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ABSTRACT

This paper addresses two issues for safety & performance analysis of nuclear reactors; these issues are: (i) Modeling of the neutron noise process, which is constructed
as stochastic differential equations by augmenting deterministic dynamic models of point kinetics, thermal hydraulics, and mechanical vibrations in the reactor core,
and (ii) Time-series analysis of nuclear reactor internals for early-stage anomaly detection by making use of the neutron noise model. The model is used to generate
an ensemble of time series of neutron noise under both normal and anomalous operating conditions, where an anomaly in the postulated probability distribution of
neutron noise is caused by abnormal vibration of the fuel assembly. A symbolic time series analysis (STSA) tool, called probabilisitc finite state automata (PFSA), has
been selected to detect the anomalies, if any. The PFSA method symbolizes a time-series and then encodes the resulting symbol string into a state transition
probability matrix, which is both stochastic and ergodic by construction. The discrimination funetion for anomaly detection is built upon the residual error of the
principal (left) eigenvector of the state transition probability matrix, which is also the state probability vector of the PFSA. The accuracy of the proposed analysis and
its capability for online anomaly detection is demonstrated by simulation on a low-order dynamic model of a 2,500 MWt PWR of the Three-Mile-Island type.

1. Introduction

Neutron noise is a consequence of fluctuations in the neutron flux of
the reactor core around the trend values. The rich information contained
in the neutron noise can be extracted for diagnostics and surveillance of
a nuclear reactor. For example, the neutron noise spectrum along with
other signals are measured in the four-loop pressurized water reactor
(PWR) plants, built by Kraftwerk Union AG (KWU), to identify the fre-
quencies of mechanical vibrations, degradation signatures, and anom-
alous behavior (Seidl et al., 2015). The neutron noise is also expected to
serve as a source of important information for predictive maintenance
and prognostics of the next generation small modular reactors (Meyer
et al., 2013). For the reactors under development, which are featured
with ultra-long refueling cycle, such prognostics tools are especially
important to guarantee the plant availability and safety. Another
example is the BORIS reactor, proposed in South Korea, which has an
interval of one fuel cycle of more than 20 years (Lee et al., 2006), and
therefore the predictive maintenance dominates all maintenance re-
gimes. Since the routes of neutron noise are directly related to the health
of reactor core internals, the analysis of neutron noise is a significant
part in the health & usage monitoring system (HUMS). Examples of the
well-known sources of neutron noise are:
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e Vibrations in the fuel assembly, control rods, and supporting struc-
tures, as well as rotational machinery in the primary side of the
nuclear plant.

e Fluctuations in the fluid flow, pressure, density, and void fraction of
the reactor coolant.

e Random processes generated by fission reaction and neutron
detection.

In practice, the information generated from time series of neutron
noise is usually structured in the form of power spectral density (PSD),
where the distinct peaks on the spectra can be explained in different
ways.

As an example, the analysis (Trenty et al., 1991) on the feature peaks
of the PSD recorded by the ex-core detectors of Electricité de France
(EDF) reactors are summarized below:

0.5-2.0 Hz band: Thermal-hydraulic fluctuations.

2.0-5.0 Hz band: First beam mode of the fuel assembly.

5.0-7.5 Hz band: Second beam mode of the fuel assembly.
7.5-10.0 Hz band: Core barrel free swinging. The core barrel is
clamped at the reactor vessel flange and vibrate laterally like a beam
(Thie, 1979).
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e 14.0-18.0 Hz band: Vessel swinging around the primary coolant
pipes.

e 18.0-24.0 Hz band: Shell mode n = 2 of the core barrel. The shell
modes are the vibration changing the internal area or circumferential
shape (Thie, 1979).

e 20.0-48.0 Hz band: Sensor background noise and complex modes of
internals.

The above analysis has been performed on a database for vibration
monitoring of PWR internals. With the one-to-one correspondence be-
tween the feature peaks and the sources, it appears that PSD analysis can
be used for anomaly detection and classification of the reactor internals.
Consequently, many methods of neutron noise analysis for monitoring of
reactor internals have been developed in the frequency domain, based
on PSD analysis (Schoonewelle et al., 1996; Zwingelstein and Upad-
hyaya, 1979; Alguindigue et al., 1993). Apparently, there is a lack of
data-driven analysis methods that are based on direct usage and
analytical derivation of time series information to both transient and
stationary operations.

Since generation of time series data is expensive and such data are
not easily accessible, a viable alternative is to develop a neutron-noise
model for data generation and construction of associated analytical
methods. There are two main ways of developing the simulation model.

