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Abstract

The global objective of this study was to investigate the best features of the sur-

face topography for fatigue-damage detection and classification. The presence

of the stress concentration in valleys of the surface topography causes a grain

slip and a crack initiation at the surface of the machined structure and finally

leads to fatigue failures. Therefore, the surface topography has a major influ-

ence on the fatigue strength of the machined structure. An optical confocal

measurement system (Alicona) was applied to measure six surface topography

parameters. In this paper, feature selection using the Pearson correlation

method was adopted to select the best surface textures that provide best the

neural network (NN) model performance. The NN model is capable of detect-

ing and classifying the damage with an accuracy of up to � 94.4%.
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1 | INTRODUCTION

Fatigue damage is the main source of the deterioration of
a component or material, and it is caused by a large num-
ber of applied stress cycles, maximum tensile stress, and
fluctuations in applied stress. The fatigue life of materials
is determined by two main periods, fatigue crack initia-
tion and fatigue crack propagation. The fracture mechan-
ics approach has been applied to study the growth of the
fatigue crack propagation which includes both long and
short cracks. However, studying the fatigue crack initia-
tion is vital because without crack initiation, there is no
crack propagation. Therefore, studying fatigue crack initi-
ation has received considerable critical attention from
scientists and engineers. The mechanism of the fatigue
crack initiation in heterogeneous materials is defined by
two methods: (i) The crack initiates from pre-existing
crack (e.g., defect) or bonded second phase particles
(e.g., inclusions), and (ii) the crack initiates from natural

elementary defects such as twin and grain boundaries,
point defects, stacking faults, and dislocations.1–4

Practically, the fatigue-damage risk increases as the
fatigue damage moves from one regime to another, where
the fatigue-damage risk in the crack-initiation regime is
very low because the crack growth rate is not significant
(e.g., � 1 nm per cycle). According to Paris' law, the log
of crack growth rate is linear with respect to the log of
stress intensity factor range; hence, the fatigue-damage
risk increases as the crack growth rate is increased. While
the physics of fatigue crack propagation is modeled fairly
accurately by the Paris' law and its modifications, the
modeling of the physics of fatigue crack initiation is
apparently an open issue in the current state of the art of
fracture mechanics, because the mechanics-based models
of crack initiation are grossly inaccurate and the grain-
based models do not have well-formulated mathematical
structures. Therefore, it is difficult to accurately deter-
mine the number of cycles for the crack initiation. In
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general, the fatigue life of a component is influenced by
some external factors such as temperature and surface
finish.1,2,5,6

It is well known that the last stage of the manufactur-
ing process is the surface finishing, and it determines the
surface topography of a machined part. The surface fin-
ishing is known as a fingerprint of the manufacturing
process because it plays a major role in lubricant reten-
tion, sealing, wear resistance, friction, and fatigue. In
fact, the strength design and life prediction of a machined
part are significantly affected by the surface finishing,
because the local microscopic stress and strain concentra-
tion at the surface defects are major factors for crack ini-
tiation and propagation, also generally that fatigue cracks
initiate from the free surface. Therefore, the surface
topography is considered a major factor in the fatigue
behavior of the product.7–10

The surface roughness provides a global view of the
surface topography, and it is generally accounted for in
many fatigue life models. A great deal of previous
research into fatigue life has focused on the effect of sur-
face roughness on fatigue strength. Most of these studies
conclude that the fatigue strength decreases as the sur-
face roughness increases. A qualitative study by Taylor
and Clancy11 defined the consequences of machining
methods on the fatigue strengths of four distinct
machined parts. The results show that the fatigue
strength of the machined part decreases with increasing
surface roughness. Another investigation by Itoga et al12

provides a similar conclusion to the study of Taylor and
Clancy, which implies that the fatigue life is decreased
when the surface roughness of the component increased.
The surface roughness is extremely affected by several
factors such as temperature and stress level; (e.g., low
temperature and high stress) that promote the influence
of the surface roughness on the fatigue life. Zuluaga-
Ramirez et al13 used a confocal microscope to measure
the roughness of carbon fiber-reinforced polymers
(CFRP); their study points out that the magnitude of the
surface roughness is significantly affected by the fatigue
loads. Generally, surface roughness acts as a stress con-
centrator and creates microcracks at the free surface.13–15

