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Abstract
This paper proposes a methodology for detection and classification of fatigue damage in mechanical structures in the

framework of neural networks (NN). The proposed methodology has been tested and validated with polycrystalline-alloy

(AL7075-T6) specimens on a laboratory-scale experimental apparatus. Signal processing tools (e.g., discrete wavelet

transform and Hilbert transform) have been applied on time series of ultrasonic test signals to extract features that are

derived from: (i) Signal envelope, (ii) Low-frequency and high-frequency signal spectra, and (iii) Signal energy. The

performance of the neural network, combined with each one of these features, is compared with the ground truth, generated

from the original ultrasonic test signals and microscope images. The results show that the NN model, combined with the

signal-energy feature, yields the best performance and that it is capable of detecting and classifying the fatigue damage

with (up to) 98.5% accuracy.
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1 Introduction

Fatigue damage may occur in mechanical structures that

are subjected to cyclic stresses even if the peak values of

these stresses are much lower than the yield stress of the

material. Fatigue damage is considered to be a major

source of failures in mechanical structures, which may take

place in notches, rough surfaces, and due to various

internal defects (e.g., cracked second-phase particles and

voids [1]). The size of a fatigue crack may keep on

increasing with load cycles until the remaining cross sec-

tion cannot support the applied load [2].

All mechanical structures contain defects at the level of

nano-/micro scales, which might have been produced

during the manufacturing process, and these defects usually

stay hidden. Such defects may often evolve as fatigue

damage, leading to structural failures. Therefore, early

detection of evolving fatigue damage is very crucial for

operation & maintenance of machinery. In this context,

real-time sensing of fatigue damage is considered to be one

of the successful tools for averting unexpected failures in

mechanical structures. In many engineering applications,

visual inspection (VI) is widely used for both damage

assessment of various mechanical components (e.g., stor-

age tanks, pressure vessels, and pipelines); however, there

are several limitations to using VI. Usually, the errors

introduced by VI may lead to either incorrectly identifying

potentially pernicious defects (i.e., false alarms), or

ignoring real defects (i.e., missed alarms). While false

alarms may cause unnecessary maintenance and loss of

plant availability, missing an existing critical defect may

potentially degrade product quality & reliability as well as

loss of plant availability, including even catastrophic

accidents [2–5].

In many industrial processes, ultrasonic testing (UT) is

one of the most extensively used non-destructive
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techniques for estimating the internal damage and defects

of mechanical structures. Often structural damage is

detected from the time series of UT signals, where the

attenuation of measured signals leads to detection of

damage (e.g., evolution of cracks). Figure 1 a, b exhibits

typical signal responses at the receiver end of an ultrasonic

transducer for undamaged structure and damaged structure,

respectively.

Several techniques and methods of data interpretation

and signal processing have been applied on the ensemble of

UT signals to extract the pertinent features. Along this line,

the current paper examines the effectiveness of signal

processing methods, namely, discrete wavelet transform

(DWT), Hilbert transform (HT), and spectral energy, for

performance enhancement of damage detection & classi-

fication algorithms, where the extracted features are

obtained from low frequencies, high frequencies, signal

envelope, and signal energy of UT signals. The perfor-

mance of the damage monitoring system is measured in

terms of accuracy, sensitivity, specificity, and precision;

and its efficacy is determined by the area under the curve

(AUC) of receiver operating characteristics (ROC) [6], the

Matthews correlation coefficient (MCC) [7], and the

F-Measure [8]. Figure 2 presents the proposed stages for

monitoring the structure: [9–12]

This paper proposes an automated system of online

fatigue damage assessment, which makes use of UT with

the following:

1. Discrete wavelet transform (DWT)-based and Hilbert

transform (HT)-based analysis for fatigue-damage

detection, and

2. Neural networks (NN)-based fatigue-damage

classification.

From the above perspectives of data analysis, the novelty

of this paper is delineated as follows:.

1. Data classification for damage detection in mechanical

structures: The data to be classified are acquired by

synchronizing the images of a digital microscope with

the corresponding UT signals; and the data

classification strategy is built upon the onset of an

evolving crack in the surface of the U-notch, as seen in

Fig. 5, where the UT signals before the crack

appearance are postulated to belong to the healthy

class, while UT signals at and after the crack appear-

ance are classified as unhealthy.

