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Chapter 5
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Abstract

Maturity of engineering and scientific theories in recent decades has facilitated cre-
ation of advanced technology of human-engineeredcomplex (e.g., electro-mechanical,
transportation, and power generation) systems. A vast majority of these systems are of-
ten subjected to mechanical vibration. A possible consequence is performance degra-
dation and structural damage that may eventually lead to widespread catastrophic
failures. This chapter presents a recently reported technique of data-driven pattern
recognition, called Symbolic Dynamic Filtering (SDF), for online detection of slowly
evolving anomalies (i.e., deviation from the nominal characteristics) and the associated
behaviorial uncertainties. The underlying concept ofSDF is built upon the principles
of Statistical Mechanics, Symbolic Dynamics and Information Theory, where time se-
ries data from selected sensor(s) in the fast time scale of the process dynamics are
analyzed at discrete epochs in the slow time scale of anomalyevolution. Symbolic dy-
namic filtering includes preprocessing of time series data using the Hilbert transform.
The transformed data is partitioned using the maximum entropy principle to generate
the symbol sequences, such that the regions of the data spacewith more information
are partitioned finer and those with sparse information are partitioned coarser. Subse-
quently, statistical patterns of evolving anomalies are identified from these symbolic
sequences through construction of a (probabilistic) finite-state machine that captures
the system behavior by means of information compression. The concept ofSDF has
been experimentally validated on a special-purpose computer-controlled multi-degree
of freedom mechanical vibration apparatus that is instrumented with two accelerome-
ters for identification of anomalous patterns due to parametric changes.

∗This work has been supported in part by the U.S. Army ResearchLaboratory and the U.S. Army Research
Office (ARO) under Grant No. W911NF-07-1-0376 and by NASA under Grant No. NNX07AK49A.
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1. Introduction

A traditional approach of investigating the properties of modern day human-engineered
complex (e.g., electro-mechanical, transportation, and power generation) systems involves
development of an analytical model of the underlying process dynamics and identification
of its critical parameters. However, such a model-based approach for behavioral analysis of
a complex system is often limited due to the presence of several difficulties such as: 1) high
dimensionality of the system, 2) underlying non-stationary (possibly chaotic) behavior, 3)
nonlinearity, and 4) exogenous disturbances. A vast majority of these systems are often
subjected to mechanical vibration, and a major goal is online detection and estimation of
behavioral uncertainties due to gradual development of anomalies. (Note: Anomaly in a
dynamical system is defined as a deviation of its behavior pattern from the nominal pattern
that is viewed as the desired healthy behavior.)

Anomalous behavior can be associated with either parametric or non-parametric
changes in the dynamics of a complex system. Parametric changes are usually related
to degradation of a single or multiple parameters that are often used to construct the an-
alytical model of the system. For example, a change in the stiffness parameter of the di-
aphragm of a flexible mechanical coupling between two shaftscan lead to misalignments
and cause whirling. The whirling phenomenon increases machine vibrations and eventually
lead to failures of the bearing, coupling and other components of the system. Therefore,
the changes in the dynamics of the system can be directly associated to the changes in sys-
tem model parameters. The other possible changes that can occur in a system are termed
as non-parametric changes that are difficult to measure, identify and model, and a direct
relation of their effects on the performance variables may not be explicitly known. These
non-parametric changes also affect the response of system’s observables. However, the ex-
act interpretation and quantification of these changes might not be feasible because of the
lack of knowledge of the underlying physics. For example, the growth of fatigue dam-
age in polycrystalline alloys occurs due to small microstructural changes during the crack
initiation period. This be represented as a non-parametricchange, which is often difficult
to model. Therefore, time series data of sensors (e.g., ultrasonic flaw detectors) are used
to detect these small microstructural changes during earlystages of fatigue damage evolu-
tion [1][2].

The above discussion evinces that sole reliance on model-based analysis for pattern
recognition is infeasible because of the difficulties in achieving requisite modeling accu-
racy and in determining the accurate initial conditions with the available computational
resources. In general, the analytical models of complex systems could be very sensitive to
the initial and boundary conditions and also on certain critical system parameters. Small
deviations in these parameters may produce large variations in the evolution of the system
for (apparently) identical operating conditions and can possibly lead to chaos [3]. Further-
more, in real-time applications, the analysis of these models becomes computationally very
expensive for high-dimensional systems. As such, the problem is tackled using an alterna-
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tive approach of observation-based estimation of the underlying process dynamics and the
relevant system parameters.

