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20
Signal Calibration,
Estimation for Real-Time
Monitoring and Controlz

Asok Ray and Shashi Phoha

20.1 Introduction
Performance, reliability, and safety of complex dynamical processes such as aircraft and power plants

depend upon validity and accuracy of sensor signals that measure plant conditions for information

display, health monitoring, and control [1]. Redundant sensors are often installed to generate spatially

averaged time-dependent estimates of critical variables so that reliable monitoring and control of the

plant are assured. Examples of redundant sensor installations in complex engineering applications are:

� Inertial navigational sensors in both tactical and transport aircraft for guidance and control [2,3].
� Neutron flux detectors in the core of a nuclear reactor for fuel management, health monitoring,

and power control [4].
� Temperature, pressure, and flow sensors in both fossil-fuel and nuclear steam power plants for

health monitoring and feedforward–feedback control [5].

Sensor redundancy is often augmented with analytical measurements that are obtained from physical

characteristics and/or model of the plant dynamics in combination with other available sensor data

[4,6]. The redundant sensors and analytical measurements are referred to as redundant measurements

in the following.

Individual measurements in a redundant set may often exhibit deviations from each other after

a length of time. These differences could be caused by slowly time-varying sensor parameters (e.g.

amplifier gain), plant parameters (e.g. structural stiffness and heat transfer coefficient), transport delays,

etc. Consequently, some of the redundant measurements could be deleted by a fault detection and
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isolation (FDI) algorithm [7] if they are not calibrated periodically. On the other hand, failure to isolate

a degraded measurement could cause an inaccurate estimate of the measured variable by, for example,

increasing the threshold bound in the FDI algorithm. In this case, the plant performance may be

adversely affected if that estimate is used as an input to the decision and control system. This problem

can be resolved by adaptively filtering the set of redundant measurements as follows:

� All measurements, which are consistent relative to the threshold of the FDI algorithm, are

simultaneously calibrated on-line to compensate for their relative errors.
� The weights of individual measurements for computation of the estimate are adaptively updated

on-line based on their respective a posteriori probabilities of failure instead of being fixed a priori.

In the event of an abrupt disruption of a redundant measurement in excess of its allowable bound,

the respective measurement is isolated by the FDI logic, and only the remaining measurements are

calibrated to provide an unbiased estimate of the measured variable. On the other hand, if a gradual

degradation (e.g. a sensor drift) occurs, the faulty measurement is not immediately isolated by the FDI

logic. However, its influence on the estimate and calibration of the remaining measurements is

diminished as a function of the magnitude of its residual (i.e. deviation from the estimate), which is an

indicator of its degradation. This is achieved by decreasing the relative weight of the degraded

measurement as a monotonic function of its deviation from the remaining measurements. Thus, if the

error bounds of the FDI algorithm are appropriately increased to reduce the probability of false alarms,

then the resulting delay in detecting a gradual degradation could be tolerated. The rationale is that an

undetected fault, as a result of the adaptively reduced weight, would have smaller bearing on the

accuracy of measurement calibration and estimation. Furthermore, since the weight of a gradually

degrading measurement is smoothly reduced, the eventual isolation of the fault would not cause any

abrupt change in the estimate. This feature, known as bumpless transfer in the process control literature,

is very desirable for plant operation.

This chapter presents a calibration and estimation filter for redundancy management of sensor data

and analytical measurements. The filter is validated based on redundant sensor data of throttle steam

temperature collected from an operating power plant. Development and validation of the filter

algorithm are presented in the main body of the chapter along with concluding remarks. Appendix A

presents the theory of multiple hypotheses based on the a posteriori probability of failure of a single

measurement [8].

20.2 Signal Calibration and Measurement Estimation
A redundant set of ‘ sensors and/or analytical measurements of an n-dimensional plant variable are

modeled at the kth sample as

mk ¼ ðH þ�HkÞxk þ bk þ ek ð20:1Þ

where mk is the ð‘� 1Þ vector of (uncalibrated) redundant measurements; H is the ð‘� nÞ a priori

determined matrix of scale factor having rank n; with ‘ > n � 1; �Hk is the ð‘� nÞ matrix of scale

factor errors; xk is the (n� 1) vector of true (unknown) value of the measured variable; bk is the ð‘� 1Þ

vector of bias errors; and ek is the ð‘� 1Þ vector of measurement noise, such that E[ek]¼ 0 and

E½eke
T
l � ¼ Rk�kl.

The noise covariance matrix Rk of uncalibrated measurements plays an important role in the adaptive

filter for both signal calibration and measurement estimation. It is shown in the following how Rk is

recursively tuned based on the history of calibrated measurements.

Equation (20.1) is rewritten in a more compact form as

mk ¼ Hxk þ ck þ ek ð20:2Þ
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where the correction ck due to the combined effect of bias and scale-factor errors is defined as

ck � �Hkxk þ bk ð20:3Þ

The objective is to obtain an unbiased predictor estimate ĉck of the correction ck so that the sensor

output mk can be calibrated at each sample. A recursive relation of the correction ck is modeled similar

to a random walk process as

ckþ1 ¼ ck þ vk

E½vk� ¼ 0; E½vkvj� ¼ Q�kj and E½vkej� ¼ 0 8k; j
ð20:4Þ

where the stationary noise vk represents uncertainties of the model in Equation (20.4).