2. Reduced human involvement in the decision of damage

detection: The automated real-time evaluation of

fatigue damage, supported by computer-assisted anal-

ysis of nondestructive testing (NDT), is expected to

significantly alleviate the shortcomings of visual

inspection (VI); consequently, the resulting damage

monitoring system could become largely independent

of direct human decisions. In this context, various

researchers have shown that the discipline of machine

learning has the potential of building smart systems

that are capable of thorough quality checks of manu-

factured products down to the finest points of inspec-

tion details [13, 14, 15].

3. Development of a robust neural network-based deci-

sion support system: The performance of feature

extraction from UT signals is measured in terms of

Accuracy, Sensitivity, Specificity, and Precision. The

efficacy of these models is examined by various

analytical tools such as Matthews correlation, Area

Under Curve (AUC), and F-Measure. The best feature

is determined based on the highest performance model.

The paper is organized into five main sections including the

present one. The second section presents a description of

the laboratory apparatus that serves as the data generator

for validation of the methodology of fatigue-damage

detection and classification, proposed in this paper. The

third section illustrates the methodology including an

overview of discrete wavelet transform (DWT), Hilbert

transform (HT), and neural networks (NN). The fourth

section discusses the results of experimental validation of

the proposed methodology. Finally, the fifth section sum-

marizes and concludes the paper with recommendations for

future research.

2 Description of the experimental apparatus

The laboratory-scale experimental apparatus, which serves

to validate the proposed methodology of fatigue-damage

detection and classification, is illustrated in Fig. 3a. The

apparatus is built upon a computer-controlled and com-

puter-instrumented fatigue-testing machine1, which is

supplied with ultrasonic sensors2 for generation of

(a) Crack-free specimen (b) Cracked  specimen

Fig. 1 Typical profiles of ultrasonic signals at the receiver transducer

1 Manufacturer: MTS�, Berlin, New Jersey, USA.
2 Manufacturer: OLYMPUS�, Shinjuku, Tokyo, Japan.
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ultrasonic test (UT) signals and a digital microscope3 for

generation of images for visual inspection (VI).

The main purpose here is to obtain ensembles of fatigue

test data for assessment of the damage state of the structure

under consideration (e.g., test specimens in Fig. 3b). Under

medium-cycle to high-cycle fatigue loading of (ductile-

alloy) machinery structures, bulk of the component service

life is consumed in the crack initiation phase. Thus, the

onset of fatigue cracks provides the necessary information

for reduction in the probability of unanticipated failures as

well as for control of the machinery performance; the

objective here is to enhance both availability and reliability

of machinery operation at a mitigated maintenance cost.

In the work reported in this paper, experiments have

been conducted with five identical4 test specimens (that are

made of AL7075-T6 aluminum alloy) to build an auto-

mated system for fatigue damage detection. The dimen-

sions of these specimens are: 50 mm width and 3 mm in

thickness. As shown in Fig. 3b, a (1 9 3.5 mm) U-notch is

incorporated at the edge. In the reported work, all speci-

mens are subjected to tension-tension load cycles, gener-

ated by the fatigue testing machine in Figure 3a. A typical

applied target set-point in this paper is a tensile-tensile load

fluctuation, where the peak load is 11,000 N and the valley

load is 6,000 N, i.e., the nominal stress fluctuates between

40 MPa (valley) and 73 MPa (peak).

2.1 Ultrasonic testing

In the ultrasonic testing (UT) probes (see Fig. 3a), high-

frequency acoustic pulses (i.e., 15 MHz ultrasonic waves)

are injected into each specimen by a piezo-electric trans-

ducer (i.e., the transmitter), and are received after propa-

gating through the material by another piezoelectric

transducer (i.e., the receiver), which is placed on the other

side of the transmitter, as seen in Fig. 3(a). In the experi-

ments, UT sensors (i.e., transducers) are electrically con-

tacted to the data acquisition device that has the

capabilities of signal conditioning and analog to digital

conversion (ADC). The ADC device is connected to the

laboratory computer to collect the time series of measured

UT signals. Figure 4 presents a typical UT signal, mea-

sured and recorded by the computer in the fatigue testing

apparatus system.