The critical problem of fatigue damage is that fatigue
damage typically occurs suddenly, without prior notice.
Therefore, most petroleum refineries apply periodic
inspections to certify the quality of their assets. The com-
mon technique that is used in inspection is visual inspec-
tion (VT). According to the Mainblades inspection
company, more than 75% of all inspections on large
transport aircraft are done by VT, and it is widely used
because it is easy to train, easy to prepare, and inexpen-
sive. On the other hand, VT can identify large flaws, and
it is possible to have misinterpretation flaws. To detect

tiny surface cracks or internal defects, other nondestruc-
tive testing (NDT) techniques such as ultrasonic and eddy
current are applied.16–20

The fatigue-damage risk assessment is a fundamental
task in these refineries to overcome personal, environ-
mental, and refinery plants hazard situations. However,
in most cases, it is a time-consuming task, and it depends
on the inspector's experience. Therefore, building an
automated crack detection system is deemed very neces-
sary. Recent years have witnessed a growing academic
interest in using machine learning techniques to detect
fatigue damage. The machine learning approaches have
shown the ability to provide models for fatigue-damage
detection because of their excellent nonlinear approxima-
tion and multivariable learning ability.21,22

Machine learning is a set of algorithms that are
applied to data-driven systems such as artificial neural
network (ANN), fuzzy logic, convolution neural network
(CNN), and support vector machine (SVM).23,24 Machine
learning techniques have been applied in fatigue fields
for different purposes because of their capability of
modeling the internal connections and tendencies from
complicated or imprecise data. For example, Mohanty
et al25 applied an ML method called the genetic program
for fatigue life prediction of the 2024-T3 aluminum alloy;
and Wang et al26 successfully utilized the relevance vec-
tor machine (RVM) to estimate the remaining useful life
of a structure.

Several feature extraction methods were discussed by
D'Angelo and Rampone27 to classify different defects by
an ANN-based method of detecting fatigue cracks propa-
gating in the load-carrying structure of aircraft.
Dworakowski et al28 utilized an ANN for detecting
fatigue cracks propagating in aircraft structure. Hu and
Deng29 successfully applied the nearest-neighbor SVM
and CNN to detect the fatigue damage in bearings.
Alqahtani and Ray30 applied a CNN technique for
fatigue-damage detection and classification of a
polycrystalline alloy (Al7075-T6), where these CNN
models show good applicability for classifying the fatigue
damage. However, most of these studies have not used
the surface topography measurements for fatigue-damage
detection and classification.

This paper investigates the evolving fatigue damage
in machinery structures using surface topography mea-
surements. The surface topography illustrates generally
the deviations of a real surface from its ideal form, and
the crack initiation has a significant effect on the devia-
tions of a real surface. Hence, the surface topography
measurements were used to detect fatigue damage. All
surface topography measurements were taken by an opti-
cal meteorology device (Alicona). The investigated sur-
face textures are the arithmetical mean height Sa, the
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root-mean-square height Sq, the maximum peak height
Sp, the maximum valley depth Sv, the maximum height
Sz, and 10-point height Sz10. In addition, this paper shows
the most significant surface texture that is affected by the
fatigue damage, which can be determined by obtaining
the best ANN model performance accuracy.

The main contributions of this investigation are delin-
eated as follows:

1. Data classification: The surface topography measure-
ments have been used to classify the state of the
fatigue damage into two classes, a healthy class and
an unhealthy class. The healthy class presents all mea-
surements before the crack initiation, while the
unhealthy class presents all measurements after the
crack initiation.

2. Best surface-index selection by ANN-based pattern clas-
sification: The performance of the ANN model has
been used to select the best surface index, individu-
ally, where the model performance refers to the best
surface index and vise versa.