We construct a filter to calibrate each measurement with respect to the remaining redundant

measurements. The filter input is the parity vector pk of the uncalibrated measurement vector mk, which

is defined [2,9] as

pk ¼ Vmk ð20:5Þ

where the rows of the projection matrix V 2 <ð‘�nÞ�‘ form an orthonormal basis of the left null space

of the measurement matrix H 2 <‘�n in Equation (20.1), i.e.

VH ¼ 0ð‘�nÞ�n

VVT ¼ Ið‘�nÞ�ð‘�nÞ

ð20:6Þ

and the columns of V span the parity space that contains the parity vector. A combination of Equations

(20.2), (20.4), (20.5) and (20.6) yields

pk ¼ Vck þ "k ð20:7Þ

where the noise "k � Vek having E["k]¼ 0 and E½"k"
T
j � � VRkV

T�kj. If the scale-factor error matrix �Hk

belongs to the column space of H; then the parity vector pk is independent of the true value xk of the

measured variable. Therefore, for V�Hkxkk k � Vbkk k, which includes relatively small scale-factor

errors, the calibration filter operates approximately independent of xk.

Now we proceed to construct a recursive algorithm to predict the estimated correction ĉck based on

the principle of best linear least-squares estimation that has the structure of an optimal minimum-

variance filter [10,11] and uses Equations (20.4) and (20.7):

ĉckþ1 ¼ ĉck þ Kk�k given ĉc0

Pkþ1 ¼ I � KkVð ÞPk þQ given P0 and Q

Kk ¼ PkV
T V Rk þ Pk½ �VT
� ��1

given Rk

�k ¼ pk � Vĉck innovation

9>>>>=
>>>>;

ð20:8Þ

Upon evaluation of the unbiased estimated correction ĉck, the uncalibrated measurement mk is

compensated to yield the calibrated measurement yk as

yk ¼ mk � ĉck ð20:9Þ
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Using Equations (20.5) and (20.9), the innovation �k in Equation (20.8) can be expressed as the

projection of the calibrated measurement yk onto the parity space, i.e.

�k ¼ Vyk ð20:10Þ

By setting �k � KkV , we obtain an alternative form of the recursive relations in Equation (20.8) as

ĉckþ1 ¼ ĉck þ �kyk given ĉc0

Pkþ1 ¼ I � �kð ÞPk þ Q given P0 and Q

�k ¼ PkV
T V Rk þ Pk½ �VT
� ��1

V given Rk

ð20:11Þ

Note that the inverse of the matrix V Rk þ Pk½ �VT
� �

in Equations (20.8) and (20.11) exists because

the rows of V are linearly independent, Rk> 0, and Pk� 0.

Next we obtain an unbiased weighted least squares estimate x̂xk of the measured variable xk based

on the calibrated measurement yk as

x̂xk ¼ ðHTR�1
k HÞ

�1HTR�1
k yk ð20:12Þ

The inverse of the (symmetric positive-definite) measurement covariance matrix Rk serves as the

weighting matrix for generating the estimate x̂xk, and is used as a filter matrix. Compensation of a

(slowly varying) undetected error in the jth measurement out of ‘ redundant measurements causes the

largest jth element jĉck
�� �� in the correction vector ĉk. Therefore, a limit check on the magnitude of each

element of ĉk will allow detection and isolation of the degraded measurement. The bounds of limit

check, which could be different for the individual elements of ĉk, are selected by trade-off between the

probability of false alarms and the allowable error in the estimate x̂xk of the measured variable [12].

20.2.1 Degradation Monitoring

Following Equation (20.12), we define the residual �k of the calibrated measurement yk as

�k ¼ yk �Hx̂xk ð20:13Þ

The residuals represent a measure of relative degradation of individual measurements. For example,

under the normal condition, all calibrated measurements are clustered together, i.e. �kk k � 0, although

this may not be true for the residual mk �Hx̂xkð Þ of uncalibrated measurements.

While large abrupt changes in excess of the error threshold are easily detected and isolated by

a standard diagnostics procedure (e.g. [7]), small errors (e.g. slow drift) can be identified from the

a posteriori probability of failure that is recursively computed from the history of residuals based on

the following trinary hypotheses:

H0 : Normal behavior with a priori conditional density function jf
0
ð	Þ � jf 	 H0

��� �
H1 : High ðpositiveÞ failure with a priori conditional density function jf

1
ð	Þ � jf 	 H1

��� �
H2 : Low ðnegativeÞ failure with a priori conditional density function jf

2
ð	Þ � jf 	 H2

��� � ð20:14Þ

where the left subscript refers to of the jth measurement for j ¼ 1; 2; . . . ; ‘, and the right superscript

indicates the normal behavior or failure mode. The density function for each residual is determined
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a priori from experimental data and/or instrument manufacturers’ specifications. Only one test is

needed here to accommodate both positive and negative failures; this is in contrast to the binary

hypotheses, which require two tests. We now apply the recursive relations for multi-level hypotheses

testing of single variables, derived in Appendix A, to each residual of the redundant measurements.