In the first way, vibration models are integrated into the available
core simulators (e.g., the S3K (Chionis et al., 2020), DYN3D (Viebach
et al., 2019) & CORE SIM (Demaziere, 2011)), and the associated space-
dependent problems are addressed. Based on the simulated space-
dependent data traditional frequency domain methods and state-of-the-
art pattern recognition methods are applied to understand the neutron
noise phenomenology. The traditional frequency domain methods usu-
ally make use of: (a) the auto-power spectral density (APSD) for a single
signature, (b) the cross-power spectral density (CPSD) between signa-
tures at different positions, and (c) the coherence which is a function of
APSD and CPSD. The state-of-the-art pattern recognition methods are
also explored, especially in the CORTEX project . Some example ref-
erences are (Demaziere et al., 2021; Durrant et al., 2021; Durrant et al.,
2019). The references (Demaziere et al., 2021; Durrant et al., 2019)
apply the principle of 3-dimensional Convolutional Neural Network
(CNN) for identification of various anomaly scenarios in frequency
domain. The reference (Durrant et al., 2019) also applies the long short
term memory (LSTM) for the time series data generated by the S3K code.
Reference (Durrant et al., 2021) uses the voxel-wise, fully-convolu-
tional, semantic segmentation network for detection and isolation of
multiple and simultaneously occurring perturbations and anomalies. To
accommodate the difference between the simulated data and the real
nuclear power plant data, the unsupervised domain adaptation tech-
nique is applied to align the learned representation of the feature spaces
of the simulated data and true data (Durrant et al., 2021). This attempt
represents the state-of-the-art in the neutron noise analysis technique
and the Al techniques in nuclear anomaly detection & isolation.

The second way, which has so far been studied to a rather limited
extent, uses state-space modeling. The state-space model could be
detailed enough to study parts of the phenomena as what can be done by
using simulators. For example, in reference (Shieh et al., 1987), the
neutron-noise analysis is conducted to study the moderator temperature
coefficient of reactivity in the frequency domain. Alternatively, the
state-space model could be simple enough to identify the noise term
(Dubi and Atar, 2021). The benefit of using the state-space model is that
it is fast in simulation and can be easily adapted to different scenarios.
However, the related studies in history usually include limited mecha-
nisms of neutron noise, thus the time series data generated drops many
main features of real power plants. Therefore, these data are inadequate
in time domain analysis for anomaly detection. To conduct the time-

1 hrtps://cortex-h2020.eu

Nuclear Engineering and Design 388 (2022) 111628

domain analysis, two conditions on the simulated data should be satis-
fied: (i) the spectrum features from ~ 0-20 Hz (which is of interest)
should be embedded in the time series; and (ii) the computation should
be fast enough to obtain the simulation results over a relatively long
time period with a small time step (e.g., ~milliseconds) of integration.
This work aims to address the issues of neutron-noise modeling and
analysis in the setting of state-space time series.

Contributions: Major contributions and implications of the work
reported in this paper are summarized below.

1. Neutron noise modeling under nominal operating conditions as well as
under postulated abnormal fuel assembly vibrations: The neutron-noise
model is built upon the base model, which includes stochastic dif-
ferential equations (SDEs) of neutron point kinetics, and ordinary
differential equations of thermal-hydraulics developed in reference
(Dubi and Atar, 2021). The neutron-noise model shows good
description of the detector response and components’ vibration
models. The anomaly at an early stage does not cause the neutron
noise amplitude to change but is with low frequency spectrum
variation. The proposed modeling method can be adapted and
extended to simulate other possible anomalies (e.g., equivalent to
modifying and/or including more feature peaks in the PSD).

2. Development of a time-domain machine learning (ML) tool for early state
anomaly detection in nuclear reactors: The statistical ML tool, adopted
here, is probabilistic finite state automata (PFSA) (Ray, 2004;
Mukherjee and Ray, 2014) that has been successfully used for
anomaly detection & classification in different applications (e.g.,
Ghalyan and Ray, 2021; Ghalyan and Ray, 2020) although this paper
is apparently the first reported usage of PFSA in nuclear engineering
applications.

Organization: The paper is organized in five sections including the
present one. Section 2 develops the model to simulate neutron noise.
Section 3 succinctly presents the machine learning (ML) tool, called
probabilistic finite state automata (PFSA), for anomaly detection. Sec-
tion 4 describes how the neutron noise simulation is conducted and
presents the results of PFSA-based anomaly detection. Section 5 con-
cludes the significance of the reported work along with recommenda-
tions for future research.

2. Neutron-noise Modeling for Simulation

This section develops nonlinear stochastic differential equations for
neutron-noise simulation. It is recognized that the probability distribu-
tion of neutron noise is non-stationary in the sense that it varies with the
burnup during the fuel cycles within the reactor lifetime as well as with
operating conditions. The model developed in this section does not
consider these perturbations. It is also noted that the model only rep-
resents a generic PWR reactor and that the model is limited to vibrations
of specific reactor components and thermal-hydraulic fluctuations in
the primary coolant only. However, the model can be extended to
include other phenomena of interest.

2.1. Reactor point kinetics and thermal hydraulics models

The non-stochastic equations of point kinetics including the dy-
namics of prompt neutrons and one-delay group are stated below.

d’iT(tI) = (W)n(f) +4 (1), (1
dz(t‘) - (%) n(r) — i (). @)