The onset of a fatigue crack is characterized by the

response of the UT signal which is measured after the crack

has propagated through the specimen. The response of UT

signal is (possibly) influenced by the preexisting flaws in a

test specimen (e.g., grain boundaries, voids, and inclu-

sions), which are located on the path of the propagated

signals. The effects of the preexisting flaws on the response

of a UT signal are considered to be very gradually evolving

and are therefore quasi-static over the crack initiation phase

of the structure. On the other hand, the amplitude of a UT

signal tends to decrease significantly when the crack

Fig. 2 Strategy of a real-time damage monitoring system

(a) Picture of the experimental apparatus.

(b) CAD drawing of an AL7075-T6 aluminum alloy specimen
(all dimensions are in mm and are not to scale)

Fig. 3 The fatigue testing apparatus and ancillaries

3 Manufacturer: QUESTAR�, New Hope, Pennsylvania, USA.

4 The reason for using five (apparently) identical specimens is to

build both consistency and credibility of experimental results. The

rationale is that, due to the uncertainties accruing from internal

defects and the machining process, the fatigue life of similar test

specimens may significantly duffer.
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propagation starts through the specimen, because a sig-

nificant part of the UT signal is reflected back and hence

the full-strength signal is not transmitted to the receiver

[16–18].

2.2 Digital microscope

The role of the digital microscope (DM) is to provide

deformation images on the specimen surface, which serves

as the ground truth for quantification of fatigue damage

derived from the UT signal attenuation; here the DM

Fig. 4 A typical profile of an

ultrasonic signal

(a) Typical profile of a measured ultrasonic test (UT) signal.

(b) Typical visual inspection (VI) image of a crack onset.

Fig. 5 Examples of typical UT

signal and microscope image
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images have been taken in loose synchronism with the UT

signals. The image resolution of the DM is 640� 480

pixels, and the range of variable magnification of these

images is 10-200X.

3 Methodology

In order to detect and classify fatigue damage in mechan-

ical structures, the ultrasonic test (UT) signals are first pre-

processed and analyzed for feature extraction. Then, the

extracted features are used as inputs to the neural networks

(NN)-based classifiers.

3.1 Feature extraction

Feature extraction is used to transform data (e.g., UT sig-

nals) into a set of features such that these features are

distinctive properties of the patterns [19, 20] so that dis-

crimination among the classes of these patterns becomes a

feasible task. In the work reported in this paper, four dif-

ferent types of features have been identified for extraction

from UT signals: (i) Low frequency; (ii) High frequency;

(iii) Signal envelope; and (iv) Signal energy.

The methodologies to extract the above features are

explained below.

3.1.1 Discrete wavelet transform

Bulk of the pertinent information in UT signals exist in

nonstationary forms and also have irregular wave struc-

tures. Therefore, it is preferable to decompose the signals

into building blocks that are well localized at different

levels of scales and time-translations. In this task, the

signals have been decomposed by digital wavelet transform

(DWT) [9, 10] that is suitable for analyzing nonstationary

signals. Figure 5(a) displays a typical profile of (non-sta-

tionary) UT signals.

Multiresolution analysis (MRA) [9, 10], which belongs

to the class of DWT, is suitable for decomposing UT sig-

nals into the approximation and the detail parts of the

signal. The approximation part characterizes the low-fre-

quency components of the signal, while the detail part

represents the high-frequency components of the signal.

Each approximation of the signal is further orthogonally

decomposed into a hierarchical set of details and approxi-

mations. The selected wavelet decomposition level that

provides the best detection of the crack onset is observed to

be a third-level wavelet decomposition with the Daube-

chies wavelet basis function, db10. The approximation and

detail parts of the signal are expressed as:

Approximation part: ylo½k� ¼
X

n

x½k�h½2n� k� ð1Þ

Detail part: yhi½k� ¼
X

n

x½k� g½2n� k� ð2Þ

where ylo and yhi represent the outputs of the low-pass and

high-pass filters, respectively, after down-sampling by 2.

The extracted features using DWT are high-frequency

components and low-frequency components [12, 21–24].

Figure 6 presents a schematic diagram of the DWT

process analysis for decomposition of non-stationary sig-

nals. Fig. 7a, b, and c present the profile of a typical UT

signal, the DWT level 3 low frequencies and high fre-

quencies of UT signals, respectively.