Then, for the jth measurement at the kth sampling instant, a posteriori probability of failure j�k is

obtained following Equation (20.A17) as

j�k ¼
jpþ j�k�1

2ð1� jpÞ

� �
jf
1ð j�kÞ þ jf

2ð j�kÞ

jf 0ð j�kÞ

� �

j�k ¼
j�k

1þ j�k

9>>>>=
>>>>;

ð20:15Þ

where jp is the a priori probability of failure of the jth sensor during one sampling period, and the initial

condition of each state, j�0; j ¼ 1; 2; . . . ; ‘, needs to be specified.

Based on the a posteriori probability of failure, we now proceed to formulate a recursive relation for

the measurement noise covariance matrix Rk that influences both calibration and estimation as seen in

Equations (20.8) to (20.12). Its initial value R0, which is determined a priori from experimental data

and/or instrument manufacturers’ specifications, provides the a priori information on individual

measurement channels and conforms to the normal operating conditions when all measurements are

clustered together, i.e. �kk k � 0. In the absence of any measurement degradation, Rk remains close to

its initial value R0. Significant changes in Rk may take place if one or more sensors start degrading.

This phenomenon is captured by the following model:

Rk ¼

ffiffiffiffiffiffiffi
Rrel
k

q
R0

ffiffiffiffiffiffiffi
Rrel
k

q
with Rrel

0 ¼ I ð20:16Þ

where Rrel
k is a positive-definite diagonal matrix representing relative performance of the individual

calibrated measurements and is recursively generated as follows:

Rrel
kþ1 ¼ diag hð j�kÞ

� �
; i:e: jr

rel
kþ1 ¼ hð j�kÞ ð20:17Þ

where jr
rel
k and j�k are respectively the relative variance and a posteriori probability of failure of the

jth measurement at the kth instant; and h: ½0; 1Þ ! ½1; 1Þ is a continuous monotonically increasing

function with boundary conditions hð0Þ ¼ 1 and hð’Þ ! 1 as ’! 1.

The implication of Equation (20.17) is that the credibility of a sensor monotonically decreases with

increase in its variance, which tends to infinity as its a posteriori probability of failure approaches unity.

The magnitude of the relative variance jr
rel
k is set to the minimum value of one for zero a posteriori

probability of failure. In other words, the jth diagonal element jw
rel
k � 1=jr

rel
k of the weighting matrix

W rel
k � ðRrel

k Þ
�1 tends to zero as j�k approaches unity. Similarly, the relative weight jw

rel
k is set to the

maximum value of one for j�k ¼ 0. Consequently, a gradually degrading sensor carries monotonically

decreasing weight in the computation of the estimate x̂xk in Equation (20.12).

Next we set the bounds on the states j�k of the recursive relation in Equation (20.15). The lower

limit of j�k (which is an algebraic function of j�k) is set to the probability jp of intra-sample failure.

On the other extreme, if j�k approaches unity, then the weight jw
rel
k (which approaches zero) may

prevent fast restoration of a degraded sensor following its recovery. Therefore, the upper limit of j�k

is set to ð1� j�Þ, where j� is the allowable probability of false alarms of the jth measurement.

Consequently, the function hð 	 Þ in Equation (20.17) is restricted to the domain ½jp; ð1� j�Þ� to account

for probabilities of intra-sampling failures and false alarms. Following Equation (20.15), the lower and
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upper limits of the states j�k are thus become jp=ð1� jpÞ and ð1� j�Þ=j� respectively. Consequently, the

initial state in Equation (20.15) is set as j�0 ¼ jp=ð1� jpÞ for j ¼ 1; 2; . . . ; ‘.

20.2.2 Possible Modifications of the Calibration Filter

The calibration filter is designed to operate in conjunction with an FDI system that is capable of

detecting and isolating abrupt disruptions (in excess of specified bounds) in one or more of the

redundant measurements [7]. The consistent measurements, identified by the FDI system, are

simultaneously calibrated at each sample. Therefore, if a continuous degradation, such as a gradual

monotonic drift of a sensor amplifier, occurs sufficiently slowly relative to the filter dynamics, then the

remaining (healthy) measurements might be affected, albeit by a small amount, due to simultaneous

calibration of all measurements, including the degraded measurement. Thus, the fault may be disguised

in the sense that a very gradual degradation over a long period may potentially cause the estimate x̂xk to

drift. This problem could be resolved by modifying the calibration filter with one or both of the

following procedures:

