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Abstract

In the current state of the art of process industries/manufacturing technolo-

gies, computer-instrumented and computer-controlled autonomous techniques

are necessary for damage diagnosis and prognosis in operating machinery. From

this perspective, the paper addresses the issue of fatigue damage that is one of

the most encountered sources of degradation in polycrystalline-alloy structures

of machinery components. In this paper, the convolutional neural networks

(CNNs) are applied to synergistic combinations of ultrasonic measurements and

images from a confocal microscope (Alicona) to detect and evaluate the risk

of fatigue damage. The database of the Alicona has been used to calibrate

the ultrasonic database and to provide the ground truth for fatigue damage as-

sessment. The results show that both the ultrasonic data and Alicona images

are capable of classifying the fatigue damage into their respective classes with

considerably high accuracy. However, the ultrasonic CNN model yields better

accuracy than the Alicona CNN model by almost 9%.

Keywords: Fatigue damage ; Damage detection , Damage classification ;

Ultrasonic; Convolutional neural networks.
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1. Introduction

Ultrasonic testing is a typical nondestructive method that is extensively

used for detection and evaluation of defects in mechanical structures. The ac-

curacy and duration of testing should be taken into consideration during the

non-destructive testing (NDT) procedure. In this context, it is well known that5

ultrasonic testing is capable of accurate detection, classification. and charac-

terization of defects in mechanical structures in a timely fashion.1,2 However,

these techniques depend on an inspector’s competence and experience. Usually,

during the examination procedure of ultrasonic testing (UT), a human operator

often determines the status of tested components by evaluating the signal fea-10

tures, such as the echo shape, amplitude level, and defect position. Hence, defect

characterization and identification of relevant and non-relevant flaws using NDT

are highly dependent on the (human) inspector’s skill.3

In the current state of the art of process industries/manufacturing technolo-

gies, computer-instrumented and computer-controlled autonomous techniques15

are necessary for damage diagnosis and prognosis in operating machinery. In

the industry, in general, two major concerns must be considered. The first

concern is ensuring that the product is free from defects before reaching the

end user. The second concern is avoiding unnecessary maintenance during the

manufacturing process. Therefore, quality control is extensively applied in the20

industry to ensure that a product is free of faults. The visual inspection is still

performed in the final inspection to assess the quality of the final product. How-

ever, according to inspection process guidelines of Modal Analysis of Failures

and Effects (FMEA), the inspector may evaluate the final product with a success

rate of up to 80%, and this rate is influenced by several factors such as visual25

fatigue, reduced cycle time, different points of sight, and tiny defects. Inspec-

tor’s errors and, distractions, such as those due to stress, may result in missing

an existing defect or incorrectly identifying a false (i.e., non-existing) defect.

Therefore, the defects diagnosed in mechanical structures by conventional NDT

are often error-prone and may require an experienced and highly skilled human30
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inspector. To improve the NDT-based evaluation, many industries have focused

on building autonomous ultrasonic defect detection & classification systems that

could perform detection and classification of defects in mechanical components

without direct assistance of human inspectors.4

The last three decades have seen the evolution of diagnostics of structural35

damage by usage of artificial intelligence (AI) techniques. Specifically, the tools

of pattern recognition have been applied to improve the ability of AI for de-

tection & classification of fatigue damage in mechanical structures, where the

pattern of the measurements of a tested component may differ from those of the

available records of undamaged and damaged ones. Neural networks (NN) have40

been widely used for ultrasonic flaw detection and several researches have shown

the capability of NN for classification. Thiago et al.5 evaluated the efficiency

and accuracy of artificial intelligence techniques to classify ultrasonic signals,

and their model classification performance reaches 93%. Margrave et al.6 ap-

plied several types and configurations of the neural network to detect flaws in45

steel pipes using ultrasonic signatures. Liu et al.7 studied classification of crack

growth behavior by applying an NN on characteristic values obtained from ul-

trasonic signals. Sambath et al.8 built an automatic ultrasonic flaw detection

& classification model using NN, and the model performance was improved by

applying the wavelet transform. Song et al.9 used an Intelligent Ultrasonic50

Evaluation System (IUES) to detect and classify weldment flaws in a real-time

fashion. Drai et al.10 classified volumetric and planar defects by applying NN on