The variables and parameters of the above and following equations
are reported in Table 1, where the values of these parameters (Edwards
et al., 1990) represent a 2500 MWt PWR of the Three Mile Island-type.
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Table 1
Nomenclature and values of system parameters
Symbols Quantity Values
n neutron density
c delayed neutron precursor’s concentration
n, relative neutron density n(0) =1
cr delayed neutron precursor’s relative ¢(0) =1
concentration
Paly steady state reactor power 2500 [MW]
fr fraction of reactor power depaosited in the fuel 0.98
A effective precursor decay constant 0.125 [s 1]
effective prompt neutron lifetime 0.0001 [s]
p delayed neutron fraction 0.0065
a. coolant temperature coefficient 0.00001 [K 1]
ar fuel temperature coefficient —0.00005 [K 1]
Q heat transfer coefficient between fuel and coolant 6.53 [MW K 1]
M mass flow rate times heat capacity of coolant 92.8 [MW K 1]
water
He total heat capacity of the fuel and structural 26.3 [MW s K 1]
material
He total heat capacity of the reactor coolant 70.5 [MW s K 1]
Ty hot leg temperature T,(0) = 590.09
[K]
T cold leg temperature 563.15 [K]
Tr average fuel temperature in the reactor Tr(0) = 965.28 [K]
P overall reactivity insertion p(0) =0
Pr control rod reactivity insertion p(0) =0
Remark 1. The one-group model of delayed neutron’s precursors has

been used in this paper to save the computation time and memory of the
simulation. The authors envisage that the methods developed in this
work are also feasible to construct models of a larger number (e.g., up to
6) of delayed neutron groups. A singularly perturbed model could also
be used to further save the computation time (Chen et al., 2020).

At a steady state (ss), having the total reactivity p,, = 0,‘%%55 =0,
and dfi(f)\ss = 0, it follows from Eq. (2) that:
gy P
ss P 3
nl, AN 3)

55

After normalizing the neutron density and precursor concentration
with respect to their steady state values, Eqs. (1) and (2) are rewritten as:

P (0P 4 (£) e, @
de,(t) .
i An(t) — Ac,(1). *

The thermal-hydraulics model uses two energy balance equations for
the reactor fuel and the primary coolant:

dﬂ :j;rpﬂ‘.mn"(t) - Q(:’} — Tﬁ)

6
- m : (6)

dTy _ (1 —fr)Palite (1) + QT — ) — M(Ty — 7o) 7
dt U, ’

and the total reactivity due to external reactivity insertion (e.g., fuel
assembly vibration) and temperature feedback from the coolant and fuel
is:

p(t) = p. (1) +ar (Tr(1) — T1(0)) +ac(Tu(1) — Tu(0)). (8

The stochastic neutron point kinetics and stochastic thermal
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hydraulics are modeled by augmenting Eqs. (4)-(8) with additive and
parametric noise (Konno et al., 1989). The assumptions made here are as
follows:

1. The white Gaussian noise Fy(t) is added to the differential equation
of the neutron density (Eq. (4)) accounting for the complex sources of
neutron noise. This assumption is made based on the fact that the
central limit theorem is applicable to the cumulative effects of a large
number of independent and identically distributed (iid) neutron
population. It is noted that the integral (in the mean-square sense) of
the white Gaussian noise is the Brownian motion with the power
spectral density ~ f% (Krapf et al., 2018), where f is the frequency;

this relation satisfies the fact that the observed base spectrum of
neutron noise approximately follows the power-law distribution in a
wide range of the frequency domain.

2. The colored Gaussian noise ¢7(t) is added to the differential equation
of the coolant temperature (Eq. (7)) accounting for the temperature
fluctuations of the coolant. This assumption is based on the fact that
the low-frequency region of the PSD spectrum, corresponding to the
peak response of thermal-hydraulic oscillations, has the dominant
power (Torres et al., 2019).

3. The colored parametric noise p,(t) is introduced by the random
reactivity insertion (and withdrawal) due to the fuel assembly
vibration.

The colored parametric noise p,(t) and additive noise er(t) are the
response of the vibration filters described in the following subsections.

2.2. Fuel assembly vibration model and in-core detector signal

Under the normal operation, vibration of the fuel assembly is
modeled by a linear time-invariant (LTI) single degree of freedom
(SDOF) oscillator with Gaussian white noise excitation (Preumont,
2013). However, the oscillations could become nonlinear upon occur-
rence of an anomaly (Konno and Saito, 1984; Konno, 1986). A potential
term V(&,) with an order equal to or greater than 3 can be used to model
this nonlinearity (Konno and Saito, 1984). Thus, the vibration model of
the displacement ¢, (Preumont, 2013) is:

£, 1+ 2bw,¢, +ai V(e,) = F,(r), (9)
£,

where the potential V(g,) is expressed as:

N

Vie) =Y %s‘” (10)

n=1

and the potential is induced by the force U(e,) as:

U(e,,):%:A.+Azsa+A3e~,§+...+ANe~f L (1)

The excitation force Fy(t) is primarily induced by the turbulent
pressure on the interacting surfaces. The fuel rods have large surface
areas though, but the forces are generally balanced. The primary reason
of the vibration could be the mixing vane patterns of the grid spacer
(Kim and Suh, 2008). The mixing vane is used to enhance the turbulence
to assure the capability of supporting the random opposite reaction force
by itself, where white Gaussian excitation noise is assumed. Since the
vibration model is assumed to be linear, the response is also Gaussian
but it is colored. In the absence of an anomaly, the U(g,) term is a linear
function of the displacement, i.e.,A; =A; = -~ Ay=0andA, =w?isa
constant. Then, the Eq. (9) is reduced to

Byt 2w, +are, = F,(1). 12)
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Fig. 1. Potential functions for normal and anomalous fuel assembly vibration.