� Adjustments via limit check on the correction vector ĉk. Compensation of a (slowly varying)

undetected error in the jth measurement out of ‘ redundant measurements will cause the largest

jth element jĉck
�� �� in the correction vector ĉk. Therefore, a limit check on the magnitude of each

element of ĉk will allow detection and isolation of the degraded measurement. The bounds of

limit check, which could be different for the individual elements of ĉk, are selected by trade-off

between the probability of false alarms and the allowable error in the estimate x̂xk of the measured

variable [12].
� Usage of additional analytical measurements. If the estimate x̂xk is used to generate an analytic

measurement of another plant variable that is directly measured by its own sensor(s), then a

possible drift of the calibration filter can be detected whenever this analytical measurement

disagrees with the sensor data in excess of a specified bound. The implication is that either the

analytical measurement or the sensor is faulty. Upon detecting such a fault, the actual cause needs

to be identified based on additional information, including reasonability check. This procedure

not only checks the calibration filter but also guards against simultaneous and identical failure of

several sensors in the redundant set, possibly due to a common cause, known as the common-

mode fault.

20.3 Sensor Calibration in a Commercial-Scale
Fossil-Fuel Power Plant

The calibration filter, derived above, has been validated in a 320MWe coal-fired supercritical power

plant for on-line sensor calibration and measurement estimation at the throttle steam condition of


1040�F (560�C) and 
3625 psia (25.0MPa). The set of redundant measurements is generated by

four temperature sensors installed at different spatial locations of the main steam header that carries

superheated steam from the steam generator into the high-pressure turbine via the throttle valves

and governor valves [13]. Since these sensors are not spatially collocated, they can be asynchronous

under transient conditions due to the transport lag. The filter simultaneously calibrates the sensors

to generate a time-dependent estimate of the throttle steam temperature that is spatially averaged over

the main steam header. This information on the estimated average temperature is used for health

monitoring and damage prediction in the main steam header, as well as for coordinated feedforward–

feedback control of the power plant under both steady-state and transient operations [14,15]. The

filter software is hosted in a Pentium platform.

The readings of all four temperature sensors have been collected over a period of 100 h at a sampling

frequency of once every 1min. The data collected, after bad-data suppression (e.g. elimination of

obvious outliers following built-in tests, such as limit check and rate check), show that each sensor
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exhibits temperature fluctuations resulting from the inherent thermal–hydraulic noise and process

transients, as well as the instrumentation noise. For this specific application, the parameters, functions,

and matrices of the calibration filter are selected as described below.

20.3.1 Filter Parameters and Functions

We start with the filter parameters and functions that are necessary for degradation monitoring. In this

application, each element of the residual vector �k of the calibrated measurement vector yk is assumed

to be Gaussian distributed that assures existence of the likelihood ratios in Equation (20.15). The

structures of the a priori conditional density functions are chosen as follows:

jf
0ð’Þ ¼

1ffiffiffiffiffiffi
2�

p
j�
exp �1

2

’

j�

� �2
 !

jf
1ð’Þ ¼

1ffiffiffiffiffiffi
2�

p
j�
exp �1

2

’� j�

j�

� �2
 !

jf
2ð’Þ ¼

1ffiffiffiffiffiffi
2�

p
j�
exp �1

2

’þ j�

j�

� �2
 !

ð20:18Þ

where j� is the standard deviation, and j� and �j� are the thresholds for positive and negative failures

respectively of the jth residual.

Since it is more convenient to work in the natural-log scale for Gaussian distribution than for the

linear scale, an alternative to Equation (20.17) is to construct a monotonically decreasing continuous

function g: ð�1; 0Þ ! ð0; 1� in lieu of the monotonically increasing continuous function

h: ½0; 1Þ ! ½1;1Þ, so that

W rel
kþ1 � Rrel

kþ1

� ��1
¼ diag g ln j�k

� �� �
; i:e: the weight jw

rel
kþ1 � jr

rel
kþ1

� ��1
¼ g ln j�k

� �
ð20:19Þ

The linear structure of the continuous function gð	Þ is chosen to be piecewise linear, as given below:

gð’Þ ¼

wmax for ’ � ’min

ð’max � ’Þwmax þ ð’� ’minÞwmin

’max � ’min
for �1 � ’min � ’ � ’max

wmin for ’ � ’max

8>>>><
>>>>:

< 0 ð20:20Þ

The function gð	Þ maps the space of j�k in the log scale into the space of the relative weight jw
rel
kþ1 of

individual sensor data. The domain of gð	Þ is restricted to ½lnðjpÞ; lnð1� j�Þ� to account for probability

jp of intra-sampling failure and probability j� of false alarms for each of the four sensors. The range of

gð	Þ is selected to be ½jw
min; 1� where a positive minimum weight (i.e. jw

min > 0) allows the filter to

restore a degraded sensor following its recovery. Numerical values of the filter parameters j�, j�, jp, j�,

and jw
min are presented below:

� The standard deviations of the a priori Gaussian density functions of the four temperature

sensors are:

1�¼ 4.1�F(2.28�C); 2�¼ 3.0�F(1.67�C); 3�¼ 2.4�F(1.33�C); 4�¼ 2.8�F(1.56�C)

The initial condition for the measurement noise covariance matrix is set as R0¼ diag½ĵj��. The failure

threshold parameters are selected as: j� ¼ j�=2 for j¼ 1, 2, 3, 4.
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� The probability of intra-sampling failure is assumed to be identical for all four sensors, as they are

similar in construction and operate under an identical environment. Operation experience at the

power plant shows that the mean life of a resistance thermometer sensor, installed on the mean

steam header, is about 700 days (i.e. about 2 years) of continuous operation. For a sampling

interval of 1min, this information leads to

jp � 10�6 for j ¼ 1; 2; 3; 4

� The probability of false alarms is selected in consultation with the plant operating personnel.