The observed behavioral pattern changes (i.e., parametricor non-parametric) are often
indicatives of hidden anomalies that may degrade safety andreliability of mechanical vibra-
tion systems. Accurate prediction and quantification of these anomalies could be infeasible
due to lack of relevant information or inadequacy of analytical tools that extract such in-
formation. This problem is often circumvented by conservative enforcement of large safety
factors, which could increase the life of operating machinery but leads to higher costs. A
possible solution to reduction of overly conservative safety factors is to have frequent in-
spections that also turns out to be expensive and time-consuming if maintenance actions
are taken based on fixed usage intervals. From these perspectives, it is logical to have on-
line identification of anomalous patterns, which would allow continual re-evaluation of the
system and enhance inherent protection against unforeseenimpending failures. The online
identification of parameters also reduces the frequency of inspections, i.e., increases the
mean time between major maintenance actions. Furthermore,early detection of anoma-
lies and identification of incipient fault patterns are essential for prognosis of forthcoming
widespread failures to avert colossal loss of expensive equipment and human life [4].

In view of the above discussion, the analysis of time series data from available sensors
is needed for real-time pattern recognition. While there exist many reported techniques
(e.g., particle filtering [5][6]) for combined model-basedand data-driven pattern recogni-
tion, the real-time execution of such tools is an open research issue. As such, this chap-
ter addresses the problem of real-time information extraction using a data-driven pattern
recognition method called Symbolic Dynamic Filtering (SDF ) that has been presented
for anomaly detection and estimation of the critical parameters of the system.SDF is an
information-theoretic pattern recognition tool that is built upon a fixed-structure, fixed-order
Markov chain, called theD-Markov machine[7][8].

The theme of pattern recognition and anomaly detection, formulated in this chapter, is
built upon the concepts ofSymbolic Dynamics[9][10], Finite State Automata[11], Infor-
mation TheoryandStatistical Mechanics[12][13] as a means to qualitatively describe the
dynamical behavior in terms of symbol sequences [14] [15]. The core concept ofSDF is
based on appropriate phase-space partitioning of the dynamical system to obtain symbol se-
quences [16]. Alternatively, symbol sequences are generated from time series data. The loss
of information is minimized by using the concept ofmaximized entropy partitioning[17].
The chapter has adopted the method of Hilbert transform of the data before partitioning
for symbol sequence generation [7] [17][18]. Statistical patterns in symbolic sequences
are identified through construction of a (probabilistic) finite-state machine [7][11]. For
anomaly detection, it suffices that a detectable change in the pattern represents a devia-
tion of the nominal pattern from an anomalous one. The concept of SDF for parameter
identification has been experimentally validated on a special-purpose computer-controlled
multi-degree of freedom mechanical vibration apparatus. This apparatus is instrumented
with two accelerometers that measure the response of the system for a parametric change
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that is caused due to the movement of a mass block from its nominal position.
This chapter is organized in five sections. Section 1. provides the background and mo-

tivation for data-driven pattern recognition for anomaly detection. Section 2. formulates
the problem of anomaly detection in mechanical vibration systems using the notion of two-
time-scales. Section 3. provides a brief overview of symbolic dynamic filtering for time
series data analysis and pattern recognition. Section 4. presents the description of a multi-
degree of freedom mechanical vibration apparatus that is equipped with accelerometers
for measuring the vibration data. Section 5. presents experimental results of the mechani-
cal vibration apparatus to demonstrate the efficacy ofSDF -based pattern recognition and
anomaly detection technique. Section 6. summarizes and concludes the chapter with rec-
ommendations for future research.

2. Problem Formulation

This section formulates the problem of anomaly detection incomplex systems (e.g., the
mechanical vibration systems) using the concepts of symbolic dynamic filtering (SDF ).
In the current chapter the problem of anomaly detection refers to detection of parametric
changes in mechanical vibration systems. The underlying features and essential details of
SDF [7][13] are presented in the next section.

Anomaly detection usingSDF is formulated as a two-time-scale problem as explained
below.

• Thefast scaleis related to the response time of process dynamics. Over thespan of a
given time series data sequence, the behavioral statisticsof the system are assumed to
remain invariant, i.e., the process is assumed to have statistically stationary dynamics
at the fast scale. In other words, statistical variations inthe internal dynamics of the
system are assumed to be negligible on the fast time scale.

• The slow scaleis related to the time span over which the process may exhibitnon-
stationary dynamics due to (possible) evolution of anomalies. Thus, an observable
non-stationary behavior can be associated with anomalies evolving at a slow scale.