extracted features of ultrasonic data in the time domain, frequency domain, and

discrete wavelet representations. Seyedtabaii11 experimented with new intelli-

gent algorithms for classification of weld defects using single fixed-angle ultra-55

sonic probes. Several feature extraction methods were discussed in12 to classify

different defects by the NN-based method. Recently, the usage of large dimen-

sional data is no longer an obstacle due to the incredible increase in computing

power. Several types of research used a fully connected (vanilla) neural network

and a convolutional neural network (CNN), to classify defects without extract-60

ing any features from the raw data. Xu et al.13 converted guided wave GW
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damage indexes from distinct excitation–sensing vectors to a one-dimensional

vector, which was input data for convolutional neural network (CNN) model.

This study successfully classified fatigue crack levels in a lug structure. Another

study was conducted by Hu et al.14 and Melville et al.15 generated guided wave65

signals as images from different excitation-sensing sources. These images used

as input data for CNN model, and their model was able to localize simulated

defects in an aluminum plate or the pressure vessel. Chen J.16 proposed a

fatigue crack evaluation framework using convolutional neural network (CNN)

and differential wavelet spectrogram, the CNN model measured the crack length70

with root mean square error of 1.4 mm. Chen. Z. and his team applied CNN

for fault diagnosis of an automotive five-speed gearbox. Their proposed CNN

model provides an excellent fault diagnosis performance, 99%.17 Although the

performance of CNN for damage classification was reasonable well,18 the per-

formance was checked for only the ultrasonic signal without considering a real75

defect image. Therefore, as an extension to the previously reported research,

this paper is a step further to synchronously compare the CNN performance

on the ultrasonic echo signal and real defects images. In the authors’ previous

work,19 the CNN model was developed for crack status classification, where the

severity of the crack was classified into three categories: healthy, low-risk, and80

high risk. The raw data was real damage images that were taken by an Alicona

confocal microscope.

Almost all of the above-mentioned research works require feature extraction

from raw data by statistical and/or signal processing techniques. Although

feature extraction methods are applicable for dimensionality reduction, they85

involve an exhaustive process, because of the need for careful selection of features

that must stay insensitive to the operating conditions. This paper provides a

novel approach to quantify the risk of fatigue damage , independently of human

involvement, where a convolutional neural network (CNN) model classifies the

ultrasonic echo signal into three classes: healthy, low-risk damage, and high-90

risk damage. The ultrasonic echo signal classification is based on the damage

size shown in the confocal microscope image. Therefore, this study provides an
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accurate risk assessment of fatigue damage using an ultrasonic echo signal.

The major contributions of this paper are delineated as:

1. Development of a risk assessment and calibration procedure: The ultra-95

sonic echo signal are synchronized with an image from a confocal micro-

scope, which illustrates the state of health of the tested component.

2. Construction of a robust classification model : The ultrasonic signals are

classified using convolutional neural networks (CNNs) without using ad-

ditional signal processing techniques.100

3. Performance comparison: The CNN model of the ultrasonic signals is

compared with another CNN model by using a different database.

The paper is organized into five sections including the present one. Section

2 briefly describes the laboratory apparatus and the experimental procedure.

Section 3 succinctly describes the methodology including a protocol of data105

augmentation, training and testing datasets, and the design of the convolutional

neural networks (CNN) for this paper. Section 4 shows and discusses pertinent

results. Finally, the paper is summarized and concluded in the fifth section with

recommendations for future research.

2. Experimental Procedure110

The main objective of this study is to validate the theoretical results on

crack detection at the initiation stage, because a large part of the service life of

ductile-alloy structures under medium to high-cycle fatigue is consumed in the

crack initiation stage.20

This section describes the experimental procedure for the methodology of the115

fatigue crack detection, all experiments have been conducted on a hydraucally-

operated, computer-instrumented and computer-controlled fatigue testing ma-

chine1, equipped with ultrasonic testing (UT) probes2, a confocal microscope3,

1Manufacturer: MTS Systems Corporation, Berlin, NJ, USA
2Manufacturer: OLYMPUS, Shinjuku, Tokyo, Japan
3Manufacturer: Alicona Imaging GmbH, Dr.-Auner-Strasse 21a, 8074 Raaba/Graz, Austria
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and a digital microscope4,as depicted in Figure 1. The core concept of anomaly

detection during the crack initiation stage in this investigation is built upon a120

synergistic combination of the heterogeneous measurement data, generated from

optical images (of the Alicona confocal microscope) and an ensemble of time se-

ries from ultrasonic sensors, where the goal is to enhance the performance of the

damage-tolerant design, maintenance, and operation of mechanical components

of machinery.