The power spectral density (PSD) of the response of the above
oscillator is:

1

D, () 5 ~ .
(@2 — 0?)” + 4& 0w’

(13)

The natural frequency @, is the oscillation frequency (unit: rad/s) of
a free undamped oscillator. With white Gaussian excitation, the natural
frequency determines the location of the peak on the PSD for an un-
damped oscillator. In a lightly damped system, the maximum frequency
of the transmissibility is achieved when the frequency of the applied
load is close to the natural frequency. The damping ratio, & along with
the natural frequency determines the height of the peak on PSD. An
undamped system has infinite high peak. The natural frequency f,, =
51 = 3 Hz is used for the above SDOF model accounting for the first beam
mode of the fuel assembly. Another SDOF model with f;, ~ 0.5 Hz is used
for thermal hydraulic fluctuations (e.g., temperature variations)
observed on the recorded PSD diagram in the nuclear power plant:

Er + 2,wnrér + CUir&‘r = Fr(1). (14)

The relation of the frequencies of damped vibration (w4) and un-
damped natural frequency (@) (Singiresu, 1995) is:

wg=1/1—E& w,. (15)

When the system is very lightly damped, i.e., @ =~ ®,, which is the
case here, the signals of vibrations and fluctuations can be correlated to
each other. This coupling effect is not considered; otherwise they would
be cross-correlated.

In the presence of an anomaly, the U(e,) has higher order terms of &,.
Under these circumstances, A, is non-zero, which is caused by the ex-
istence of a limiter, and A, < 0 that is explained by the interaction of
fluid motion and the loss of cramped boundary conditions (Konno et al.,
1989). It is also assumed that A; =0 for all i >4 and i =3 under
anomaly occurrence and A, > 0, because A, > 0 guarantees a stable
potential function, which means that the energy barrier is infinitely
high; otherwise there is a possibility of displacement going to infinity
when the potential barrier is crossed with energy in the excitation. For
example, the potential function having A4 < 0 could be a type of
component malfunction, which is easy to be detected but it is out of the
scope of early anomaly detection, reported here.

Fig. 1 shows a comparison of the potential functions in normal and
anomalous vibrations of the fuel assembly. The damping ratio &, is
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Fig. 2. Normal & anomalous fuel-assembly vibration.

chosen to be 0.05. The anomalous potential function has the parameters
of Ay =10,A, = —50,A; = 0,and As = 100, which is an asymmetric
double-well function (Konno, 1986). The simulated displacements and
PSDs estimated by Welch’s method (Welch, 1967) are shown in Fig. 2,
where the red dash-dot line shows the anomalous vibration of the fuel
assembly and the black solid line is the normal vibration of the fuel
assembly. The spectrum of the anomalous fuel assembly vibration has
lower frequency of the peak power location and the spreading of the
peak is much wider than the normal fuel assembly vibration.

To connect the first beam mode of displacement of the fuel assembly
with reactivity insertion, it is assumed that the displacement ¢, has the
following linear relationship with the reactivity insertion:

d,
p.0) = Leut) = bieu(1), (16)

whereb; £ %; dp/de, is reactivity worth of the rod per unit length; and

n is a conversion factor that relates the inserted reactivity associated
with the axial displacement to the reactivity brought in by the
displacement in the model generalized direction. So far, the models
represented by Eqs. (4)-(8) are complete to calculate the dynamics of
relative neutron density. The dynamics of the relative neutron density is
assumed to be the same as the dynamics of noise detected by the central
core neutron detector. Adding white Gaussian noise Fy(t) to Eq. (4), and
rearranging the neutron kinetics, thermal hydraulics and vibration
models of the fuel assembly and thermal-hydraulic fluctuations, the
following dynamical system with random fluctuation terms are reached,

dx

— =AX+N+F, (17)
dt

where

SIS
X= [”r-ChTﬂ'vThyfa;bayb?'yb?'] )
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bttt oy and F = [Fy(t), 0,0,0,0, Fa(t), 0, Fr(t)|". On the right-

hand-side of Eq. (17), the first term is the linear term; the second term
is the nonlinear term and the third term is the random excitation term.
Eq. (17) is written in the standard SDE form as:

dx(t) = a(x(r), 1)dr + b(x(z), 1)dB(1), (18)
where a(x(t),t) =Ax + N, b(x(t),t) = diag(o,, 0,0, 0,0, 64, 0, o7 ), and
dB(t) = [dB,...,dBg]", which is a vector of increments of Brownian
motion.

2.3. Core barrel & pressure vessel vibration model and ex-core detector
signal

Similar to the fuel assembly, the core barrel & pressure vessel free-
swinging under normal operation is modeled by the two-degree-of-
freedom (TDOF) linear time-invariant (LTI) oscillator with displace-
ment in the same direction. Fig. 3 depicts a schematic of the pressure
vessel & core barrel model.