3. Development of the performance of the ANN model: A
correlation-based method (CBM) has been applied to
select the best features that improve the ANN model
performance of the best surface index.

The overall structure of this paper takes the form of
five sections including the present section. The second
section describes the experimental apparatus utilized in
fatigue-damage detection. The third section is concerned
with the methodology employed for this study, which will
include an overview of (i) tested surface textures, (ii) a
CBM, and (iii) ANNs. The fourth section discusses the fea-
ture selection using CBM and the performance of each
surface-index ANN model. The fifth section summarizes
the main points of the paper with conclusions and recom-
mendations for future research.

2 | DESCRIPTION OF THE
EXPERIMENTAL APPARATUS

This section includes the investigated material and
the experimental apparatus, as shown in Figure 1. The
main goal of this experiment is to obtain the surface
topography parameters for the evaluation of the dam-
aged state on the free surface. Ten typical experiments
have been conducted to build an automated system
for fatigue-damage detection based on surface
texture data.

2.1 | Materials

The material selected to evaluate the methods of this
paper is a polycrystalline alloy (made of Al7075-T6 alloy).
Figure 2 shows a CAD drawing of a notched test speci-
men. The dimensions of the tested specimens are 3 mm
thickness, 50 mm width, and (1 mm * 3.5 mm) slot cut at
the edge.

2.2 | The computer-controlled fatigue
testing machine

A hydraulic test machine was used for the fatigue tests
of this investigation, and all conducted experiments
were under load-controlled conditions. The tension–
tension load cycles at 60 Hz was selected to study the
influence of the surface topography parameters on sur-
face cracks. The maximum tensile load is 11,000 N, and
the minimum tensile load is 6000 N. All tested experi-
ments were investigated in the laboratory environment
(25�C and 1 atm).

FIGURE 1 The experimental apparatus [Colour figure can be

viewed at wileyonlinelibrary.com]

FIGURE 2 Specimen geometry used for fatigue testing [Colour

figure can be viewed at wileyonlinelibrary.com]
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2.3 | The optical metrology

3D surface measurements using an optical metrology
device (Infinite-Focus, Alicona) illustrate the surface
topography of a tested surface. Figures 3 and 4 show
Alicona 3D surface topography of the notch surface of the
tested specimen for both the nondamaged state and dam-
aged state, respectively.31,32 In this study, the measured
surface topography parameters are the arithmetical mean
height (Sa), root-mean-square height (Sq), maximum
peak height (Sp), maximum valley depth (Sv), maximum
height (Sz), and 10-point height (Sz10).

In the Focus-Variation system of Alicona, the topo-
graphical and color information are created from the var-
iation of focus where the small depth of focus of an
optical system is combined with vertical scanning. The
vertical resolution of the Infinite-Focus system reaches
20 nm.31,32

3 | METHODOLOGY OF DAMAGE
ANALYSIS

This section discusses the specific approaches by which
the research and analyses were conducted, and it is sub-
divided into three subsections:

3.1 | Surface topography

The size of the investigated surface using Alicona is
0:4mm�0:4mm which is a very small area, as shown in
Figure 5. However, the number of pixels in this tiny area
is huge (4,161,600 pixels). Thus, the ability of Alicona to
detect microcracks is significant. Amplitude parameters
of the surface topography provide information for the
areal height deviation of the surface topography. Six
parameters in the amplitude group were selected to study
the fatigue damage.

1. Arithmetical mean height, Sa: it is the arithmetic mean
of the absolute value of the height within a sampling
area. The following equation shows how to calculate
Sa:

Sa ¼ 1
A

Z
A
jzðx,yÞjdxdy, ð1Þ

where A is the sampling area, xy. The scalar-valued
zðx,yÞ is a measured point in the sampling area.

