magnitude larger than either of the PFSA-based methods, while the testing time is about
2 orders of magnitude larger. The training and testing times for vanilla NN lie in between those for PFSA and HMM. The training
time of NN-LSTM is even worse than that of HMM, while still not being able to provide good results. It is noted that deeper and
more complex nets may take even longer time to train. The testing time is similar to that of the vanilla NNs. To put into context
of time complexity, NN-LSTM took about 90 h to train and test all data sets, while p-PFSA did the same tasks in ~ 3 minutes. It
is also seen in Table 4 that both s-PFSA and p-PFSA have similar training and testing times. Thus, both PFSA methods are faster
than HMM and using the proposed modifications (i.e., normalization fix and using optimal parameters WL and D.S), p-PFSA is
capable of achieving an almost similar and possibly slightly better accuracy than HMM and NNs across a wide range of chaotic
data, considered in this paper.

NOTE: A single core processor of a DELL Precision Tower 7910 Workstation running on an Intel® Xeon® E5-2670 CPU has been used
to evaluate the computation times for all of the methods. The MATLAB-based PFSA codes are developed in-house,' while the HMM codes
are from [1] Hidden Markov Model ((HMM) Toolbox for MATLAB.? The NN algorithms are developed in a Python environment using the
Keras library.

6.2. Results of algorithm validation with combustion data

This subsection validates the algorithms of p-PFSA with experimental data of a real-life physical process. Using the data set
of pressure time series, generated from the combustor apparatus (see Section 5.2), the proposed p-PFSA is compared to s-PFSA,
HMM, NN, and NN-LSTM. The ensemble of time series is separated into respective training and testing data by randomly using
a 70-30 split. Similar to the time series of chaotic data sets (see Section 6.1), the time series of combustion data sets too must be
broken into windows of respective length W L, with a window skip WS and a downsampling rate DS. Consequently, each 8-second
(i.e., 65,536 data points) long pressure-wave time-series is split into windows of length WL = 100 ms, at a sampling rate of 20 Hz,
i.e., 20 windows per second, leading to W.S = 50 ms at a downsampling rate of D.S = 2.

For the combustion data, PFSA alphabet size |.A| and number of hidden HMM states N are kept at 10 each. The HMM yields best
results for the number of Gaussian mixtures M = 2. Because of limited availability of experimental data, only two NN architectures
are tested, one having a single hidden layer of 100 neurons (NN-1), with the other having an LSTM layer with 100 neurons followed
by a single hidden layer with 100 neurons (NN-LSTM). Each net was trained for 100 epochs. The computational time complexities
of p-PFSA, s-PFSA, HMM, NN and NN-LSTM are qualitatively similar to those presented in Table 4 (see Sub-Section 6.1.3).

Table 5 presents the classification accuracy of four pattern classification methods under consideration: p-PFSA, s-PFSA, HMM,
NN-1 and NN-LSTM, where p-PFSA outperforms both HMM and s-PFSA. It is also seen that NN-1 and NN-LSTM perform better than
p-PFSA due to the following fact.

The inherent architecture of NN allows the learned weights to generate results that are similar to those produced by thresholded
classification. The p-PFSA can be used in a thresholded fashion too [21]; however, this paper focuses on a thresholdless approach.

1 Available at: https://github.com/Chandrachur92/PFSA.
2 Available at: https://www.cs.ubc.ca/~murphyk/Software/HMM/HMM.html.
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Table 5
Classification accuracy of combustion data: Using NN, NN-LSTM, HMM, s-PFSA and p-PFSA.
NN NN-LSTM HMM s-PFSA p-PFSA
Classification error 5.73% 5.39% 16.38% 12.48% 9.13%

7. Summary, conclusions, and future work

This paper has proposed a projection-based extension of the standard probabilistic finite state automaton, called s-PFSA [7,8],
to perform data-driven thresholdless classification in chaotic dynamical systems. It has also demonstrated an application of this
classification method to a (real-life physical) process on a laboratory-scale apparatus [22] that emulates the essential characteristics
of industrial-scale combustion systems. The key concept of the proposed projection-based method, called p-PFSA, is built upon the
ergodicity and stochasticity properties [29] of the state transition probability matrix T that is derived by symbolization of time series
of both training and test data. The projection of the left eigenvector, corresponding to the (unique) unity eigenvalue of 7'’ onto
the hyperspaces, spanned by the respective right eigenvectors corresponding to the remaining distinct eigenvalues of trained state
transition probability matrices T*, for different classes ¢ = 1, ..., C. Furthermore, analysis to remedy a drawback in s-PFSA due to
normalization of time series has been investigated, and a fix has been provided to improve the classification accuracy. An additional
methodology for selection of optimal hyper-parameters (e.g., window-length W L and downsampling rate D.S) is introduced, which
shows a further improvement in the classification accuracy.

Efficacy of the proposed p-PFSA has been shown on synthetic data, generated from four different chaotic dynamical systems.
Classification of chaotic data itself is a rather difficult task and HMM-based classification results from [3] have been used as
a baseline, along with results of additional comparison with shallow neural network (NN)-based methods with long short-term
memory (LSTM). In order to demonstrate how p-PFSA performs in real-life situations, experimental data of pressure-wave time-series
from a laboratory-scale combustor apparatus have been used to classify whether the combustor is stable or having thermoacoustic
instability. Once again p-PFSA performs well compared to s-PFSA and HMM, but it could be (possibly) outperformed by NN if
sufficient training data are available, which is not a requirement for p-PFSA.

While there are many areas of theoretical and experimental research to improve the proposed classification methodology, the
following topics are suggested for future research:

(1) Identification of self-learned thresholds for multi-class pattern classification in the setting of p-PFSA: This research is necessary,
because thresholded approaches have been shown to yield major improvements in the accuracy of binary classification
problems [21].

(2) Theoretical research on optimal identification of hyper-parameters of window-length (W L) and downsampling rate (DS): This
research is necessary to enhance the performance of p-PFSA for a wide range of dynamical systems, which include different
types of physical processes [14,21,28].

(3) Comparison of performance (e.g., classification accuracy, robustness, and computational complexity) of p-PFSA with that of deep
neural networks and their configurations: This research is necessary to make p-PFSA a competitive tool of machine learning.

(4) Experimental research on validation of p-PFSA for a variety of physical applications: This research is necessary to make p-PFSA
acceptable for (real-life) industrial applications

(5) Extension of the p-PFSA algorithm to have a capability of learning dynamically changing data that are not restricted to be statistically
quasi-stationary [14,28]: This research is necessary to improve the performance of p-PFSA under transient operations of the
dynamical system under consideration.

Acronyms of frequently used terms

CNN convolutional neural networks
DNN deep neural networks

DS downsampling rate

FSA finite state automaton

HMM hidden Markov model

LSTM long short-term memory

MEP maximum entropy partitioning
ML machine learning

NN neural networks

p-PFSA projection-based PFSA

PFSA probabilistic finite state automaton
RelU Rectified linear unit

RNN recurrent neural networks
s-PFSA standard PFSA

STSA symbolic time series analysis
WL window length

ws window shift
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Nomenclature of frequently used symbols

A alphabet of symbols for PFSA

number of classes or regimes

class or regime

depth of a D-Markov machine

loss function

number of linearly independent eigenvectors
number of Gaussian mixtures in a HMM
number of hidden states in a HMM

morph matrix for PFSA

state transition probability matrix for PFSA
set of PFSA states

eigenvalue of T

right eigenvector of T

left eigenvector of T

statistical mean

statistical standard deviation
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