3.1.2 Hilbert transform

Another possible method of analyzing UT signals is Hilbert

transform (HT) [25]. The core concept of HT-based detec-

tion of signal envelopes is built upon the (complex-valued)

analytical signal, generated from the input data. The real part

of the (complex-valued) analytical signal is the original UT

signal, while the imaginary part is Hilbert transform of the

raw UT signal [26, 27]. In this paper, the HT method

Fig. 6 Third-level dyadic representation of DWT on a two-channel

filter bank
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characterizes the upper and lower boundaries of UT signals

in order to provide a good visual representation of signal

wave-forms for crack detection; here, the time-domain

bounds of the UT signal identify the fatigue crack in early

stages of crack propagation, as seen in Fig. 8(b).

The Hilbert transform, x̂ðtÞ, of the UT signal, x(t), is

obtained by the convolution of x(t) with the Hilbert

transform kernel h(t), as illustrated below:

x̂ðtÞ ¼
Z 1

�1
xðsÞ hðt � sÞds ð3Þ

(a) Typical profile of a measured UT signal.

(b) Corresponding DWT level 3 low frequencies.

(c) Corresponding DWT level 3 high frequencies.

Fig. 7 Detection for a fatigue

crack by DWT analysis
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The signal envelope of the UT signal x(t) is used as an

extracted feature here, which is defined as:

envxðtÞ,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jxðtÞj2 þ jx̂ðtÞj2

q
ð4Þ

3.1.3 The signal energy

In the discipline of signal processing, signal energy is

widely used for quantifying the signal strength. In this

paper, a decreasing trend in the signal strength serves to

identify the onset of fatigue crack. It follows from Fig. 1a

and b that, by applying Eq. (5) on UT signals, the signal

energy, E(t), of a crack-free specimen at the receiver

transducer is seen to be greater than that of a cracked

specimen, as seen in Fig. 9b.

EðtÞ ¼
Z 1

�1
j xðtÞ j2 dt ð5Þ

3.2 Neural network-based classification

Neural network (NN) is a computational tool that attempts

to mimic the logic of a human brain. In its simplest form,

NN is composed of a set of nodes and a set of connections

that link the neurons in individual layers in the NN. Hence,

an NN tends to imitate the most vital mechanism of the

brain, which is the neural association. In essence, the

operating principle of an NN is largely dependent on the

connections, called synapses, between nodes and the dis-

tributed (nonlinear) activation functions to create different

types of NN. Neural networking (NN) is a computational

method that is designed to adjust and self-program the

software by using learning algorithms. The mathematical

derivations/equations of neural network (NN) are given in

one of the authors’ previous publications [28] and are

therefore not repeated here. The feed-forward neural net-

work with backpropagation is considered to be one of the

most common types of NN.

(a) Typical profile of a measured UT signal.

(b) The corresponding Hilbert envelope.

Fig. 8 Detection of a typical

fatigue crack by HT analysis
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In the above context, NN has been used in several

application areas, such as engineering, economics, and

medicine. In its simplest form, NN is composed of a set of

neurons (known as processing units), which works by

building interconnections between neurons in various lay-

ers of NN; neurons are characterized by the weights that

represent the connections between the neurons and thus

compares the impact of one neuron relative to another. It is

well known that different types of neuron connections

create different types of NN systems, which are broadly

categorized as follows:

1. The NN architecture that is represented by NN layers

and a number of neurons in each layer. For example,

single layer neural network presents only two layers

which are the input layer and output layer, while the

shallow neural network includes three layers which are

the input layer, the hidden layer, and the output layer.

This study applies the shallow neural network.

2. The mathematical structure of a neuron, which deter-

mines how a neuron should be activated. Figure 10

presents the mathematical structure of an activation

function in a neuron, where, (x1, x2, x3) are the input

data, (w11, w12, w13) are weights, and b is the bias. For

each node, the input data are multiplied by weights,

and added with a bias b as:

a ¼ w � xþ b ¼ w11x1 þ w12x2 þ w3x13 þ b

y ¼ /ðaÞ ¼ /ðwxþ bÞ
ð6Þ

(a) Typical profile of a measured UT signal.

(b) The corresponding energy of the UT signal.

Fig. 9 Detection of signal

energy for a fatigue crack

Fig. 10 The mathematical structure of a typical neuron
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where / is the activation function [29–32], which is

used to introduce a nonlinearity into the neuron’s

output. In this paper, the (smooth and nonlinear) sig-

moid function, which serves as the activation function,

provides an analogue output between 0 and 1, The

sigmoid function is expressed by:

y ¼ 1

1þ ea
ð7Þ

3. The learning mechanism: In the learning phase of an

NN model, the error between the outputs and the target

values is minimized by adjusting weights (wij) of the

NN model, hence, the model performance is improved.