2. Root-mean-square height,Sq: it is the standard devia-
tion value of the height distribution of the surface
departures ,zðx,yÞ, within the sampling area, and it is
defined by the following equation:

Sq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
A

Z
A
jz2ðx,yÞjdxdy

s
: ð2Þ

3. Maximum peak height,Sp: it is the largest peak height
value from the mean plane within the sampling area.

4. Maximum valley depth,Sv: it is the largest pit value
from the mean plane within the sampling area.

5. Maximum height,Sz: it is the sum of the largest peak
height value and largest pit value within the sampling
area, thus

FIGURE 3 Typical 3D topography of undamaged specimens

[Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 4 Typical 3D surface topography of damaged

specimen [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 5 3D surface generated using Infinite-Focus deceive

[Colour figure can be viewed at wileyonlinelibrary.com]
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Sz ¼ SpþSv: ð3Þ

6. Ten-point height, Sz10: it is the average height of the
five highest maximums plus the average height of the
five lowest minimums within the sampling area. The
following equation expresses Sz10: where zpi and zvi
are the height of the ith highest maximums of the
sampling area and the ith lowest minimums of the
sampling area, respectively.33,34

3.2 | Feature selection

Feature selection has been applied in ANN applications
to develop a predictive model by reducing the number of
input variables. Hence, minimizing the computational
cost of molding and improving the performance of the
model are achieved by applying feature selection
methods.35,36 This paper presents one of the feature selec-
tion methods called the Pearson correlation method. The
correlation is used to determine the association between
the features, where the correlation is (�1) when two fea-
tures are linearly dependent, while it is 0 when the fea-
tures are uncorrelated. The correlation is defined in the
following equation:

rða,δÞ ¼
Pn

i¼1½ðai� �aÞðbi�bÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðai� �aÞ2Pn

i¼1ðbi�bÞ2
q , ð4Þ

where �a and b are the average value of feature a and the
average value of feature b, respectively.

�a¼ 1
n

Xn
i¼1

ðaiÞ b¼ 1
n

Xn
i¼1

ðbiÞ: ð5Þ

The principle concept of using the correlation method
in feature selection is that features with high correlation
(close to +1) are strongly correlated and hence have
almost the same influence on the dependent variable.
Therefore, we can eliminate one of the two features when
two features are correlated.37,38

3.3 | The ANN

The ANN presents a set of nodes that are associated in a
syntactic way that is similar to the association of neurons
in the human brain; thus, ANN follows the system of a
human brain. ANN has different forms of node connec-
tions, and each form creates a new type of ANN. The

feed-forward neural is commonly used in ANN applica-
tions. The mechanism process of the feed-forward neural
starts from input nodes and ends at the output nodes;
hence, the direction of the sequence in this type is a for-
ward direction. This paper presents an ANN structure
called the Shallow or Vanilla multilayer neural network
(NN). The Shallow ANN architecture contains an input
layer, one hidden layer, and an output layer, as shown in
Figure 6.

The computational process of each node is shown in
Figure 7. The input data (x1, x2, x3) are multiplied by
weights (w1,w2,w3) and added by a bias b. Practically,
when the input data have valuable information, a higher
weight is applied and vice versa. Thus, weight has played
an important role in the ANN computational process.

FIGURE 6 The Shallow neural network architecture

FIGURE 7 Typal structure of an artificial neuron [Colour

figure can be viewed at wileyonlinelibrary.com]
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The following equation expresses the output of each
node:

x¼
x1
x2
x3

2
64

3
75w¼ w1w2w3½ �,

a¼w∗xþb¼w1x1þw2x2þw3x3þb, ð6Þ

y¼ϕðaÞ¼ϕðwxþbÞ: ð7Þ

Here, ϕ is the activation function. The applied
activation function in this paper is known as the
Sigmoid function, and it allows a NN model to learn
complex problems by finding nonlinear relationships
between data features. The Sigmoid function, as shown
in Figure 8, generates an analogue output that is
limited between 0 and 1. The Sigmoid function is
defined by