Figure 1: The experimental apparatus

125

Twenty-one tests were conducted on the experimental apparatus in a labo-

ratory environment at room temperature to develop an automated monitoring

system to identify the fatigue damage properties of polycrystalline alloys. These

tests were performed on specimens of 7075-T6 aluminum alloy, and the dimen-

sions of these specimens are 3 mm thick, 50 mm wide with a (1 mm×3.5 mm)130

slot-cut at the edge. The testing of all specimens was performed on tension-

tension load cycles at 60 Hz. The mean load set-point was 8,000 N with a

load-amplitude of 3,500 N. The ensemble of information from the three sensors

in the apparatus (see Figure 1) have been fused for NDT evaluation to detect the

point of crack initiation and to assess the risk of failure in the tested specimens.135

4Manufacturer: QUESTAR®, New Hope, Pennsylvania, USA
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2.1. Ultrasonic testing:

An angle-beam transducer has been used in this investigation, which consists

of a transmitter and a receiver. The transmitter is used to inject high-frequency

acoustic pulses (e.g., 15 MHz ultrasonic waves) into the test specimen and,

after their propagation through the test specimen, the waves reach the receiver140

which is located on the test specimen in the opposite side of the transmitter.

The received pulses are influenced by material defects (e.g., anomalous grain

boundaries, voids, and inclusions) that may exist on the path of the propagated

pulses, but their influence must be limited and stable. On the other hand, these

pulses are significantly affected (i.e., attenuated) by the defect growth, because145

part of the pulses are reflected and not received by the receiver.

2.2. Microscope devices:

To identify the attenuation instant of ultrasonic receiver signals, a ground

truth evidence insight must be obtained. Thus, this study applied a dual-

imaging setup using a confocal microscope and a digital microscope. These150

microscopes are located near the notch to capture the crack onset.

2.2.1. The confocal microscope

The optical metrology device that has been applied for this investigation is

IF-SensorR25 (Alicona) which belongs to the series of the InfiniteFocus. The

focus variation of the Alicona provides high-resolution images across the depth155

of field such that the range of vertical resolution of the infinite-Focus system

is 20nm. Thus, Alicona is able to observe micro cracks on the surface. Each

generated image has 4, 161, 600 pixels and its size is 0.4mm× 0.4mm, as shown

in Figure 2.In addition, All measured surfaces were polished (mirror finish) to

clarify the path of the crack initiation.160

2.2.2. Digital microscope:

The objective of using the digital microscope is to estimate the crack length

because the risk assessment is defined from the estimated value of crack length.

7



Figure 2: 3D surface generated by the Infinite-Focus device

The resolution of the digital microscope image is 640×480 pixels, and the range165

of variable magnification of these images is 10-200X.

3. Methodology of Damage Analysis

While the procedure of risk assessment is explained in details in previous

publications 19,21 of the authors, the criteria of risk assessment are succinctly

explained below for completeness of the current paper.170

1. All measurements before the onset of the crack on the notch surface of

test specimens are considered to be in a healthy (non-risky) state.

2. All crack measurements, before the critical crack length is reached, are

considered to be in a low-risk state.

3. All crack measurements, after the critical crack length is reached, are175

considered to be in a high-risk state.

Each of the three plates (a), (b), and (c) in Figure 3 present the following

two views of a 3D surface measurement: (i) a side view image by the digital

microscope (DM), and (ii) a waveform of the corresponding ultrasonic signal.

In the case of images with a crack, the crack is computed from the DM image,180

along with the corresponding the ultrasonic echo signal and Alicona images.

If the crack length is less than the critical crack length, measured data are
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characterized to be in the low-risk state; and measured data exceeding the

critical crack length are characterized to be in the high-risk state.