The number of NN model epochs is determined from

the number of the learning phase cycles, where each

cycle of the learning phase accounts for one epoch. At

each epoch, the outputs of NN are compared with the

target set, and according to the estimated error, the

back-propagation algorithm is performed, where the

estimated error is passed in the reverse direction of the

NN architecture (from the output layer to the input

layer) for re-adjusting the values of the weights. This

procedure is repeated continuously for the next epochs

until the optimal error is achieved. In this study, the

scaled conjugate gradient is applied to adjust the

weights of the NN architecture. For more details, the

reader is referred to [28, 33–35] .

Figure 11 presents a general procedure of NN analysis,

which describes the essential steps for the learning phase.

3.2.1 Performance evaluation

The task of the classifier in this paper is binary classifi-

cation, whose outputs belong to one of the four possible

options:

1. True positive (TP): TP is defined when the sample is

positive and it is classified as positive.

2. False negative (FN): FN is defined when the sample is

positive and it is classified as negative.

3. True negative (TN): TN is defined when the sample is

negative and it is classified as negative.

4. False positive (FP): FP is defined when the sample is

negative and it is classified as positive.

Figure 12 shows the associated confusion matrix. Note: A

confusion matrix is a table that is often used to visualize

the performance of a classification model [12].

The performance evaluation of a NN classifier is

achieved by the following metrics:

1. Accuracy of a classifier is defined as the ratio of correct

predictions to total predictions made:

Fig. 11 The procedure of neural network analysis

Fig. 12 The structure of a confusion matrix
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Accuracy,
TPþ TN

TPþ TN þ FPþ FN
ð8Þ 2. Sensitivity of a classifier is defined as the ratio of

correct positive predictions to the total number of

positives:

Fig. 13 Undamaged and

damaged (dashed area) classes

of a UT signal

Fig. 14 Undamaged and

damaged classes at low

frequencies of a UT signal

Fig. 15 Undamaged and

damaged classes at high

frequencies of a UT signals
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Sensitivity,
TP

TPþ FN
ð9Þ

3. Specificity of a classifier is defined as the ratio of

correct negative predictions to the total number of

negatives:

Specificity,
TN

TN þ FP
ð10Þ

4. Precision of a classifier is defined as the ratio of correct

positive predictions to the total number of the samples

classified as positive:

Precision,
TP

TPþ FP
ð11Þ

5. F-measure of a classifier is defined as the weighted

average of Precision and Sensitivity:

F � measure,
2 � Precision � Sensitivity
Precisionþ Sensitivity

ð12Þ

Thus, F-measure takes both false negatives and false

positives into account.

6. Receiver Operator Characteristic (ROC) helps to

quantify the best threshold value. The graph of ROC

is generated by plotting the Sensitivity (y-axis) against

the False Positive Rate = (1- Specificity) (x-axis).

7. Area under the curve (AUC) uses the logistic model to

provide the rate of successful classification. Also, it is

used to compare the ROC curve of one model to that of

another model.

AUC,
Sensitivityþ Specificity

2
ð13Þ

8. Matthews Correlation Coefficient (MCC) correlates the

predicted observed binary classifications to generate a

score that ranges in the interval ½�1; þ1�, where

MCC ¼ þ1 implies that the samples are perfectly

classified, and MCC ¼ �1 implies that the samples are

perfectly mis-classified. The MCC is normalized as:

MCC,

TP � TN � FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞ � ðTPþ FNÞ � ðTN þ FPÞ � ðTN þ FNÞ

p

ð14Þ

Fig. 16 Undamaged and

damaged classes of the signal

envelope of a UT signal

Fig. 17 Undamaged and

damaged classes of UT signal

energy
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3.3 Pattern classification

The principle of pattern recognition has been applied in this

paper for damage detection and classification based on

experimental data [36, 37]. The methodology of pattern

classification in neural networks relies on a pair of vari-

ables f/; kg, where the vector / represents the extracted

feature, and the vector k contains the corresponding labels

of /. In this way, the features of UT signals are classified

as the crack that appears on the notch of the specimen,

where the visual inspection by the digital microscope is

synchronized performed with the ultrasonic testing to

provide a ground truth for the ultrasonic fatigue crack

detection. All features that are identified before the crack

onset belong to the undamaged class, and those that occur

after the crack onset belong to the damaged class. Fig-

ures 13, 14, 15, 16 and 17 illustrate the undamaged class

and damaged class (dashed area) for the original UT

signals, low frequencies of UT, high frequencies of UT, the

signal envelope of UT, and the signal energy of UT,

respectively.