A pictorial view of the two time scales is presented in Figure1. In general, a long time
span in the fast scale is a tiny (i.e., several orders of magnitude smaller) interval in the slow
scale. For example, fatigue damage evolves on a slow scale, possibly in the order of months
or years, in machinery structures that are operated in the fast scale approximately in the
order of seconds or minutes. Hence, the behavior pattern of fatigue damage is essentially
invariant on the fast scale. Nevertheless, the notion of fast and slow scales is dependent
on the specific application, loading conditions and operating environment. As such, from
the perspective of anomaly detection, sensor data acquisition is done on the fast scale at
different slow time epochs.
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Figure 1. Pictorial view of the two time scales: 1)slow time scalewhere anomalies evolve
and 2)fast time scalewhere data acquisition is done.

Anomalies (e.g., microscopic fatigue damage) in complex systems such as rotating ma-
chinery, civil infrastructures and aviation systems are often observed as changes in the be-
havioral characteristics of the system. These changes can be monitored using time-series
data (e.g. vibration) of self-excited systems [19] or from the response to an external stim-
uli [20]. Vibration-based fault detection and identification has been reported in recent lit-
erature for a variety of applications such as gear-box [21][22], bearings [23], rotating ma-
chines [24], and mechanical structures [25][26]. Anomaly detection using vibration char-
acteristics is a useful method as it partially alleviates the need for a prior knowledge of
an analytical model of the system. However, time series analysis of the vibration data for
detecting embedded fault signatures in the system is a challenging task. Several methods
of feature extraction and time-series analysis can be used to this effect. Methods such as
Fourier and wavelet transforms [27], Hilbert-Huang transform [28], Hidden Markov Mod-
eling [29], Artificial Neural Network (ANN) [30], and fuzzy inference systems [31] have
been used for analysis of vibration signals. Often the evolution of anomalies leads to non-
linear (possibly chaotic [32]) dynamics which may be difficult to model or approximate.
Small changes in the system dynamical behavior may not be directly discernable using fre-
quency spectrum or modal analysis and present the need for advanced signal processing and
pattern recognition methods. These issues have motivated the study of anomaly detection
in vibration systems from the perspectives of dynamical systems [33][34].

Symbolic Dynamic Filtering(SDF ) for anomaly detection presented in this chap-
ter has been experimentally validated for real-time execution in different applications,
such as electronic circuits [35], mechanical structures for fatigue damage monitor-
ing [1][36][37][2][38][40], gasification systems for detection of refractory degradation [39],
and rotating machinery for detection of shaft misalignment[41]. Furthermore, it has been
shown thatSDF yields superior performance in terms of early detection of anomalies and
robustness to measurement noise by comparison with other existing techniques such as
Principal Component Analysis (PCA) and Artificial Neural Networks (ANN ) [35][1].

The task of anomaly detection is to enable both (a)diagnosis- detection and extrac-
tion of anomalous behavior, and (b)prognosis, tracking failure precursors leading to faults.
Therefore, the anomaly detection problem is partitioned into two problems [7]: (i)forward
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Figure 2.Conceptual view of symbolic dynamic filtering.

problem of pattern recognitionfor monitoring the evolution of system dynamics by (of-
fline) analysis of the anomalous behavior, relative to the nominal behavior; and (ii)inverse
problem of pattern identificationfor (online) estimation of parametric or non-parametric
changes based on the knowledge assimilated in the forward problem and the observed time
series data of quasi-stationary process response. The inverse problem could be ill-posed or
have no unique solution. That is, it may not always be possible to identify a unique anomaly
pattern based on the observed behavior of the dynamical system. Nevertheless, the feasi-
ble range of parameter variation estimates can be narrowed down from the intersection of
the information generated from inverse images of the responses under several stimuli. The
algorithms ofSDF can be implemented to solve both these problems; however, the cur-
rent chapter has addressed only the forward problem of anomaly detection and the inverse
problem of parameter estimation is reported as an area of future work.

3. Review of Symbolic Dynamic Filtering (SDF )

This section presents the underlying concepts and salient features ofSDF for anomaly
detection in complex dynamical systems. While the details are reported in previous pub-
lications [7][8][13][17][42], the essential concepts of space partitioning, symbol sequence
generation, construction of a finite-state machine from thegenerated symbol sequence and
pattern recognition are consolidated here and succinctly described for self-sufficiency and
completeness of the chapter.

3.1. Symbolic Dynamics and Encoding

This subsection briefly describes the concepts ofSymbolic Dynamicsfor:
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1. Encoding nonlinear system dynamics from observed time series data for generation
of symbol sequences, and

2. Construction of a probabilistic finite state machine (PFSM ) from the symbol se-
quence for generation of pattern vectors as representationof the dynamical system’s
characteristics.