(a) Healthy state measurements of a tested specimen

(b) Low-risk state measurements of a tested specimen.

(c) High-risk state measurements of a tested specimen.

Figure 3: The illustration of damage state of a tested specimen using Alicona measurements

(A), digital microscope measurements (B), and the ultrasonic echo signal (C)

The signal attenuation could be caused by a crack, an internal defect, or185

a misalignment between the transducer and transmitter. The concept of the

UT signals calibration is built based on Alicona images, where Alicona is used

to provide evidence for the damage detection on the surface. Therefore, the

attenuation, caused by misalignments and defects, are averted to a large extent.

3.1. Data augmentation190

One of the uncertainties types of AI is the epistemic uncertainties which

refers to uncertainty caused by lack of data. Therefore, insufficient training

data may result in a poor approximation, and thus consequences of insufficient

test data are (possibly) optimistic and high-variance estimation of model per-

formance.Usually the causes of uncertainty arise when the training data and195
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test data are Incompatible,22,23. Therefore, the amount of data for deep neural

networks must be acceptable for both training and testing purposes.

In addition, the augmentation technique is applied in this paper to learn the

pattern of the image instead of just memorizing the mappings between inputs

and expected outputs. For example, if the training set of a model is an image200

of a cat, and the expected model output is the label ’cat’, the built model will

recognize that this particular arrangement of image pixels is equivalent to a

cat, instead of learning general patterns such as small paws and a fluffy coat.

This problem is known as overfitting; although the performance of an overfitted

model may be very good on the training set, such a model usually yields poor205

performance on images that it has not seen earlier, because the pattern be-

havior in the image may not be adequately learnt in the training phase24,25,26.

In this paper, the size of the original database was inadequate. So, the data

set has been augmented to build an efficient neural networks (NN) model for

prediction and classification. The techniques used for data augmentation were210

rotation, transition, reflection, and scaling. In the rotation method, every image

produced 37 different images. The transition method shifted the original signal

image forward by a distinct distance, and it produced 21 images. The third

augmentation technique is the reflection, where every signal image generated its

reflected image. The last augmentation technique is scaling that produced 31215

different scaled images. Figures 4 & 5 show the techniques of the rotation and

transition, respectively.

Figure 4: An example of an augmentation method by rotation

Using the above data augmentation techniques, the number of signal images
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Figure 5: An example of an augmentation method by transition

in the database was boosted from 881 to 80,171. Table 1 shows the data size

before and after the augmentation. Table 2 shows the number of signals for220

each risk state in the augmented database.

Table 1: Techniques for database augmentation.

Augmentation

Technique

Original

Data Size

Augmented

Data Size

Rotation 881 32,597

Scaling 881 27,311

Transition 881 18,501

Reflection 881 1,762

Total 80,171

Table 2: No of signals for each risk state in augmented database

Risk State No. of signals

Non-Risky 33,943

Low-Risk 29,029

High-Risk 17,199

Total 80,171

3.2. Training and testing datasets

Training data sets refer to the samples of data used to build the models,

where the weights and biases of the neural network (NN) models are adjusted

during the training process by using these data; thus, the models learn from225
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these data. However, training the models on the actual data and examining their

performance must be done on different data sets. In order to evaluate actual

performance of the models, each data set is divided into training, validation, and

testing categories, where the validation data set is used to provide an unbiased

assessment of the respective model. In contrast, the weights and biases of a230

model are adjusted based on the respective training data set; once the NN

model is completely trained by the training and validation data sets, the testing

data set is used to provide an unbiased assessment of the constructed model’s

performance.

A data set in this paper is split into a training set and a testing set. Fur-235

thermore, a part of the training set is further divided into a training subset and

a cross-validation subset. The split ratio of the data set in this paper follows

the 75/25 rule (i.e., ∼ 75% for training and ∼ 25% for testing), and then almost

10% of the training dataset is used for the validation purpose.27

3.3. The Convolutional Neural Network (CNN)240

A neural network (NN) is a computational method that is based upon Rosen-

blatt’s perceptron training algorithm that attempts to mimic the logic of a hu-

man brain. The NN is based on a collection of nodes and a set of connections

that link the neurons layerwise. The simplest feed-forward fully connected neu-

ral network is composed of three layers: an input layer, a hidden layer, and245

an output layer. In essence, an NN works by building connections between the

nodes, where every node in the current layer is connected to each node in the

previous layer and has an associated weight and a threshold. The node is ac-

tivated and passing data to the next layer of the network when the output of

the node is above the specified threshold, else the node is deactivated and no250