On average, each sensor is expected to generate a false alarm after approximately 700 days of

continuous operation (i.e. once in 2 years). For a sampling interval of 1min, this information

leads to

j � � 10�6 for j ¼ 1; 2; 3; 4

� To allow restoration of a degraded sensor following its recovery, the minimum weight is set as

jwmin � 10�3 for j ¼ 1; 2; 3; 4

20.3.2 Filter Matrices

After conversion of the four temperature sensor data into engineering units, the scale factor matrix in

Equation (1) becomes: H ¼ 1 1 1 1
� �T

. Consequently, following Potter and Suman and Ray and

Luck (1991), the parity space projection matrix in Equation (20.6) becomes

V ¼

ffiffi
3
4

q
�

ffiffiffiffi
1
12

q
0

ffiffi
2
3

q �

ffiffiffiffi
1
12

q
�

ffiffiffiffi
1
12

q
�

ffiffi
1
6

q
�

ffiffi
1
6

q
0 0

ffiffi
1
2

q
�

ffiffi
1
2

q

2
666664

3
777775

In the event of a sensor being isolated as faulty, sensor redundancy reduces to three, for which

H ¼ 1 1 1
� �T

and V ¼

ffiffi
2
3

q
�

ffiffi
1
6

q
�

ffiffi
1
6

q
0

ffiffi
1
2

q
�

ffiffi
1
2

q
2
64

3
75

The ratio, R�1=2
k QR�1=2

k , of covariance matrices Q and R k in Equations (20.4) and (20.1) largely

determines the characteristics of the minimum variance filter in Equation (20.8) or Equation (20.11).

The filter gain �k increases with a larger ratio R�1=2
k QR�1=2

k and vice versa. Since the initial steady-state

value R0 is specified and Rrel
k is recursively generated thereon to calculate Rk via Equation (20.16), the

choice is left only for selection of Q. As a priori information on Q may not be available, its choice

relative to R0 is a design feature. In this application, we have set Q¼R0.

20.3.3 Filter Performance Based on Experimental Data

The filter was tested on-line in the power plant over a continuous period of 9months except for two

short breaks during plant shutdown. The test results showed that the filter was able to calibrate each
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sensor under both pseudo-steady-state and transient conditions under closed-loop control of throttle

steam temperature. The calibrated estimate of the throttle steam temperature was used for plant control

under steady-state, load-following, start-up, and scheduled shutdown conditions. No natural failure of

the sensors occurred during the test period, and there was no evidence of any drift of the estimated

temperature. As such, the modifications (e.g. adjustments via limit check on ĉk, and additional

analytical measurements) of the calibration filter, described earlier in this chapter, were not

implemented. In addition to testing under on-line plant operation, simulated faults have been injected

into the plant data to evaluate the efficacy of the calibration filter under sensor failure conditions. Based

on the data of four temperature sensors that were collected at an interval of 1min over a period of

0 to 100 h, the following three cases of simulated sensor degradation are presented below:

20.3.3.1 Case 1 (Drift Error and Recovery in a Single Sensor)

Starting at 12.5 h, a drift error was injected into the data stream of Sensor#1 in the form of an additive

ramp at the rate of 1.167�F (0.648�C) per hour. The injected fault was brought to zero at 75 h, signifying

that the faulty amplifier in the sensor hardware was corrected and reset.

The simulation results in Figure 20.1 exhibit how the calibration filter responds to a gradual drift in

one of the four sensors while the remaining three are normally functioning. Figure 20.1(a) shows the

response of the four uncalibrated sensors and the estimate generated by simple averaging (i.e. fixed

identical weights) of these four sensor readings at each sample. The sensor data profile includes

transients lasting from 
63 to 
68 h. From time 0 to 12.5 h, when no fault is injected, all sensor

readings are clustered together. Therefore, the uncalibrated estimate, shown by a thick solid line, is in

close agreement with all four sensors during the period 0 to 12.5 h. Sensor#1, shown by the dotted line,

starts drifting at 12.5 h while the remaining sensors stay healthy. Consequently, the uncalibrated

estimate starts drifting at one quarter of the drift rate of Sensor#1 because of equal weighting of all

sensors in the absence of the calibration filter. Upon termination of the drift fault at 75 h, when

Sensor#1 is brought back to the normal state, the uncalibrated estimate resumes its normal state close to

all four sensors for the remaining period from 75 to 100 h.