The continuously-varying finite-dimensional model of a dynamical system is usually
formulated in the setting of an initial value problem as:

dx(t)

dt
= f(x(t), θ(τ)); x(0) = x0, (1)

wheret ∈ [0,∞) denotes the (fast-scale) time;x ∈ R
n is the state vector in the phase

space; andθ ∈ R
ℓ is the (possibly anomalous) parameter vector varying in (slow-scale)

time τ . The gradual change in the parameter vectorθ ∈ R
ℓ due to possible evolution of

anomalies on the slow time scale can alter the system dynamics and hence change the state
trajectory.

Let Ω ⊂ R
n be a compact (i.e., closed and bounded) region, within whichthe trajectory

of the dynamical system, governed by Eq. (1), is circumscribed as illustrated in Fig. 2.
The regionΩ is partitioned as{Φ0, · · · ,Φ|Σ|−1} consisting of|Σ| mutually exclusive (i.e.,

Φj ∩ Φk = ∅ ∀j 6= k), and exhaustive (i.e.,
⋃|Σ|−1

j=0
Φj = Ω) cells, whereΣ is thesymbol

alphabetthat labels the partition cells. A trajectory of the dynamical system is described by
the discrete time series data as:{x0,x1,x2, · · · }, where eachxi ∈ Ω. The trajectory passes
through or touches one of the cells of the partition; accordingly the corresponding symbol
is assigned to each pointxi of the trajectory as defined by the mappingM : Ω → Σ.
Therefore, a sequence of symbols is generated from the trajectory starting from an initial
statex0 ∈ Ω, such that:

x0 ֌ s0s1s2 . . . sj . . . (2)

wheresk , M(xk) is the symbol generated at the (fast scale) instantk. The symbols
sk, k = 0, 1, . . . are identified by an index setI : Z → {0, 1, 2, . . . |Σ|−1}, i.e.,I(k) = ik

andsk = σik whereσik∈ Σ. Equivalently, Eq. (2) is expressed as:

x0 ֌ σi0σi1σi2 . . . σij . . . (3)

The mapping in Eq. (2) and Eq. (3) is calledSymbolic Dynamicsas it attributes a
legal (i.e., physically admissible) symbol sequence to thesystem dynamics starting from
an initial state. The partition is called a generating partition of the phase spaceΩ if every
legal (i.e., physically admissible) symbol sequence uniquely determines a specific initial
conditionx0. In other words, every (semi-infinite) symbol sequence uniquely identifies one
continuous space orbit [15].

Symbolic dynamics may also be viewed as coarse graining of the phase space, which
is subjected to (possible) loss of information resulting from granular imprecision of parti-
tioning boxes. However, the essential robust features (e.g., periodicity and chaotic behavior
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of an orbit) are expected to be preserved in the symbol sequences through an appropriate
partitioning of the phase space [14].

Figure 2 pictorially elucidates the concepts of partitioning a finite region of the phase
space and the mapping from the partitioned space into the symbol alphabet, where the
symbols are indicated by Greek letters (e.g.,α, β, γ, δ, · · · ). This represents a spatial and
temporal discretization of the system dynamics defined by the trajectories. Figure 2 also
shows conversion of the symbol sequence into a finite-state machine and generation of the
state probability vectors at the current and the reference conditions. The states of the finite
state machine and the histograms in Fig. 2 are indicated by numerics (i.e., 1, 2, 3 and
4); the necessary details are provided later in Section 3.3.. Although the theory of phase-
space partitioning is well developed for one-dimensional mappings [15], very few results
are known for two and higher dimensional systems. Furthermore, the state trajectory of the
system variables may be unknown in case of systems for which amodel as in Eq. (1) is not
known or is difficult to obtain. As such, as an alternative, the time series data set of selected
observable outputs can be used for symbolic dynamic encoding (see Section 3.2. for further
details).

3.2. Analytic Signal Space Partitioning

As described earlier, a crucial step in symbolic dynamic filtering (SDF ) is partitioning of
the phase space for symbol sequence generation [10]. Several partitioning techniques have
been reported in literature for symbol generation [43][16], primarily based on symbolic
false nearest neighbors (SFNN ). These techniques rely on partitioning the phase space
and may become cumbersome and extremely computation-intensive if the dimension of the
phase space is large. Moreover, if the time series data is noise-corrupted, then the symbolic
false neighbors would rapidly grow in number and require a large symbol alphabet to cap-
ture the pertinent information on the system dynamics. Therefore, symbolic sequences as
representations of the system dynamics should be generatedby alternative methods because
phase-space partitioning might prove to be a difficult task in the case of high dimensions
and presence of noise.