Referring to the vibration model, Newton’s 2™ law yields:

mé + 18 +e(E — &)t ke k(e —82) = Fi(1), (19)
ng;ég +Cg(é2—é1)+k2(€2—&'|) :Fz(f), (20)

where m;’s are inertia, c¢;’s are damping factors, k;’s are stiffness, &;’s are

Coolant Flange = Coolant
piping piping
Pon N Core
L barrel
&1 «—

W

(a)

Coolant
piping
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generalized displacements of the pressure vessel and core barrel indexed
by 1 and 2, respectively. Egs. (19) and (20) are rewritten in matrix forms
as:

ME+Cé+Ke=F (21)

where M — 1y 0 ,C: €] +C —C ,K: k1+k2 —k2 e =
0 Mo —Ca Co *kg kz

€ F
€2 Fa
The natural frequencies of undamped free-vibration are the solutions
of the characteristic equation:

det(K — @’M) = 0. (22)

For each natural frequency ; its corresponding eigenvector of
(K —@*M) is called the mode shape. Under special initial conditions, the
free undamped system vibrates on one of the normal modes, which is the
displacement vector in the direction of one of the eigenvectors. In most
cases, the system vibrates as the superposition of this two normal modes.
Eq. (21) is usually decoupled to two independent equations to the
normal modes by coordinates transform. This transform is not used here,
but Eq. (21) is directly used to obtain the simulated displacements.
Letting y = [e1,£2,61,£5], Eq. (21) is re-written as:

0
0
1
yiM L (23)

F

[0 I
YVl Mk M'c

0 1

-M'K -Mm7Ic)’
bey = M’ldiag(o,o,ﬁv,ac). The values of the parameters used here

are:

Or in standard SDE form as Eq. (18), then acy = [

0 0 1 0
o 0 0 1
AV =1 11000.0 411.8 ~194 1.8 ’

2916.7 -2916.7 125 —12.5

bcy = diag(0,0,1.4,1.4). It is noted that the above parameters have
not yet been obtained from a real-life nuclear plant; instead, these are
used for conceptual demonstration. To best reflect the situation of the
real power plant, the parameters of a., as well as the intensity of random
activation forces used in Eqs.(23) and (18) are chosen to capture the
feature peaks of the PSD of the model and the typical PSD of real power

g &
_‘:F‘ _EFz

k ks
WA NI

c Vessel (o Core barrel
—F— m i m

(b)

Fig. 3. Pressure vessel & core barrel modeled as a TDOF oscillator.
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plants. In practice, the manufacturers obtain the parameters through
mechanical tests.

The neutron noise recorded by ex-core detectors and the in-core
detectors are different (Thie, 1979). In contrast to the neutron flux
recorded by in-core detector at the core center, the neutron flux recor-
ded by the ex-core detectors show higher relative power at the free
swinging frequency of core barrel and supporting structure. This is
caused by the relative movement of the core center to the ex-core de-
tector. The vibration mechanism, not included in the in-core detector,
should be included in the ex-core detector. It is noted that the in-core
detectors close to the core-barrel are also sensitive to its vibration.
The neutron flux at the position of the ex-core detector may be described
by one-dimensional neutron attenuation relation (Thie, 1979). This
relation is written as:

N = nn(0)e 24)

)
where n,, is the relative neutron flux at the ex-core detector; I" is the
conversion factor of the neutron density at the reactor core to the
neutron flux in the direction of the ex-core neutron detector; d is the
distance from the reactor core center to the ex-core detector; and y is the
average macroscopic cross-section with the value around 0.4mm™1.

Let us denote d = dy + &, where d, is the mean distance from the
reactor core center to the ex-core detector, and ¢, is the displacement of
the core barrel such that £,<«d,. Normalization of n, with respect to its
steady-state value yields the signature recorded by the ex-core detector.
Then, it follows that

_ I n,n(0)e+

M = e e = " (1), (29)

Fig. 4 shows profiles of time series and power spectral density of
typical vibration data in the core barrel and pressure vessel.

3. Probabilistic Finite State Automata

This section is devoted to construction of probabilistic finite state
automata (PFSA) from an ensemble of time-series data. A (finite-length)
time series is converted into a symbol string by partitioning the signal
space into a finite number of cells, where the number of cells is identi-
cally equal to the cardinality || of the (symbol) alphabet .27, and each
cell is assigned exactly one of the symbols in .&/. At a given instant of
time, a data point is assigned the symbol corresponding to the cell within
which the data point is located; details are reported by Mukherjee and
Ray (2014). The resulting symbol string is used to construct a D-Markov
model, defined in SubSection 3.1, which models the statistics of the
underlying stochastic process. The following definitions, which are
available in standard literature (e.g., Ray, 2004; Mukherjee and Ray,
2014), are recalled here for completeness of the paper and ease of
readability.

Definition 1. A finite state automaton (FSA) G, having a deterministic

algebraic structure, is a triple (.7, @, §) where:

e N.
@l e N.

e ¢/ is a (nonempty) finite alphabet, i.e., its cardinality |.&/
e (7 is a (nonempty) finite set of states, i.e., its cardinality
e §: & x /- is a (deterministic) state transition map.

Definition 2. A symbol block, also called a word, is a finite-length
string of symbols belonging to the alphabet &7, where the length of a
word w £ 5,55---5, with s; €.%/ is |w| = £, and the length of the empty
word € is || = 0. The parameters of FSA are extended as:

e The set of all words, constructed from symbols in .o/ and including
the empty word e, is denoted as ..

e The set of all words, whose suffix (respectively, prefix) is the word w,
is denoted as .%/*w (respectively, w..#™).
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Fig. 4. Typical core barrel and pressure vessel vibration data.

e The set of all words of (finite) length #, where £ € N, is denoted as
o

Remark 2. A symbol string (or word) is generated from a (finite-
length) time series by symbolization.