data are passed to the next layer of the NN. When the NN architecture has

at least more than one hidden layer between input and output layers, this NN

architecture is poularly known a Deep neural network (DNN)..28

One of the common DNN types is the convolutional neural network that

is comprised of two main parts. The first part is feature learning which con-255
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tains various layers, such as the convolution layer (CL) and pooling layer (PL),

while the second part is dedicated to classification which includes a fully con-

nected layer (FCL) and Softmax layer (SML). Different CNN networks can be

created by several combinations of these layers. Figures 6 (a) and (b) illustrate

a CNN architecture with five layers for an ultrasonic database and an Alicona260

database, respectively. The input image is of size 128×128, representing height

and width respectively. During the feature learning process, the input image

flows into couples of convolutional layers with pooling layers such that feature

extraction and redundancy reduction occur. The feature maps are the vital part

of classification, where the simple features gradually assemble effectively. Then,265

all the features are merged partially and the resultant features are ”flattened”

to form a 1D column vector as an input to the fully connected layer (FCL). The

resultant score for each particular class is converted to probability scores by the

softmax layer. Both CNN models have a similar architecture; but each model is

named based on the type of the data set, Alicona Model & Ultrasonic Model270

3.3.1. Convolution Layer (CL):

The convolutional layer is one of the essential building blocks of the CNN

architecture, which is also the most computation-intensive. A CL consists of

several kernels that are learnable filters. Every kernel is spatially small of size

h×w×n, where h and w represent the height and width of the filter and n is the

channel number of in the input image. Typical options of kernel size are 3× 3

or 5× 5. During the forward propagation, each kernel performs convolution on

the input image across the image size (along width and height) and calculate

the dot products between the kernels elements and the elements at any position

of the image, this computational process is followed by a nonlinear activation

function such as ReLU and sigmoid. Then, 2D activation maps (also known as

feature maps) are created, where the 2D convolution of two signals is defined
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(a) Typical CNN architecture of Ultrasonic signals.

(b) Typical CNN architecture of Alicona images.

Figure 6: Convolution Neural Network architecture for fatigue damage classification. It con-

sists of 2 convolutional layers with corresponding ReLU activation layers, 2 max pooling layers,

2 fully-connected layers and a softmax output layer.

as:

h(m,n) = g(m,n) ⋆ f(m,n)

=

k∑
i=−k

k∑
j=−k

f(i, j)g(m− i, n− i)

where the operator ⋆ is the convolution product of two functions; h(m,n) is the

convolved output; g(m,n) is the input image; and f(m,n) is the kernel. Figure

7 illustrates the convolution process; the computed activation maps depend on

three hyperparameters: depth, stride, and padding. The number of kernels that275

are used in the convolution operation determines the depth of the activation

maps. Each kernel learns a special pattern of the image such as edges, blobs,

and colors. The stride is defined as the number of steps that the kernel is moved

in the input image. For example, when the kernel moves one pixel at a time,

the stride is one, but it is two when the kernel jumps two pixels at a time as280
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they are moved around; hence, the size of the feature maps is reduced.

Applying convolution to an input image may lead to loss of information,

because the output size is reduced after the convolution operation. Therefore,

the padding step is used to control the output size. For example, if the kernel

size is 3 × 3, the input image is padded with zeros around the border.29 The

output size of the convolution layer is calculated in the following way:

CLsize =

[
W −K + 2P

S

]
+ 1 (1)

W: The input volume.

K: The Kernel size.

P: The padding.

S: The stride.

Figure 7: An example of convolution (⋆) with the stride length being equql to 1, where

the kernel is slid over the entire image to produce a feature map. The stride length is a

hyperparameter which can be used to tune the network.