The proposed procedure of fatigue damage classification

is briefly described in the following steps:

1. Feature extraction: the low frequencies and high

frequencies of UT signals were obtained by DWT.

The signals envelope was obtained from UT signals by

HT, and the last feature is the signal energy of UT

which is obtained by applying Eq. 5.

2. Data preparation: The generated UT signals are split

into two categories based on the appearance of crack

on the surface notch. The undamaged class contains all

extracted features before the onset of the crack, while

the damaged class includes all extracted features after

the crack onset. However, before data splitting, two

(a) Normalized approximation of UT and DWT coefficients at Level 3.

(b) Positive elements of normalized approximation coefficients of UT and DWT
coefficients at Level 3.

Fig. 18 Feature extracted at low

frequencies of a UT signal
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essential steps must be executed after extracting the

features from UT signals.

(a) Data normalization: The reason for normalizing

the measured features is that their responses for

all tested specimens are of similar texture, but

their values may differ from one to another. The

normalization is defined as a z-score, and it

transforms the measured features to have a mean

of zero and a standard deviation of one. The

measured features are normalized as:

zn ¼
xn � �x

r
ð15Þ

where �x is the mean and r is the standard

deviation.

(b) Data selection: In this step, the significant

information that perfectly represents both classes

is chosen. For example, as shown in Fig. 18a,

most of the positive components of the third

approximation level, low frequencies of UT

signals, represent the undamaged class and

damaged class perfectly. Hence, the positive

components of low frequencies are selected as

input data for NN model, see Fig. 18b. Further-

more, the high frequencies and the signals

envelop are almost symmetric at the x-axis, as

shown in Figs. 19a, 20a, hence the positive

components of high frequencies and signals

envelop are selected as an input data for NN

model, see Figs. 19b, 20b. This step also

provides the advantage of reduced learning time

of the NN model by removing the unnecessary

input data.

(c) Data classification: The neural network pattern

recognition toolbox of Matlab has been used to

classify the extracted feature and to provide the

best feature for fatigue crack detection.

(a) Normalized details of wavelet coefficients at Level 3.

(b) Positive elements of normalized details of wavelet coefficients at Level 3.

Fig. 19 Feature extracted at

high frequencies of a UT signal
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4 Results and discussion

This section presents and discusses the experimental results

for validation of neural network (NN) models and feature

extraction methods. Upon feature extraction by various

methods, the best feature of UT signals is selected based on

its combination with NN-based classification. The perfor-

mance of each feature classifier is measured by accuracy,

sensitivity, specificity, and precision of each classifier. This

is accomplished in terms of Matthews correlation coeffi-

cient (MCC), area under the curve (AUC) of ROC, and

F-measure on a two-layer feed-forward network network

that is constructed with ten Sigmoid hidden neurons and

two Softmax output neurons by using the neural network

toolbox of MATLAB. The input data of NN are split as

follows: 70% of the input data for training, 15% for vali-

dation, and 15% for testing.

4.1 Performance of neural network model

The ground truth of the original experimental data (i.e.,

time series of UT signals and images from the digital

microscope) is used as a reference to measure the perfor-

mance of each combination of feature and NN model. As

seen in Fig. 13, a time series of UT signals is partitioned

into undamaged and damaged classes, where the input data

of NN using UT signals is a vector that contains 2,873,379

elements; the fatigue crack onset occurred around the

element 1,641,001. Hence, the first 1,641,001 elements are

labeled as the undamaged class, while the remaining ele-

ments of the vector are labeled as the damaged class in

Fig. 13.

Figure 21 presents the confusion matrix of UT signals

using NN, where the correct classifications are indicated by

green squares, while red squares present incorrect classi-

fications. The right-most column of the confusion matrix

presents the percentages of all the examples predicted to

(a) A normalized signal envelope at Level 3.

(b) Positive elements of a normalized envelope at Level 3.