Definition 3. A probabilistic finite state automaton (PFSA) .7 is a pair
(G, ), where:

e Deterministic FSA G is the underlying algebraic structure of PFSA %"

e The morph function 7 : @ x &/—[0,1] is also known as the symbol
generation probability function that satisfies the condition:
Y wewlq,0) =1 forall q € €.

Often the state transition probability mass function « : &' x &—[0,1] is
constructed by combining 5 and 7, which can be structured as a |@/| x £
matrix .7 . In that case, the PFSA can be described as the triple 7 =
(W, @,7).

Remark 3. It is noted that the |#| x |#]| state transition probability
matrix .7 is stochastic (Berman and Plemmons, 1994) (i.e., each
element of .7 is non-negative and each row sum is unity). The matrix .7~
is constructed to be stochastic and ergodic (Berman and Plemmons,
1994), which implies that .7 has exactly one eigenvalue at unity (i.e.,
4 = 1) and that the rest of the eigenvalues are either on or within the
unit circle with center at 0 (i.e., |4|<1). The (sum-normalized) left
eigenvector v corresponding to the unity eigenvalue (i.e., A = 1) rep-
resents the stationary state probability vector of the Markov chain
(Berman and Plemmons, 1994).
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Fig. 5. Flow chart for construction of PFSA.

Remark 4. Construction of the state transition probability matrix .7 is
a compact way to store the dynamical features, which can be processed
by different classifiers to conduct system diagnosis. This representation
of .7 originates from the inherent characteristic of the state transition
pattern of a dynamical system.

3.1. D-Markov Machines

In the construction of a D-Markov machine, it is assumed that the
generation of the next symbol depends only on a finite history of at most
D consecutive symbols, i.e., a symbol block not exceeding the specified
length D. In this context, a D-Markov machine (Mukherjee and Ray,
2014) is formally defined as follows.

Definition 4. A D-Markov machine is a PFSA in the sense of Definition
3 and it generates symbols that solely depend on the (most recent)
history of at most D consecutive symbols, where the positive integer D is
called the depth of the machine. Equivalently, a D-Markov machine is a
stochastic process S = ---s_;8¢5; ---, Where the probability of occurrence
of a new symbol depends only on the last consecutive (at most) D
symbols, i.e.,

P[Sﬂl“'sn D™ Sn I] :P[A'"|S" DS I] (26)

Consequently, for w € .#/” (see Definition 2), the equivalence class .#*w
of all (finite-length) words of suffix w, is qualified to be a D-Markov state
that is denoted as w.

Remark 5. While the algebraic structure of the PFSA in D-Markov
machines is deterministic (Ray, 2004; Mukherjee and Ray, 2014), a
hidden Markov model (HMM) may have a non-deterministic algebraic
structure (Dupont et al., 2005; Vidal et al., 2005); this difference yields
significant computational advantages of D-Markov machines over
HMMs at the expense of limited loss of modeling flexibility. Moreover,
since  HMMs are typically trained by expectation maximization

(Murphy, 2012), the underlying algorithms might suffer from having a
poor local optimum. In addition to its iterative computation cost, HMMs
may not be sufficiently robust in terms of convergence even to a locally
optimum point. In contrast, the deterministic algebraic structure of D-
Markov machines makes the modeling process much simpler and less
prone to the local optimum issue, where the model can be trained by
frequency counting (Mukherjee and Ray, 2014), for example.

The PFSA of a D-Markov machine is capable of generating symbol
strings. That is, such a generated symbol string has the form {sys2---s¢},
where 5; € .o/ and 7 is a positive integer. Both morph function z and state
probability transition matrix .7 implicitly support the fact that PFSA
satisfies the Markov condition, where generation of a symbol depends
only on the current state that is a symbol string of at most D consecutive
symbols (Mukherjee and Ray, 2014).

For construction of the proposed D-Markov-based PFSA, there are
four primary choices as enumerated below:

1. Alphabet size (|.%/]): Larger is the alphabet size, the dynamical
system is more discretely represented as different symbols, which
will require more training data. Therefore, selection of the alphabet
2/ is a critical step of PFSA construction.

2. Partitioning Method: While there are many data partitioning
techniques, such as maximum entropy partitioning (MEP) and uni-
form partitioning (Rajagopalan and Ray, 2006; Subbu and Ray,
2008) and K-means partitioning (Murphy, 2012), the selection of the
partitioning method is largely problem-specific. The symbolization
in this paper has been conducted through MEP, where the number of
data points in each partitioning segment are the same so that the
entropy is maximized.

3. Depth (D) in the D-Markov machine: In this paper, D = 1 has been
primarily chosen for PFSA construction to limit the window length L.
Higher values of the positive integer D may lead to better results at
the expense of increased number of states || and CPU time due to
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larger dimension of the feature space and thus may need more
training data.