y¼ 1
1þ ea

: ð8Þ

Adjusting ANN structure weights is a vital process,
where these weights are adjusted based on the value of
the error between the ANN model outputs and desired
outputs. This technique is defined as the back-
propagation technique. In this technique, a set of input
data is passed through the ANN structure generating out-
puts. Based on the measured error, the back-propagation
technique is applied in the reverse path of ANN architec-
ture (from the output layer to the input layer (the reverse
path of ANN architecture) to re-adjusted the weights.
This cycle is defined as an epoch, and the number of
epochs is determined by achieving the best model perfor-
mance (the minimum error). Generally, the model per-
formance improves gradually as the model error

gradually decreases. The mean squared error of the ANN
model is defined by

JANN ¼ 1
N

XN
t¼1

XO
e¼1

ðTANN ðt,eÞ� yANN ðt,eÞÞ2: ð9Þ

N : Number of trained data (input, output).
e: Index denotes the number of the output.
t: Index denotes the number of trained data.
O: Number of the ANN outputs.
T: The ANN target values.

In this paper, the scaled conjugate gradient (SCG)
back-propagation algorithm was applied to re-adjust
weights and biases of the ANN by using the Deep Learn-
ing ToolboxTM of MATLABTM 2020a.

Due to the unavailability of a reliable crack-initiation
model for developing a physic-informed ML algorithm,
the authors applied the pattern-recognition method to
construct a data-driven NN model. In pattern recogni-
tion, the set of experimental data has been classified into
the undamaged class and the damaged class, where a pat-
tern is a pair of variables fa,bg, where a is a vector that
presents all features of the surface topography and b is
the corresponding label of the feature vector. Along this
line, a classification methodology is used to define the
pattern allocation criteria for fatigue-damage detection.
In this paper, the concept of cross-entropy (CM)39 is used
to evaluate the performance of the ANN model whose
output is a probability value between zero and one,
where cross-entropy loss (CEL) decreases as the predicted
probability converges to its actual value. In this way, a
perfect model would have a CM of zero.40 The CEL is
defined by the following equation:

CEL¼�1
n

Xn
i¼1

½yi� logðhθðxiÞÞþð1� yiÞ� logð1�hθðxiÞÞ�,

ð10Þ

where
n: number of training samples.
xi: input for training sample n.
yi: target label for training sample n.
hθ: model with NN weights.

The input data are randomly distributed each time a
machine learning model is trained. This is done by ini-
tializing a random number generator (RNG) with an
arbitrarily selected seed value before each training.

Figure 9 shows a schematic diagram of the NN archi-
tecture that is constructed with 10 Sigmoid hidden

FIGURE 8 The Sigmoid function [Colour figure can be viewed

at wileyonlinelibrary.com]
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neurons and two Softmax output neurons. The splitting
ratio of the input data, which is measurements of the sur-
face roughness, is 70% for training, 15% for validation,
and 15% for testing.41–43

4 | RESULTS OF EXPERIMENTAL
VALIDATION

This section presents and discusses the experimental
results to identify the best surface textures, based on the
performance of the ANNmodel. In this paper, 208 distinct
areas in the image of the Alicona apparatus were investi-
gated to build a model for fatigue-damage detection. Each
measured area has six features; these features are
Sa, Sq, Sv,Sp, Sz10, and Sz. Before using the ANN model,
the data and features were split into two classes. The first
class is defined as the undamaged surface, and it presents
all data before the occurrence of the crack (93 measured

areas). The second class is called the damaged surface,
which is characterized by the surface cracks in the
observed images (115 measured areas). Figure 10A,B
shows the measurements for undamaged surface and
damaged surface classes, respectively.

Table 1 presents outcomes of the ANN model for all
features individually. These outcomes were discussed in
detail in following reference.44

It is well known that adding more features is an easy
way to boost the accuracy of the ANN model. In our pre-
vious study,44 each input data represents only one fea-
ture, and the best feature that provides the best model
performance was Sz, while Sa provides the lowest ANN
model performance for the fatigue-damage prediction.
This is because Sa takes the average of the heights of the
texture across a measured surface, and the size of the

FIGURE 10 Examples of analyzed surfaces

with investigated features, six surface

topography parameters correspondingly, as

follows: (A) undamaged surface and

(B) damaged surface [Colour figure can be

viewed at wileyonlinelibrary.com]

FIGURE 9 Pattern-recognition ANN applied in this

investigation [Colour figure can be viewed at wileyonlinelibrary.

com]

TABLE 1 The results of ANN for all measured surface

topography parameters.