In Figure 20.1(b) shows the response of the four calibrated sensors and the estimate generated

by weighted averaging (i.e. varying nonidentical weights) of these four sensor readings at each sample.

The calibrated estimate in (b) stays with the remaining three healthy sensors even though Sensor#1 is

gradually drifting. Figure 20.1(f) shows that, after the fault injection, Sensor#1 is weighted less than

the remaining sensors. This is due to the fact that the residual �1k [see Equation (20.13)] of Sensor#1 in

Figure 20.1(c) increases in magnitude with the drift error. The profile of 1w
rel in Figure 20.1(f) is

governed by its nonlinear relationship with �1k given by Equations (20.15), (20.19) and (20.20). As seen

in Figure 20.1(f), 1w
rel initially changes very slowly to ensure that it is not sensitive to small fluctuations

in sensor data due to spurious noise, such as that resulting from thermal–hydraulic turbulence.

The significant reduction in 1w
rel takes place after about 32 h and eventually reaches the minimum value

of 10�3 when �1k is sufficiently large. Therefore, the calibrated estimate x̂xk is practically unaffected by the

drifting sensor and stays close to the remaining three healthy sensors. In essence, x̂xk is the average of

the three healthy sensors. Upon restoration of Sensor#1 to the normal state, the calibrated signal 1yk
temporarily goes down because of the large value of correction 1ĉck at that instant as seen in

Figure 20.1(e). However, the adaptive filter quickly brings back 1ĉck to a small value, and thereby the

residual 1�k is reduced and the original weight (i.e. 
1) is regained. Calibrated and uncalibrated

estimates are compared in Figure 20.1(d), which shows a peak difference of about 12�F (6.67�C) over

a prolonged period.

In addition to the accuracy of the calibrated estimate, the filter provides fast and smooth recovery

from abnormal conditions under both steady-state and transient operations of the power plant. For

example, during the transient disturbance after about 65 h, the steam temperature undergoes a relatively

large swing. Since the sensors are not spatially collocated, their readings are different during plant

transients as a result of transport lag in the steam header. Figure 20.1(f) shows that the weights of two

sensors out of the three healthy sensors are temporarily reduced while the remaining healthy sensor
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enjoys the full weight and the drifting Sensor#1 has practically no weight. As the transients are over,

three healthy sensors resume the full weight. The cause of weight reduction is the relatively large

residuals of these two sensors, as seen in Figure 20.1(c). During this period, the two affected sensors

undergo modest corrections: one is positive and the other negative, as seen in Figure 20.1(e), so that the

calibrated values of the three healthy sensors are clustered together. The health-monitoring system and

the plant control system rely on the spatially averaged throttle steam temperature [14–17].

Another important feature of the calibration filter is that it reduces the deviation of the

drifting Sensor#1 from the remaining sensors as seen from a comparison of its responses in

 

 

 

 

 

 

 

Figure 20.1. Performance of the calibration filter for drift error in a sensor.
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Figure 20.1(a) and (b). This is very important from the perspectives of fault detection and isolation for

the following reason. In an uncalibrated system, Sensor#1 might have been isolated as faulty due to

accumulation of the drift error. In contrast, the calibrated system makes Sensor#1 temporarily

ineffective without eliminating it as faulty. A warning signal can easily be generated when the weight of

Sensor#1 diminishes to a small value. This action will draw the attention of maintenance personnel for

possible repair or adjustment. Since the estimate x̂xk is not poisoned by the degraded sensor, a larger

detection delay can be tolerated. Consequently, the allowable threshold for fault detection can be safely

increased to reduce the probability of false alarms.

20.3.3.2 Case 2 (Zero-Mean Fluctuating Error and Recovery in a Single Sensor)

We examine the filter performance by injecting a zero-mean fluctuating error to Sensor#3 starting at

12.5 h and ending at 75 h. The injected error is an additive sine wave of period 
36 h and amplitude

25�F (13.9�C). The simulation results in Figure 20.2 show how the calibration filter responds to the

fluctuating error in Sensor#3 while the remaining three sensors (i.e. Sensor#1, Sensor#2 and Sensor#4)

are functioning normally. To some extent, the filter response is similar to that of the drift error in

Case 1. The major difference is the oscillatory nature of the weights and corrections of Sensor#3, as seen

in Figure20.2(f) and (e) respectively. Note that this simulated fault makes the filter switch autono-

mously to the normal state from either one of the two abnormal states as the sensor error fluctuates

between positive and negative limits. Since this is a violation of the Assumption A3 in Appendix A, the

recursive relation in Equation (20.A17) represents an approximation of the actual situation. The results

in Figure 20.2(b) to (f) show that the filter is sufficiently robust to be able to execute the tasks of sensor

calibration and measurement estimation in spite of this approximation. The filter not only exhibits fast

response, but also its recovery is rapid regardless of whether the fault is naturally mitigated or corrected

by an external agent.