4. Choice of Feature: The feature needs to be the one that best captures
the physical nature (e.g., texture) of the signal and also that is not
computationally too expensive. In this paper, the (absolute sum-
normalized) principal left eigenvector of the .7 -matrix is selected
as feature.

Fig. 5 depicts the flow chart of PFSA construction. It starts from
symbolization of the normalized numerical time series (e.g., the neutron
noise time-series data in this work). After partitioning, each interval is
labeled by a unique symbol. Then the numerical time series is trans-
formed into a symbol string. Based on the symbol string, the Markov
model is generated by sliding through the symbol string with a given
window length. Finally a state transition probability matrix .7 is con-
structed by counting the state transitions. A pseudo-code of the PFSA
training algorithm is presented below.

Algorithm 1: PFSA training algorithm

Input: Alphabet size | A|, Markov depth D, observed time series S
Result: State transition probability matrices T for each class 4
out of N classes
Determine the upper bound and lower bound of S;
Generate partitioning boundaries according to |A| and the bounds;
Symbolize the time series S using the partitioning boundaries;
Generate the state sequence for each symbol string according to the
Markov depth D;

for i<+ 1to N do

initialize state transition probability matrices T

for j < 0 to the end of each symbol string s, in the class i do

7:'{/1:)‘-‘71 — ﬁ(rf)“'wl + 1

end

normalize 7 in each row;
end

3.2. Classification of the Health Condition

Given that the state transition matrix .7 is constructed to be both
stochastic and ergodic (Mukherjee and Ray, 2014), each element of the
left eigenvector (v*) of .7, associated with the (unique) eigenvalue 1, is
non-zero and is of the same sign. Therefore, after sum-normalization, v°
represents the state probability distribution of the PFSA and is selected
as a feature vector for the time series from which the PFSA is
constructed.

If two time series belong to the same class, the corresponding feature
vectors (i.e., v°) should be very similar; otherwise these two feature
vectors would point to different directions signifying that the two
respective time series belong to different classes. For example, let there
be only two possible classes: the nominal class C,,, and the faulty class

Cp:. Then, the residual error between the nominal feature v2 and the
test feature v, which may belong to either Cy,p, or Cp, 1s given as:

1
oA 0N 0 V0 (0 yT) 0 0T
G B [ C R I CAN ) @7)

Similarly, the residual error between the faulty feature, vﬁt, and the

0
test feature v2,,

T T ! T
en2d (%) = 1 () (v?,.(v}:,) ) VACAN ! 28)

where Egs. (27) and (28) are the norms of the test vector v, projected

0
nom

The class label (which is either ‘'nominal” or *faulty’ in this example) is
then determined by:

which also may belong to either Cyy Or Cg, is given as:

onto the orthogonal directions of the features v9 and v?h, respectively.

Identified Class = argmin{e,,,,,,,, Eﬂ,}. (29)
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Fig. 6. Typical time series of neutron noise in the first 3 s.

In practice, not all anomaly conditions could be known before they
happen; thus, the anomaly identification may not always be possible.
However, an anomaly should be detected even though it may not be
identified immediately. It will be even more beneficial, if the anomaly is
at its early stage (e.g., no excessive vibration). In this case, a threshold
on the residual error to the nominal feature vector can be used for
discrimination. Since this case bears similar discrimination criteria, it is
not used here to avoid repetition. Instead, a two-class discrimination is
reported, where the first class is the normal condition, belonging to Cyom,
and the second class is the anomalous condition belonging to Cg, caused
by abnormal vibration of the fuel assembly, for example.

4, Results and Discussion

This section reports the results of anomaly detection (see Section 3)
from an ensemble of time series, generated from the models developed
in Section 2. The normal and amonalous cases of the fuel assembly vi-
brations are the ones given in SubSection 2.2. To be specific, the normal
case has the fuel assembly displacement depicted by Eq. (12) while the
anomalous vibration is represented by Egs. (9)-(11) where the
[A1,A5,A3,A4] = [10,-50,0,100] and A; = 0 for i > 4. The source codes
of the developed model and PFSA are available online 2.

2 hrtps://github.com/chenxiangyil0/neutronNoisePFSA.
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Fig. 7. Typical PSD of neutron noise from in-core detector and ex-

core detector.
4.1. Time series data generation

The models, constructed in Section 2, have been used to generate in-
core and ex-core signals with and without fuel assembly vibration
anomaly. The forward Euler’s method with a step size of 0.001 s has
been used in the model equations for all simulation runs. This step size
has been confirmed to have less than around 0.1% error compared with
using 1 x 10 ® second step size which is acceprable for both simulating
the time series trajectory and quantifying the performance of the PFSA.
One billion steps are simulated to account for 1 million seconds (around
11.5 days) for both nominal and anomalous conditions. Fig. 6 presents

=@~ In-core signal
—¥— Ex-core signal

10! 107 103
Window size [second]

(a) Accuracy versus window length, the al-
phabet size |4 is 50.
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the first 3 s of the signals detected by both in-core and ex-core detectors.
The difference of the signatures detected by different detectors and the
health condition are barely visible, unless viewing the signals in fre-
quency domain, which are shown in Figs. 7 (a) and 7 (b). Distinct peaks
are absent in the PSD of the in-core detector, but they are present in the
PSD of the ex-core detector, as explained in SubSection 2.3.