The wavelet-space partitioning (WSP ) [7][17] was introduced as an alternative to
SFNN partitioning. The wavelet coefficients at selected scale(s) are stacked back to back
to transform the 2-dimensional scale-shift wavelet domaininto a one-dimensional domain.
The resulting scale-series data sequence is converted to a sequence of symbols bymax-
imum entropy partitioning[17]. The wavelet transform [44] largely alleviates the above
mentioned shortcomings ofSFNN partitioning and is particularly effective with noisy
data from high-dimensional dynamical systems [17].

AlthoughWSP is significantly computationally faster thanSFNN partitioning and is
suitable for real-time applications,WSP has several shortcomings as follows:

• Selection of an appropriate wavelet basis function: This selection is made such that
the shape of the basis function closely matches that of the signal, which may vary
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with the window size. Apparently, there is no precise way of selecting a wavelet
basis that is “best” for partitioning.

• Identification of scales for generation of wavelet coefficients: Scales are identified
from the center frequency (that is based on inspection of thepower spectral density
of the Fourier transform) and the selected wavelet basis.

• Dimension reduction of the scale-shift wavelet domain: This reduction to a one-
dimensional domain ofscale-seriessequences is non-unique and may not be a “best”
way.

Therefore, another alternative to the existing partitioning methods has been recently
proposed, called analytic signal space partitioning (ASSP ) [18]. AlthoughASSP is not
aimed to be a generating partition, it is designed with the goal of satisfying the important
property of a generating partition:The inverse image of a small neighborhood in the symbol
space is a small neighborhood in the data space, except possibly in the vicinity of partition
boundaries. The underlying concept ofASSP partitioning is built upon Hilbert transform
of the observed real-valued data sequence into the corresponding complex-valued analytic
signal [45] as explained below.

Let x(t) be a real-valued function whose domain is the real fieldR = (−∞,+∞).
Then, Hilbert transform [18] ofx(t) is defined as:

x̃(t) = H[x](t) =
1

π

∫

R

x(τ)

t − τ
dτ (4)

That is,x̃(t) is the convolution ofx(t) with 1

πt
overR, which is represented in the Fourier

domain as:
F [x̃](ξ) = −i sgn(ξ) F [x](ξ) (5)

where sgn(ξ) =

{
+1 if ξ > 0

−1 if ξ < 0

Given the Hilbert transform of a real-valued signalx(t), the corresponding complex-
valued analytic signal is defined as:

A[x](t) = x(t) + i x̃(t) (6)

The construction of Eq. (6) is based on the fact that the values of Fourier transform of a
real-valued function at negative frequencies are redundant due to their Hermitian symmetry
imposed by the transform. Thus, the phase of the Hilbert transform x̃(t) is in quadrature to
the phase ofx(t). That is, the analytic signal can be expressed as:

A[x](t) = A(t) exp
(
i ϕ(t)

)
(7)

whereA(t) and ϕ(t) are called the instantaneous amplitude and instantaneous phase of
A[x](t), respectively. Vakman [46] has pointed out that the amplitude and phase of an
analytic signal satisfy the following three physical properties:
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1. Amplitude Continuity: A small perturbation inx(t) induces a small change inA(t).

2. Phase independence of scale: Scalingx(t) by a constantc > 0 has no effects onϕ(t)

and multipliesA(t) by c.

3. Harmonic correspondence: A mono-frequency signal (i.e., a pure sinusoid
A0cos(ω0t + ϕ0)) yieldsA(t) = A0 andϕ(t) = ω0t + ϕ0 for all t.

Thus, for a mono-frequency signal, which is embedded in a 2-dimensional state space, a
direct parallel can be drawn between the phase plot and the Hilbert transform plot. The
procedure forASSP is formulated next.

Let the observed signal be available as a real-valued time series ofN data points. Upon
Hilbert transformation of this data sequence, a pseudo-phase plot is constructed from the re-
sulting analytic signal by a bijective mapping of the complex field ontoR

2, i.e., by plotting
the real and the imaginary parts of the analytic signal on thex1 andx2 axes, respectively.
It is important to note that the pseudo-phase space is alwaystwo-dimensional, whereas the
phase space of the dynamical system is a representation of the n-dimensional manifold,
wheren could be an arbitrarily large positive integer.