20.3.3.3 Case 3 (Drift Error in One Sensor and Zero-Mean Fluctuating
Error in Another Sensor)

This case investigates the filter performance in the presence of simultaneous faults in two out of four

sensors. Note that if the two affected sensors have similar types of fault (e.g. common mode faults), the

filter will require additional redundancy to augment the information base generated by the remaining

healthy sensors. Therefore, we simulate simultaneous dissimilar faults by injecting a drift error in

Sensor#1 and a fluctuating error in Sensor#3 exactly identical to those in Case 1 and Case 2 respectively.

A comparison of the simulation results in Figure 20.3 with those in Figures 20.1 and 20.2 reveals that

the estimate x̂xk is essentially similar in all three cases, except for small differences during the transients at


65 h. It should be noted that, during the fault injection period from 12.5 to 75 h, x̂xk is strongly

dependent on: Sensors#2, #3 and #4 in Case 1; Sensors#1, #2 and #4 in Case 2; and Sensors#2 and #4

in Case 3. Therefore, the estimate x̂xk cannot be exactly identical for these three cases. The important

observation in this case study is that the filter can handle simultaneous faults in two out of four sensors

provided that these faults are not strongly correlated; otherwise, additional redundancy or equivalent

information would be necessary.

20.4 Summary and Conclusions
This chapter presents a formulation and validation of an adaptive filter for real-time calibration of

redundant signals consisting of sensor data and/or analytically derived measurements. Individual signals

are calibrated on-line by an additive correction that is generated by a recursive filter. The covariance

matrix of the measurement noise is adjusted as a function of the a posteriori probabilities of failure of

the individual measurements. An estimate of the measured variable is also obtained in real time as a

weighted average of the calibrated measurements. These weights are recursively updated in real time

instead of being fixed a priori. The effects of intra-sample failure and probability of false alarms are
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taken into account in the recursive filter. The important features of this real-time adaptive filter are

summarized below:

� A model of the physical process is not necessary for calibration and estimation if sufficient

redundancy of sensor data and/or analytical measurements is available.
� The calibration algorithm can be executed in conjunction with a fault-detection and isolation

system.

 

 

 

 

  

Figure 20.2. Performance of the calibration filter for fluctuation error in a sensor.
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� The filter smoothly calibrates each measurement as a function of its a posteriori probability of

failure, which is recursively generated based on the current and past observations.

The calibration and estimation filter has been tested by injecting faults in the data set collected from

an operating power plant. The filter exhibits speed and accuracy during steady-state and transient

operations of the power plant. It also shows fast recovery when the fault is corrected or naturally

mitigated. The filter software is portable to any commercial platform and can be potentially used to

 

 

 

 

 

 

Figure 20.3. Performance of the calibration filter for drift error and fluctuation error in two sensors.
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enhance the Instrumentation & Control System Software in tactical and transport aircraft, and nuclear

and fossil-fuel power plants.

Appendix A: Multiple Hypotheses Testing Based on
Observations of a Single Variable

Let �k; k ¼ 1; 2; 3; 	 	 	f g be (conditionally) independent values of a single variable (e.g. residual of a

measurement) at consecutive sampling instants. We assume M distinct possible modes of failure in

addition to the normal mode of operation that is designated as the mode 0. Thus, there are (Mþ 1)

mutually exclusive and exhaustive hypotheses defined at the kth sample as

H0
k :Normal behavior with a priori density function f 0ð	Þ � f 	 H0

��� �
Hi

k:Abnormal behavior with a priori density function f ið	Þ � f 	 Hi
��� �

; i ¼ 1; 2; . . . ;M
ð20:A1Þ

where each hypothesis H
j
k; j ¼ 0; 1; 2; . . . ;M is treated as a Markov state.

We define the a posteriori probability �
j
k of the jth hypothesis at the kth sample as

�
j
k � P½H

j
k Zkj �; j ¼ 0; 1; 2; . . . ;M ð20:A2Þ

based on the history Zk � \k
i¼1 zi where zi � �i 2 Bif g and Bi is the region of interest at the ith sample.

The problem is to derive a recursive relation for a posteriori probability of failure �k at the kth sample:

�k � P
[M
j¼1

H
j
k Zkj

" #
¼
XM
j¼1

P H
j
k Zkj

h i
) �k ¼

XM
j¼1

�
j
k ð20:A3Þ

because of the exhaustive and mutually exclusive properties of the Markov states, H
j
k; j ¼ 1; 2; . . . ;M.