4.2. Data processing for pattern classification

The time series data are divided into training and test sets by using
different window lengths thart are: [10, 20, 40, 80, 100, 200, 400, 800,
1,000] in the unit of seconds. It should be noted that the developed
model is stationary (Stein and Dubi, 2020) and ergodic (i.e., Cauchy
sequences of time-averages converge to the respective ensemble aver-
ages in a stochastic sense (Durrett, 2010)). Thus, sampling by windows
from one realization is valid to test the PFSA algorithm; otherwise,
multiple trajectories should be generated for testing. It is recalled that
the time step interval in the simulation is 0.001 s so that the frequency of
sampling (fs) is 1,000 Hz. To investigate the effects of the sampling
frequency on the performance of PFSA, the original time series is
downsampled to 10 Hz and 100 Hz from the original frequency of 1,000
Hz.

4.3. Results of PFSA-based anomaly detection

Fig. 8 depicts the performance of PFSA under different hyper-
parameters of window length L and alphabet size |.%7|. The performance
is characterized by the accuracy of the binary classification, which is the
number of correct predictions divided by total number of predictions. It
is seen that the in-core detector is more suitable for fuel assembly
detection. This observation is reasonable, because it does not contain the
high-frequency components of the fluctuating signals in the core barrel
and pressure vessel, thus less noisy. The accuracy improves by
increasing the window length, and it reaches around 100% when the
window length is greater than 800 s, as seen in Fig. 8(a). The accuracy
also increases when the partitioning cells are made denser (i.e., the al-
phabet size |.%/| is increased). This is seen in Fig. 8(b), which uses the
alphabet size /] of [5, 10, 20, 40, 50, 60, 70, 80, 100, 150, 200, 400,
800]. However, the accuracy does not increase significantly after |.&/|
exceeds 50.

Fig. 9 shows the effects of frequency of sampling rate on the per-
formance of PFSA, where the performance is largely similar for fs = 100
Hz and 1,000 Hz. The former one just has a little lower accuracy;
however, when fs = 10 Hz, the accuracy is substantially lower. This is
explained by the aliasing effect, because the frequency of the dominant
signal is under 20 Hz and the fuel assembly is vibrating at ~ 3 Hz, which
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10! 102 103
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(b) Accuracy versus alphabet size |.A[, the
window length is 100 seconds.

Fig. 8. Accuracy of in-core and ex-core signals at fs = 1000 Hz.
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is not much lower than 10 Hz. Fig. 10 shows an example of PSDs of the
neutron noise with fs = 100 Hz and window length of 100 s. It is seen
that these PSDs are noisy for short windows, at which PFSA can achieve
an accuracy of ~ 88.8%.
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A concatenated time series of the normal and anomalous time series
has been used here for demonstration of PFSA performance. During the
first 9,000 s, the fuel assembly is under the normal condition. The
anomaly starts at the time instant of 9,000 s and is continued to the end.
Fig. 11 shows the results of PFSA for online anomaly detection, where
1’ means that PFSA classifies the system to be under an abnormal
condition, while 0’ means the normal condition. The residual errors are
shown in green-color and blue-color curves for normal and anomalous
conditions, respectively. The vertical red line shows the time when
anomaly first occurred where the window length is 1,000 s and the al-
phabet size | /| is 50. The subplot Fig. 11(a) shows absence of false
alarms before the anomaly occurs. The first alarm of anomaly is trig-
gered at 524 s after the anomaly actually occurred, as detailed in the
subplot Fig. 11(b). This delay time is around half of the window length,
when a major part of time series in the window interval shifts from the
normal to an anomalous condition. Once the first anomaly is detected,
there is no further missed alarms.

5. Summary, Conclusions, and future work

This paper has developed a neutron noise model to generate en-
sembles of time series data for anomaly detection in reactor internals.
The objectives here are the following:

Mimicking the power spectral density (PSD) of observed neutron
noise in real-life nuclear power plants.

Generation of simulated time series of neutron power under both
normal and abnormal conditions of reactor operation based on a low-
order model.

Symbolization of time series of simulated neutron power to generate
symbol strings.

Construction of probabilistic finite state automata (PFSA) models of
neutron noise dynamics from symbol strings.

Detection of anomalies in the reactor based on the above PFSA
models.

The results show that the PFSA-based pattern classification is capable
of detecting anomalies with high accuracy when the frequency spectra
are noisy as well as for short-length windows. The PFSA algorithms can
also generate consistent alarms if the window length is made sufficiently
large. It is demonstrated that the PFSA-based pattern classification has
the potential to serve both quantitatively and qualitatively as an
important tool for anomaly detection in reactor internals.

While there are many areas of theoretical and experimental research
to enhance the work reported in this paper, the authors suggest the
following topics for future research:
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Fig. 11. Online anomaly detection.
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1. Demonstration of the PFSA concept on an ensemble of data collected
from an operating PWR.

2. Application of the PFSA algorithms to other signatures collected in
PWRs for anomaly detection and identification.

3. Deployment of the PFSA algorithms for online anomaly detection to
investigate the computational cost and limitations of this method-
ology for real-life applications.

4. Extension of the PFSA-based anomaly detection for fault-tolerant
decision & control of nuclear power plants under different strategies.
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