The time-dependent analytic signal in Eq. (6) is now represented as a (one-dimensional)
trajectory in the two-dimensional pseudo-phase space. LetΞ be a compact region in the
pseudo-phase space, which encloses the trajectory. The objective is to partitionΞ into
finitely many mutually exclusive and exhaustive segments, where each segment is labeled
with a symbol or letter. The segments are conveniently determined by the magnitude and
phase of the analytic signal as well as based on the density ofdata points in these segments.
That is, if the magnitude and phase of a data point of the analytic signal lies within a segment
or on its boundary, then the data point is labeled with the corresponding symbol. Thus, a
symbol sequence is derived from the (complex-valued) sequence of the analytic signal. The
set of (finitely many) symbols is called the alphabetΣ.

One possible way of partitioningΞ is to divide the magnitude and phase of the time-
dependent analytic signal in Eq. (6) into uniformly spaced segments between their maxi-
mum and minimum values, respectively. This is called the uniform partitioning. An alter-
native method, known as the maximum entropy partitioning [17], maximizes the entropy
of the partition that is characterized by the alphabet size|Σ|, thereby imposing a uniform
probability distribution on the symbols. The maximum entropy partitioning is generated by
maximizing the Shannon entropy [47], which is defined as:

S = −
|Σ|−1∑

i=0

pi log(pi) (8)

wherepi is the probability of a data point to be in theith partition segment. In this partition-
ing, regions with rich information are partitioned into finer segments than those with sparse
information. Computationally the maximum entropy partition can be obtained by sorting
the data sequence in an ascending order. This sorted data sequence is then partitioned into
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|Σ| equal segments of length⌊ N
|Σ|⌋, whereN is the length of the data sequence and⌊x⌋ is

the greatest integer less than or equal tox. Each of these segments is assigned a symbol
and all data points in a given segment are assigned the corresponding symbol.

The magnitude and phase of the analytic signal in Eq. (6) are partitioned separately
according to either uniform partitioning, maximum entropypartitioning or any other type
of partitioning; the type of partitioning may depend on the characteristics of the physical
process. In essence, each point in the data set is represented by a pair of symbols – one
belonging to the alphabetΣR based on the magnitude (i.e., in the radial direction) and the
other belonging to the alphabetΣA based on the phase (i.e., in the angular direction). The
analytic signal is converted into a one dimensional symbol sequence by associating each
pair of symbols into a symbol from a new alphabetΣ as:

Σ ,
{
(σi, σj) : σi ∈ ΣR, σj ∈ ΣA

}
and|Σ| = |ΣR| · |ΣA|

3.3. Probabilistic Finite State Machine (PFSM) and Pattern Recognition

Once the symbol sequence is obtained, the next step is the construction of a Probabilistic
Finite State Machine (PFSM ) and calculation of the respective state probability vector as
depicted in the lower part of Fig. 2 by the histograms. The partitioning is performed at the
reference condition.

A PFSM is then constructed, where the states of the machine are defined correspond-
ing to a givenalphabetsetΣ and window lengthD. The alphabet size|Σ| is the total num-
ber of partition segments while the window lengthD is the length of consecutive symbol
words [7], which are chosen as all possible words of lengthD from the symbol sequence.
Each state belongs to an equivalence class of symbol words oflengthD, which is character-
ized by a word of lengthD at the leading edge. Therefore, the numbern of such equivalence
classes (i.e., states) is less than or equal to the total permutations of the alphabet symbols
within words of lengthD. That is,n ≤ |Σ|D; some of the states may be forbidden, i.e.,
these states have zero probability of occurrence. For example, if Σ = {α, β}, i.e., |Σ| = 2

and ifD = 2, then the number of states isn ≤ |Σ|D = 4; and the possible states are words
of lengthD = 2, i.e.,αα,αβ, βα, andββ, as shown in Fig. 3.

Figure 3. Example of Finite State Machine with D=2 andΣ = {α, β}
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The choice of|Σ| andD depends on specific applications and the noise level in the
time series data as well as on the available computation power and memory availability. As
stated earlier, a largealphabetmay be noise-sensitive and a small alphabet could miss the
details of signal dynamics. Similarly, while a larger valueof D is more sensitive to sig-
nal distortion, it would create a much larger number of states requiring more computation
power and increased length of the data sets. In the results section of this chapter, the analy-
sis of time series data sets is done using the window length equal toD=1; consequently, the
set of statesQ is equivalent to the symbol alphabetΣ. With the selection of the parameters
D=1 and|Σ|=8, thePFSM hasn = 8 states. With this choice of parameters, theSDF

algorithm is shown to be capable of detection of parametric changes in the mechanical sys-
tem. However, other applications such as two-dimensional image processing, may require
larger values of the parameterD and hence possibly larger number of states in thePFSM .