To construct a recursive relation for �k, we introduce the following three definitions:

Joint probability: �
j
k � P½H

j
k;Zk� ð20:A4Þ

A priori probability: 	
j
k � P½zkjH

j
k :� ð20:A5Þ

Transition probability: �
i;j
k � P½H

j
k Hi

k�1

�� � ð20:A6Þ

Then, because of conditional independence of zk and Zk�1, Equation (A-4) takes the following form:

�
j
k ¼ P½H

j
k; zk;Zk�1�

¼ P½zk H
j
k

��� �P½H
j
k;Zk�1�

ð20:A7Þ

Furthermore, the exhaustive and mutually exclusive properties of the Markov states

H
j
k; j ¼ 0; 1; 2; . . . ;M, and independence of Zk�1 and H

j
k lead to

P H
j
k;Zk�1

h i
¼
XM
i¼0

P H
j
k;H

i
k�1;Zk�1

h i

¼
XM
i¼0

P Zk�1 Hi
k�1

��� �
P H

j
k Hi

k�1

��h i
P Hi

k�1

� �

¼
XM
i¼0

P H
j
k Hi

k�1

��h i
P Hi

k�1;Zk�1

� �
ð20:A8Þ
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The following recursive relation is obtained from a combination of Equations (20.A4) to (20.A8) as:

�
j
k ¼ 	

j
k

XM
i¼0

a
i;j
k �

i
k�1 ð20:A9Þ

We introduce a new term

 
j
k �

�
j
k

�0k
ð20:A10Þ

that reduces to the following form by use of Equation (20.A9):

 
j
k ¼

	
j
k

	0k

 ! a
0;j
k þ

PM
i¼1

a
i;j
k  

i
k�1

a0;0k þ
PM
i¼1

ai;0k  
i
k�1

0
BBB@

1
CCCA ð20:A11Þ

to obtain the a posteriori probability �
j
k in Equation (20.A2) in terms of �

j
k and  

j
k as

�
j
k ¼

P½H
j
k;Zk�

P½Zk�
¼

P½H
j
k;Zk�PM

i¼0

P Hi
k;Zk

� �

¼
�
j
k

�0k þ
PM
i¼1

�ik

¼
 

j
k

1þ
PM
i¼1

 i
k

ð20:A12Þ

A combination of Equations (20.A3) and (20.A12) leads to the a posteriori probability �k of failure as

�k ¼
�k

1þ�k
with �k �

XM
j¼1

 
j
k ð20:A13Þ

The above expressions can be realized by a simple recurrence relation under the following four

assumptions:

� Assumption A1. At the starting point (i.e. k¼ 0), all measurements operate in the normal

mode, i.e. P½H0
0 � ¼ 1 and P½H

j
0� ¼ 0 for j ¼ 1; 2; . . . ;M. Therefore, �00 ¼ 1 and �

j
0 ¼ 0 for

j ¼ 1; 2; . . . ;M.
� Assumption A2. Transition from the normal mode to any abnormal mode is equally likely.

That is, if p is the a priori probability of failure during one sampling interval, then a0;0k ¼ 1� p

and a0;ik ¼ p=M for i ¼ 1; 2; . . . ;M, and all k.
� Assumption A3. No transition takes place from an abnormal mode to the normal mode, implying

that ai;0k ¼ 0 for i ¼ 1; 2; . . . ;M, and all k. The implication is that a failed sensor does not return

to the normal mode (unless replaced or repaired).
� Assumption A4. Transition from an abnormal mode to any abnormal mode, including itself,

is equally likely. That is, a
i;j
k ¼ 1=M for i; j ¼ 1; 2; . . . ;M, and all k.
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A recursive relation for �k is generated based on the above assumptions and using the expression in

Equation (20.A11) as

 
j
k ¼

pþ
PM
i¼1

 i
k�1

ð1� pÞM

	
j
k

	0k

 !
given  

j
0 ¼ 0 for j ¼ 1; 2; . . . ;M ð20:A14Þ

which is simplified by use of the relation �k �
PM

i¼1  
i
k in Equation (20.A13) as

�k ¼
pþ�k�1

ð1� pÞM

� �XM
j¼1

	
j
k

	0k
given �0 ¼ 0 ð20:A15Þ

If the probability measure associated with each abnormal mode is absolutely continuous relative to that

associated with the normal mode, then the ratio 	
j
k=	

0
k of a priori probabilities converges to a Radon–

Nikodym derivative as the region Bk in the expression zk � �k 2 Bkf g approaches zero measure [18].

This Radon–Nikodym derivative is simply the likelihood ratio f jð�kÞ=f
0ð�kÞ; j ¼ 1; 2; . . . ;M; where

f ið	Þ is the a priori density function conditioned on the hypothesis Hi; i ¼ 0; 1; 2; . . . ;M:

Accordingly, Equation (20.A15) becomes

�k ¼
pþ�k�1

ð1� pÞM

� �XM
j¼1

f jð�kÞ

f 0ð�kÞ
given �0 ¼ 0 ð20:A16Þ

For the specific case of two abnormal hypotheses (i.e. M ¼ 2) representing positive and negative

failures, the recursive relations for �k and �k in Equations (20.A16) and (20.A13) become

�k ¼
pþ�k�1

2ð1� pÞ

� �
f 1ð�kÞ þ f 2ð�kÞ

f 0ð�kÞ

� �

�k ¼
�k

1þ�k

9>>=
>>; given �0 ¼ 0 ð20:A17Þ
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