Fig. 20 Feature extracted from

the envelope of a UT signal
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belong to each class that are correctly and incorrectly

classified. The last row of the confusion matrix shows the

percentages of all the examples belonging to each class that

are correctly and incorrectly classified. The cell in the

bottom right of confusion matrix shows the overall accu-

racy. Table 1 lists the performance of the NN classification

using different criteria, where accuracy of the classifier

indicates that more than 30% of the measured UT signals

are incorrectly classified, and that of MCC is � 0:37 which

implies that the correlation between the ground truth and

predicted responses is insufficient. (It is noted that the

desired MCC should be close to 1.) Hence, the UT clas-

sification by solely using the NN-based model is

Fig. 21 Confusion matrices derived from a UT signal. In all four subplots, the three regions on each of the abscissa (from left to right) and the

ordinate (from top to bottom) indicate the results of undamaged class, damaged class, and overall performance, respectively

Table 1 Classification via sole usage of the NN model

Training Validation Testing All

Accuracy 0.681 0.682 0.682 0.681

Sensitivity 0.614 0.615 0.615 0.614

Specificity 0.752 0.752 0.752 0.752

Precision 0.723 0.725 0.724 0.723

F-measure 0.664 0.665 0.665 0.664

AUC 0.683 0.684 0.683 0.683

MCC 0.369 0.370 0.370 0.369
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Fig. 22 Confusion matrices of a signal envelope model. In all four subplots, the three regions on each of the abscissa (from left to right) and the

ordinate (from top to bottom) indicate the results of undamaged class, damaged class, and overall performance, respectively

Table 2 Performance measurements of a HT model

Training Validation Testing All

Accuracy 0.718 0.708 0.709 0.709

Sensitivity 0.751 0.640 0.640 0.640

Specificity 0.680 0.788 0.790 0.790

Precision 0.733 0.779 0.782 0.781

F-measure 0.742 0.703 0.704 0.704

AUC 0.715 0.714 0.715 0.715

MCC 0.432 0.430 0.432 0.432

Table 3 Performance measurements of a DWT high-frequencies

model

Training Validation Testing All

Accuracy 0.752 0.753 0.748 0.752

Sensitivity 0.749 0.750 0.746 0.749

Specificity 0.756 0.756 0.751 0.755

Precision 0.794 0.797 0.787 0.793

F-measure 0.771 0.773 0.766 0.771

AUC 0.752 0.753 0.748 0.752

MCC 0.502 0.503 0.495 0.501
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Table 4 Performance measurements of a DWT low-frequencies

model

Training Validation Testing All

Accuracy 0.728 0.727 0.727 0.728

Sensitivity 0.700 0.695 0.700 0.699

Specificity 0.756 0.758 0.755 0.756

Precision 0.738 0.737 0.740 0.738

F-measure 0.718 0.715 0.719 0.718

AUC 0.728 0.727 0.727 0.727

MCC 0.456 0.454 0.455 0.455

Fig. 23 Confusion matrices of a typical high-frequencies model. In all four subplots, the three regions on each of the abscissa (from left to right)

and the ordinate (from top to bottom) indicate the results of undamaged class, damaged class, and overall performance, respectively

Table 5 Performance measurements of a typical signal-energy model

Training Validation Testing All

Accuracy 0.985 0.987 0.986 0.985

Sensitivity 0.998 0.998 0.999 0.998

Specificity 0.868 0.875 0.879 0.871

Precision 0.985 0.987 0.985 0.985

F-measure 0.992 0.993 0.992 0.992

AUC 0.933 0.937 0.939 0.935

MCC 0.916 0.921 0.927 0.919
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inadequate for both detection and classification of fatigue

damage, especially for the applications that have poten-

tially grave consequences (e.g., human safety, colossal

financial loss, and environmental contamination). The next

subsection addresses how the classification performance

can be improved by combining an extracted feature with

the NN model.

4.2 Combination of the NN model with features

Signal envelope (see Eq. (4)) is the first feature, which is

combined with the NN model, as seen in Fig. 16. The input

data of NN using HT is a vector of (1� 2873379), where

the first 1,641,001 elements are classified as the undam-

aged class, and the remaining elements are classified as the

damaged class. It follows from Fig. 22 and Table 2 that the

accuracy of classification is improved to � 5:43%, and the

improvement in the correlations between the target

responses and predicted responses is almost negligible, �
0.06. Hence, the performance of NN model using HT

feature is still inadequate.