Using the symbol sequence generated from the time series data, the state machine is
constructed on the principle of sliding block codes [9]. Thewindow of lengthD on a
symbol sequence is shifted to the right by one symbol, such that it retains the most recent
(D-1) symbols of the previous state and appends it with the new symbol at the extreme
right. The symbolic permutation in the current window givesrise to a new state. The
PFSM constructed in this fashion is called theD-Markov machine [7], because of its
Markov properties.

Definition 3..1 A symbolic stationary process is calledD-Markov if the probability of the
next symbol depends only on the previousD symbols, i.e.,P (sj|sj−1....sj−Dsj−D−1....) =

P (sj |sj−1....sj−D).

The finite state machine constructed above hasD-Markov properties because the proba-
bility of occurrence of symbolσ ∈ Σ on a particular state depends only on the configuration
of that state, i.e., the previousD symbols. The states of the machine are marked with the
corresponding symbolic word permutation and the edges joining the states indicate the oc-
currence of a symbolσ. The occurrence of a symbol at a state may keep the machine in the
same state or move it to a new state.

Definition 3..2 LetΞ be the set of all states of the finite state machine. Then, the probability
of occurrence of symbols that cause a transition from stateξj to stateξk under the mapping
δ : Ξ × Σ → Ξ is defined as:

πjk = P (σ ∈ Σ | δ(ξj , σ) → ξk) ;
∑

k

πjk = 1; (9)

Thus, for aD-Markov machine, the irreducible stochastic matrixΠ ≡ [πij] describes
all transition probabilities between states such that it has at most|Σ|D+1 nonzero entries.
The definition above is equivalent to an alternative representation such that,

πjk ≡ P (ξk|ξj) =
P (ξj , ξk)

P (ξj)
=

P (σi0 · · · σiD−1
σiD)

P (σi0 · · · σiD−1
)

(10)
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where the corresponding states are denoted byξj ≡ σi0 · · · σiD−1
andξk ≡ σi1 · · · σiD . This

phenomenon is a consequence of thePFSM construction based on the principle of sliding
block codes described above, where the occurrence of a new symbol causes a transition to
another state or possibly the same state.

For computation of the state transition probabilities froma given symbol sequence at a
particular slow time epoch, aD-block (i.e., a window of lengthD) is moved by counting
occurrences of symbol blocksσi0 · · · σiD−1

σiD andσi0 · · · σiD−1
, which are respectively

denoted byN(σi0 · · · σiD−1
σiD) andN(σi0 · · · σiD−1

). Note that ifN(σi0 · · · σiD−1
) = 0,

then the stateσi0 · · · σiD−1
∈ Ξ has zero probability of occurrence. ForN(σi0 · · · σiD−1

) 6=
0, the estimates of the transitions probabilities are then obtained by these frequency counts
as follows:

πjk ≈
N(σi0 · · · σiD−1

σiD)

N(σi0 · · · σiD−1
)

(11)

where the criterion for convergence of the estimatedπjk, is given in the next subsection 3.4.
as a stopping rule for frequency counting.

The symbol sequence generated from the time series data at the reference condition,
set as a benchmark, is used to compute thestate transition matrixΠ using Eq. (11). The
left eigenvectorq corresponding to the unique unit eigenvalue of the irreducible stochastic
matrix Π is the probability vector whose elements are the stationaryprobabilities of the
states belonging toΞ [7]. Similarly, the state probability vectorp is obtained from time
series data at a (possibly) anomalous condition. The partitioning of time series data and the
state machine structure should be the same in both cases but the respective state transition
matrices could be different. The probability vectorsp andq are estimates of the respective
true probability vectors and are treated as statistical patterns. The termsprobability vector
andpattern vectorare used interchangeably in the sequel.

Pattern changes may take place in dynamical systems due to accumulation of faults and
progression of anomalies. The pattern changes are quantified as deviations from the ref-
erence pattern (i.e., the probability distribution at the reference condition). The resulting
anomalies (i.e., deviations of the evolving patterns from the reference pattern) are charac-
terized by a scalar-valued function, calledanomaly measureµ. The anomaly measures are
obtained as:

µ ≡ d (p, q) (12)

where thed(•, •) is an appropriately defined distance function.