285

3.3.2. Pooling layer:

The poolong layers (PLs) are often applied after convolution layers to pro-

gressively reduce the spatial size of the respective input images; and hence,

the computational cost may increase in the network. The PLs are referred as

subsampling or downsampling, and it does not have parameters to learn. By290
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Figure 8: An example of pooling with max pooling on the right hand side and mean pooling

on the left. The pooling process downsamples the image to reduce the number of parameters

and thereby reduced computational complexity of the network.

applying a pooling operation, overfitting of the network can be controlled, while

hyperparameters of the pooling layer PL indicate the filter size and strides.

Two common pooling techniques are mean-pooling and max-pooling. The

mean-pooling takes the average of the matrix, while the max-pooling takes the

maximum of matrix,30 where max-pooling is used more commonly than mean-295

pooling. The concept of the max-pooling technique is that the large number

refers to a feature of the input image. In this example, a stride of 2 is selected.

That is, the matrix size of the max-pooling is 2×2. It can be seen that the result

of the max-pooling operation is downsampling; for example, a 4 × 4 matrix is

downsampled to a matrix of 2× 2. In the architecture, a max-pooling layer has300

been used after each convolution. The first pooling layer has a stride of 3 × 3

and the second pooling layer has a stride of 2× 2.

3.3.3. Fully Connected layer:

The last few layers of the CNN architecture are typically constructed as fully

connected layers, where all feature maps achieved at the last convolutional layer

are flattened and are associated with the fully-connected layer. The basic idea

of the fully connected (FC) layer is to transform the tensor at the output of the

convolution and pooling layers into a vector and then several neural network

layers are added. A fully connected layer is made up of neurons (perceptrons).

As shown in Figure 9, the neuron involves several inputs and produces a single

output; x1, x2, x3 are inputs and Y is the output of the single neuron. Each
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Figure 9: An artificial neuron.

neuron is associated with inputs through a real number called the weight, which

implies the importance of the respective inputs relative to the output. The

output of the neuron is computed by whether the weighted sum
∑

wixi is

greater than the threshold value, the output is 1, or less than the threshold

value, the output is 0. The last layer of FL layers is the Softmax layer, and it is

used to turn a vector with real-values31 into a vector with elements in the range

[0, 1], which sum to 1. The softmax function is defined by the equation given

below.

fj(z) =
ezj∑
k e

zk
(2)

3.3.4. Backpropagation:

Typically, at the first CNN, outputs tend to deviate from the desired output

because the initial values of the kernels are arbitrarily chosen; this deviation

is computed using loss function.32 The cross-entropy loss function of CNN

architecture is defined as

L = −
∑
i

yilog(pi) (3)

where L is the loss function, yi is the desired output and pi is the probability305

of the ith class. The main objective of the training phase is to minimize the

loss function by readjusting the weights. The weights of CNN architecture are

adjusted using a technique called backpropagation, where the loss function back-

propagates through the network, and in each layer, the gradient is computed and

weights in the filters are updated. The gradient descent is one of the efficient and310
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simplest techniques that are used for updating the weights in the filters.33 The

gradient descent is an optimization algorithm often used to determine gradients

in each layer and pass it to the previous layer. After the entire data set is shown

to the network, the weights are updated to enhance the performance of the CNN

model. Gradient descent can vary in terms of the number of examples used to315

estimate error; The main three types of gradient descent are:

1. The stochastic gradient descent (SGD): SGD is a gradient descent algo-

rithm that is used for faster convergence of the loss function and updates

weights after every sample is shown to the network.

2. Batch gradient descent (BGD): BGD is a gradient descent algorithm that320

computes the error for each sample in the training dataset, but weights

are only updated after all training samples have been tested. One cycle

through the entire training sample is known as a training epoch. Hence,

the weights are updated at the end of each training epoch for BGD.

3. Mini-batch gradient descent (MBGD); it is a gradient descent algorithm325

that combines the efficiency of BGD and the robustness of SGD by split-

ting the training samples into small batches that are used to compute the

error and update the weights. For example, if we assume the dataset has

500 images, weights are re-adjusted after a batch of 50 images are shown

to the network. Appling one mini-batch through the forward pass and330

backpropagation is defined as an iteration, while an epoch is defined when

all mini-batches (all images) are trained.

In the field of the convolutional neural network, MBGD is the most common

implementation of gradient descent methods.34,35 This paper uses the mini-

batch mode of gradient descent algorithm. By taking the gradient of the loss335

function (∇L) with respect to the weights, we obtain the update equation.