Cross-entropy
loss (error)

ANN model
performance %

Sa 0.69 68.3

Sp 0.55 71.6

Sv 0.52 68.8

Sq 0.55 69.2

Sz 0.44 87.0

Sz10 0.49 68.8
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microcracks according to the measured area
(0:4mm�0:4mm) is almost negligible. Hence, the Sa fails
to predict microcracks successfully. On the other hand,
Sz accounts for the maximum valley Sv and the maxi-
mum peak height Sp, and Mínguez-Martínez et al. found
that the Sz is very sensitive to surface defects and surface
scratches.45 The appearance of microcracks on the sur-
face is similar to surface scratches. Therefore, Sz provides
the best ANN model performance among other surface
topography parameters. In this paper, each data repre-
sents six features to improve the ANN model perfor-
mance, where the performance of all features will be
compared with Sz model performance, This model was
defined as all feature model (AFM). In addition, the fea-
ture selection using the Pearson correlation method has
been utilized to improve the performance of AFM, and
this model is defined as best feature model (BFM).
Table 2 presents the correlation matrix for all features.

Figure 11 shows the confusion matrix of the AFM
model. The confusion matrix is a table that is applied to
illustrate the performance of a classifier model. Columns
of the confusion matrix refer to the target class (true
class), while rows of the confusion matrix refer to the
output of the classifier (the predicted class). The diagonal
cells of the confusion matrix show samples that are cor-
rectly classified, while the off-diagonal cells of the confu-
sion matrix show samples that are incorrectly classified.
The bottom of the confusion matrix is known as the
recall of the classifier, where it shows the percentages of
all the samples belonging to each class that is classified
correctly and incorrectly. The column on the far right of
the confusion matrix is known as the precision of the
classifier, and it illustrates the percentages of all samples
predicted to belong to each class that is classified cor-
rectly and incorrectly. The cell in the bottom right of the
confusion matrix presents the overall accuracy of the
classifier within a specified interval of statistical
confidence,46 which is chosen as 95% in this paper.

It follows from Table 2 that Sz and Sp are strongly cor-
related (93%); hence, Sp is removed because Sz is

significantly affected by crack detection, where the ANN
performance of Sz is 87.0%, while the ANN performance
of Sp is 71.9%. Also ,Sv and Sq are strongly correlated
(71%); but the ANN model performance for both features
is almost close. In the present case, Sv is chosen over Sq
because Sv shows the maximum valley depth of the inves-
tigated surface and when a crack propagates on the free
surface of the material; it is seen that Sv is significantly
affected by crack propagation. The best features
(i.e., surface topography parameters) are Sa,Sv, Sz10, and
Sz. Figure 11A,B shows the classifier accuracy of all fea-
tures (i.e., both AFM and BFM) model at performance
accuracy of 90.9% and 94.2%, respectively.

It follows from Figure 11A that the AFM model accu-
racy is 90.9%, which is better than that of the Sz model by
3.9%. Figure 11B shows the BFM accuracy, which is
94.2%. The BFM accuracy is better than both the AFM
accuracy by 3.1%, and that of the Sz model by 7.2%. The
improvement of the model accuracy as compared to that

TABLE 2 The correlation matrix for all measured surface

topography parameters.