The second and the third features are DWT level 3 low

frequencies and high frequencies. Equations 1 and 2 are

used to extract these futures, as shown in Figs. 14, 15. The

size of the input data of NN is (1� 359189) for both fea-

tures. The first 185,000 elements of the input data are

Fig. 24 The confusion matrices of a typical low frequencies model. In all four subplots, the three regions on each of the abscissa (from left to

right) and the ordinate (from top to bottom) indicate the results of undamaged class, damaged class, and overall performance, respectively
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classified as an undamaged class, while the last 174,189 are

classified as a damaged class. From Tables 3& 4, the

improvement in the accuracy as compared with UT clas-

sifier is 6.90% & 10.42% for a low-frequencies feature and

high-frequencies feature, respectively, and MMC is still

insufficient for both features. However, the performance of

the high-frequencies model is slightly better than NN

model of low- frequencies. The desired performance of NN

model is still not archived by using the low-frequencies

feature & the high-frequencies feature.

The last feature is the signal energy, the measured sig-

nals energy are shown in Fig. 17. The input data size of the

NN model is (1� 19029). The first 9,900 elements are

classified as an undamaged class, while the last 9,129

elements are classified as a damaged class. The NN model

of this feature achieves an overall accuracy of 98.5 %

which means the improvement in the classifier accuracy as

compared with the UT classifier is increased by almost

44.46 %, and MCC is � 0.920.92, as illustrated in Table 5,

which manse the target responses are strongly correlated to

the predicted responses. Therefore, the signal energy

classifier is the best classifier among the other UT selected

features (Figs. 22, 23, 24 and 25).

Fig. 25 Confusion matrices of a typical signals-energy model. In all four subplots, the three regions on each of the abscissa (from left to right)

and the ordinate (from top to bottom) indicate the results of undamaged class, damaged class, and overall performance, respectively
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Figure 26a compares the measurements tools for eval-

uating the performance of each feature classifier, and

Fig. 26b compares the effectiveness of these tools for all

NN classifiers.

5 Summary, conclusions, and future work

This paper has investigated several methods of signal

processing to characterize the fatigue damage in AL7075-

T6 aluminum alloy structures on a laboratory apparatus,

where the main topics of research are feature extraction and

pattern classification by making use of the tools of neural

networks (NN). To this end, ultrasonic test (UT) signals

and images from a digital microscope have been used to

enhance the performance of fatigue damage detection &

classification, where all features before the onset of fatigue

crack on the surface notch of tested specimens are classi-

fied as the undamaged class, while all features after the

onset of fatigue crack are classified as the damaged class.

The feature extraction methods are constructed from

Hilbert transform (HT)-based signal envelope, discrete

Wavelet transform (DWT)-based analysis at both high-

frequency and low-frequency spectra, and signal energy.

The sole usage of a neural network (NN)-based model is

found to be inadequate for detection and classification of fatigue

damage. Therefore, this NN model is combined with features

that are extracted from time series of experimental data (i.e., UT

signals). The performance of these NN-based systems has been

evaluated in terms of accuracy, sensitivity, specificity, and

precision. Specifically, performance of the extracted features

has been quantified by computing area under curve (AUC) of

receiver operating characteristics (ROC) [6], Matthews corre-

lation coefficient (MCC) [7], and the F- measure [8].

The results of this investigation reveal that the best

extracted feature is the signal energy, where the classifica-

tion accuracy of the NN model using this feature reaches

98.5%, and that of MCC is almost 0.92. The remaining

extracted features show a slight improvement in the per-

formance of their respective models as compared to the sole

usage of the NN-based model. It is concluded that, the key to

the construction of a successful NN-based model is accurate

(a) The performance of NN system as measured by four methods.

(b) Efficacy of performance measurements as computed by three methods

Fig. 26 Comparison of crack

detection methods for

improvement of detection

performance
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feature extraction that has the potential of effectively

detecting the fatigue damage onset in mechanical structures.

While there are many areas of both theoretical and

experimental research that should be undertaken before its

commercial application, the following topics are suggested

for future research:

1. Examination of the detailed information at different

levels of DWT.

2. Investigation of signal contents at different stages in

the crack initiation regime.

3. Image analysis by more advanced apparatuses of

optical metrology (e.g., confocal microscopy).
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