∇L = pi

(
yi +

∑
k ̸=1

yk

)
− yi (4)

where y is one-hot encoded vector for the labels, so
∑

k yk = 1 and yi +∑
k ̸=1 yk = 1. Therefore,

18



∇L = pi − yi (5)

The weights os the network are updates as shown below,

Wij = Wij − α∇L (6)

where, Wij are the filter weights and α is the learning rate.340

Table 3: Parameters of convolutional neural network

Layer Activation Shape Activation Size #Parameter

Input (128,128,1) 16,384 0

Convl 1 (f=5, s=2, p=2) (64,64,50) 819,200 1,300

Max Pool 1 (s=2) (64,64,50) 24,200 0

Convl 2 (f=5, s=2, p=2) (22,22,50) 1300

Max Pool 2 (s=2) (11,11,50) 6,050 0

FC1 (25,1) 25 151,250

FC2 (3,1) 3 75

4. Results of Experimental Validation

This section presents the experimental results for validation of two convo-

lutional (NN) models, Alicona model and Ultrasonic model. The parameters

of our custom CNN model are illustrated in table 3. The model complexities

depend on the number of the parameters, where the computation complexity of345

a CNN model increases as the number of the parameters increases,36

4.0.1. The learning curve evaluation

The performance of the Alicona and the Ultrasonic models were computed

by training the network on the training database and using the testing database

for testing the model performance.350

Figure 10 illustrates the learning curve of the Ultrasonic model for five

epochs, which exhibits a significant improvement in the performance and gives

19



more accurate prediction and classification. The accuracy profile of the Ultra-

sonic model starts at approximately 45% and thereafter reaches the saturation

point at approximately 3rd epoch and becomes stable onwards, and that is why355

the process was terminated at the fifth epoch. The accuracy of the Ultrasonic

model is approximately 98%. The learning curve of the Ultrasonic model is

discussed in detail in.19

Figure 10: Learning curve of Ultrasonic model for 5 epochs

4.0.2. Confusion matrices evaluation:

Figures 12 present the confusion matrices for both training and testing mod-360

els of ultrasonic databases. These confusion matrices are described as follow:

1. The rows of the confusion matrix present the output class or the predicted

class.

2. The columns of the confusion matrix correspond to the ground truth la-

bels.365

3. The diagonal cells show observations that are correctly classified.

4. The off-diagonal cells show observations that are incorrectly classified.

5. The last row of each matrix represents the percentages of all examples

belonging to each class, which are correctly (top) and incorrectly bottom)

classified.370
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6. The right-most column of the matrix shows the percentages of all the

examples predicted to belong to each class that is correctly and incorrectly

classified.

7. The cell in the bottom right of the plot shows the overall accuracy/ inac-

curacy.375

For example, referring to Figure 12(a), the overall accuracy of Ultrasonic model

in training is 97.2%; and referring to Figure 12(b), the overall accuracy of Ul-

trasonic model in testing is 97.6%. The confusion matrices of Alicona model is

extensively discussed in.19

Figure 11 shows the proportion of each class from the data set. The majority380

of the data are present in the Non-Risky class (42%), while the Low-Risk class

contains 22% of the data set. Because of an unequal distribution of classes

within a data set, the data are considered imbalanced. The accuracy method is

preferred when the data are balanced, while F1-Score37 is a desired method for

imbalanced data. The F1-score ranges from zero to one, where one represents385

the best model, implying that the model predicts each observation correctly; and

the worst case is when the F1-score is zero. Table 4 shows the F1-Score of each

class;, where the Ultrasonic model predicts each observation almost perfectly

(close to one).

Figure 11: The data proportion of each class
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Table 4: F1-Score value for each class

Class Name F1-Score

Non-Risky 0.97

Low-Risk 0.96

High-Risk 0.96

4.1. Performance comparison:390

Following Table 5, a comparison of the Alicona model and Ultrasonic model

shows that the Ultrasonic model predicts and classifies fatigue cracks at an

earlier stage of the model learning process, i.e., at the 3rd epoch while it is at

the 9th epoch for the Alicona model.During the training phase, the validation

phase, and the testing phase of the Alicona model, the model classification395

accuracy reaches 89.38 % 91.34% & 92.54, respectively. On the other hand, the

Ultrasonic model provides better classification accuracy, 97.20 % for the training

model, 96.91 % for the validation model, & 97.56 % for the testing model. In

addition, the performance of the Ultrasonic model is better: ∼ 5% for training,

∼ 6.1% for validation, and ∼ 9.1% for testing, as illustrated in Figure 13. The400

rationale for the improved performance of the CNN model are as follows.