Sa Sq Sp Sv Sz10 Sz

Sa 1.00 0.00 0.54 0.70 0.00 0.00

Sq 0.00 1.00 0.55 0.71 0.00 0.00

Sp 0.54 0.55 1.00 0.00 0.01 0.93

Sv 0.70 0.71 0.00 1.00 0.01 0.61

Sz10 0.00 0.00 0.01 0.01 1.00 0.07

Sz 0.00 0.00 0.93 0.61 0.07 1.00
FIGURE 11 The model accuracy of AFM and BFM [Colour

figure can be viewed at wileyonlinelibrary.com]
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of the Sz model is 5.5% for the AFM, and 8.3% for the
BFM, as shown in Figure 12A.

Figure 12B shows the comparison of CEL among
AFM, BFM, and Sz models. As compared to the CEL of
the Sz model, that of the AFM is reduced by 75%, and it
is significantly reduced by almost 91% for the BFM.

Generally, accuracy is very useful to validate the per-
formance of a model when the samples are uniformly dis-
tributed (50% undamaged samples and 50% damaged
samples); but in the present case, the distribution of the
samples is slightly imbalanced (e.g., 44% undamaged sam-
ples and 56% damaged samples). In case of imbalanced
data, the receiver operating characteristics (ROC) is used,
because the ROC describes the relationship of the false
positive rate of detection (specificity) on the x-axis with
the true positive rate of detection (sensitivity) on the
y-axis across different cut-off thresholds.47 To confirm the
outputs of the model accuracy of AFM and BFM, here,
the ROC is applied to evaluate the performance of both
AFM and BFM for damage detection and classification.

Figure 13A,B shows ROC curves for the AFM and
BFM, respectively; the colored lines in each figure show
the respective ROC curves. The optimal model (i.e., 100%
sensitivity and 0% specificity) is obtained in the upper-left
hand corner. As seen in Figure 13A,B, the ROC perfor-
mance of BFM surpasses that of AFM, because the ROC
curves of BFM are more close to reaching the upper-left-
hand corner than those of AFM.

5 | SUMMARY, CONCLUSIONS,
AND FUTURE WORK

This paper has developed an automated ANN model for
fatigue-damage detection using the experimental data of
surface topography, where the measurements were
obtained from a computer-instrumented and computer-
controlled fatigue testing apparatus, equipped with a con-
focal microscope (Alicona). Alicona has been used to
measure the following surface textures: the arithmetical

FIGURE 13 Receiver operating characteristics (ROC) for all

experiments [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 12 Performance comparison of AFM and BFM

[Colour figure can be viewed at wileyonlinelibrary.com]
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mean height Sa, the root-mean-square height Sq, the
maximum peak height Sp, the maximum valley depth Sv,
the 10-point height Sz10, and the maximum height Sz.

The following three main conclusions can be drawn
from this work:

• The surface textures have been tested to predict the
status of fatigue damage using ANN-based models.
The single feature Sz yields the best performance
where the classification accuracy is 87%.

• The feature selection using the Pearson correlation
method has been utilized to select the best features
that provide the best model performance. The ANN
outputs of the BFM were compared with those of both
the AFM and the Sz model. The classification accuracy
of the BFM reaches 94.2%, and that of the AFM
reaches 90.9%. In essence, BFM improves the perfor-
mance of fatigue-damage detection by 7.2%.

• The findings reported here shed new light on building
an automated system for fatigue-damage prediction
systems using the surface topography parameters data
and ANN models.

Further research is needed to obtain a deeper under-
standing of the relationships between the surface topog-
raphy parameters and fatigue damage in mechanical
structures, such that the ANN models can be gainfully
applied to real-life problems. In this context, the follow-
ing topics are suggested for future research:

• Investigation on different types of materials: Similar
studies should be conducted on other materials, sup-
ported by a comparison of the results with those of the
proposed ANN models.

• Usage of alternative surface topography tools for fatigue-
damage assessment: The proposed methodology could
be tested in various industrial applications to detect
fatigue damage using different tools of surface topogra-
phy measurements, tool that is widely used in
industries.

• fatigue-damage risk assessment: The degree of severity
of the fatigue damage could be assessed by using sur-
face topography measurements; a feasible means to
achieve this goal is determination of surface topogra-
phy that could provide clear indications for the risk
assessment.
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