1. Data size: It is well known that having a large dataset is crucial for good

performance. The augmented database in Alicona Model is 23,205, while

it is 80,171 in the Ultrasonic Model.

2. Complexity of the image: As shown in Figures 2, Alicon image is more405

complex than the the ultrasonic echo signal . Each pixel of the image is

referred to a color depth (0-255), and the color depth of Alicona image

is significantly high as compared to ultrasonic signal which is of only two

colors.

Therefore, features learning in Ultrasonic Model is expected to be more410

effective than that in the Alicona Model.
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Table 5: The performance accuracy of training database, validation database, and testing

database

Network Parameter Alicona Ultrasonic

No. of epochs 10 5

Training Accuracy 92.54 % 97.20 %

Validation Accuracy 91.34 % 96.91 %

Testing Accuracy 89.38 % 97.56 %

5. Summary, Conclusions, and Future Work

This paper has proposed an experimentally validated autonomous technique

for detection and classification of fatigue damage in machinery components that

are made of ductile materials (e.g., polycrystalline alloys). The main goal here415

is to create a robust network-based nondestructive testing (NDT) system that

provides enhanced performance for damage detection and classification without

using feature extraction techniques. Two models for fatigue damage detection

and classification are built upon the concept of convolutional neural networks

(CNNs). The first model is called the Alicona (confocal microscope) model420

and the second model is called the Ultrasonic model. It is noted that confo-

cal microscopes are usually available in the laboratory environment only, while

ultrasonic probes are available in both field environments (e.g., manufacturing

sites) and laboratory sites. However, the Alicona model in the laboratory envi-

ronment provides a proof of concept of the damage evolution process, while the425

Ultrasonic model indirectly derives the results from experimental data.

Both Alicona and Ultrasonic data bases have been classified based on the

damage status in the side-notch surface of test specimens. The following three

damage states are defined to describe the damage state.

• Free-crack state that belongs to the non-risky class;430

• Small-crack state that belongs to the low-risk class;

• Large-crack state that belongs to the high-risk class.
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In this paper, the Ultrasonic database was synchronized with the Alicona

database. Both databases were augmented by rotation, transition, scaling, and

reflection. The performance of each of the CNN models, Alicona model, and435

Ultrasonic model was then evaluated on the augmented database of each model.

Results show that the Ultrasonic model performed better than the Alicona

model in classification, where the Ultrasonic model gave 97.6 % for the test-

ing database, while the Alicona model gave 89.38 %. The learning curves show

that the Ultrasonic model starts to perform well at the 3rd epoch, while the440

Alicona model was delayed to reach the best performance by six epochs. This

delay indicates that the image features of UT are much simpler than the image

features of Alicona. Hence, variation in image patterns for each class in the

Ultrasonic database can be detected clearly. In general, these findings suggest

that image features have a significant effect on detection and classification.445

While there are many areas of both theoretical and experimental research

that should be undertaken before its commercial application, the following topics

are suggested for future research:

1. Developing the risk assessment classification using CNN, such that the risk

assessment has multi classes that represent the severity of the damage.450

2. Modify the CNN model by selecting the best kernels for features selection

and having the optimal CNN structure that predicts and classifies the

fatigue damage with high accuracy and in a short time.

3. Building a more realistic CNN model that involves other factors (e.g.,

environmental effect, structure vibration).455
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(a) Training of Ultrasonic model for a crack-free specimen.

(b)Testing of Ultrasonic model for a cracked specimen.

Figure 12: Confusion matrices for classification on Ultrasoic data in training and testing

phases of CNN architecture, which consists of 2 convolutional layers with corresponding ReLU

activation layers, 2 max pooling layers, 2 fully-connected layers and a Softmax output layer.
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Figure 13: Performance Comparison of two models in training, validation, and testing
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