3.4. Stopping Rule for Symbol Sequence Generation

This subsection presents a stopping rule that is necessary to find a lower bound on the length
of symbol sequence required for parameter identification ofthe stochastic matrixΠ. The
stopping rule [8] is based on the properties of irreducible stochastic matrices [48]. The state
transition matrix, constructed at therth iteration (i.e., from a symbol sequence of length r),
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is denoted asΠ(r) that is ann×n irreducible stochastic matrix under stationary conditions.
Similarly, the state probability vectorp(r) ≡ [p1(r) p2(r) · · · pn(r)] is obtained as

pi(r) =
ri∑n

j=1 rj

(13)

whereri is the number ofD-blocks representing theith state such that
(∑n

j=1
rj

)
+D−1 =

r is the total length of the data sequence under symbolization. The stopping rule makes use
of the Perron-Frobenius Theorem [48] to establish a relation between the vectorp(r) and
the matrixΠ(r). Since the matrixΠ(r) is stochastic and irreducible, there exists a unique
eigenvalueλ = 1 and the corresponding left eigenvectorp(r) (normalized to unity in the
sense of absolute sum). The left eigenvectorp(r) represents the state probability vector,
provided that the matrix parameters have converged after a sufficiently large number of it-
erations. That is, under the hypothetical arbitrarily longsequences, the following condition
is assumed to hold.

p(r + 1) = p(r)Π(r) ⇒ p(r) = p(r)Π(r) asr → ∞ (14)

Following Eq. (13), the absolute error between successive iterations is obtained such
that

‖ (p(r) − p(r + 1)) ‖∞=‖ p(r) (I − Π(r)) ‖∞≤ 1

r
(15)

where‖ • ‖∞ is the max norm of the finite-dimensional vector•.
To calculate the stopping pointrstop, a tolerance ofη, where0 < η ≪ 1, is specified

for the relative error such that:

‖ (p(r) − p(r + 1)) ‖∞
‖ (p(r)) ‖∞

≤ η ∀ r ≥ rstop (16)

The objective is to obtain the least conservative estimate for rstop such that the dominant
elements of the probability vector have smaller relative errors than the remaining elements.
Since the minimum possible value of‖ (p(r)) ‖∞ for all r is 1

n
, wheren is the dimension

of p(r), the least of most conservative values of the stopping pointis obtained from Eqs.
(15) and (16) as:

rstop ≡ int

(
n

η

)
(17)

whereint(•) is the integer part of the real number•.

3.5. Summary ofSDF -based Pattern Recognition

The symbolic dynamic filtering (SDF ) method of statistical pattern recognition for
anomaly detection is summarized below.

• Acquisition of time series data from appropriate sensor(s)and/or analytical model
variables at a reference condition, when the system is assumed to be in the healthy
state (i.e., zero anomaly measure)
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• Generation of the Hilbert transform coefficients [18]

• Maximum entropy partitioning in the domain of transformed signal at the nominal
condition (see Section 3.2.) and generation of the corresponding symbol sequence

• Construction of theD-Markov machine and computation of the state probability vec-
tor q at the reference condition

• Generation of a time series data sequence at another (possibly) anomalous condition
and conversion to the wavelet domain to generate the respective symbolic sequence
based on the partitioning constructed at the reference condition

• Computation of the corresponding state probability vectorp using the finite state
machine constructed at the reference condition

• Computation of scalaranomaly measureµ (see Eq. (12)).

Capability of SDF has been demonstrated for anomaly detection at early stagesof
gradually evolving faults by real-time experimental validation. Application examples in-
clude active electronic circuits [35] and fatigue damage monitoring in polycrystalline al-
loys [1][36][37]. It has been shown thatSDF yields superior performance in terms of
early detection of anomalies and robustness to measurementnoise by comparison with
other existing techniques such as Principal Component Analysis (PCA) and Artificial Neu-
ral Networks (ANN ) [35][1]. In this regard, major advantages ofSDF for small anomaly
detection are listed below:

• Robustness to measurement noise and spurious signals [17]

• Adaptability to low-resolution sensing due to the coarse graining in space parti-
tions [7]

• Capability for early detection of anomalies because of sensitivity to signal distor-
tion [1] and

• Real-time execution on commercially available inexpensive platforms [35][1].

3.6. Forward and Inverse problems

As stated earlier in Section 1., the anomaly detection problem is separated into two
sub-problems: 1) theforward (or analysis) problemand 2) theinverse (or synthesis) prob-
lem. The forward problemconsists of prediction of outcomes, given a priori knowledge of
the underlying model parameters. In absence of an existing model this problem requires
generation of behavioral patterns of the system evolution through off-line analysis of an
ensemble of the observed time series data. On the other hand,the inverse problemconsists
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of estimation of critical parameters characterizing the system under investigation using the
actual observations [37]. Inverse problems arise in different engineering disciplines such
as geophysics, structural health monitoring, weather forecasting, and astronomy. Inverse
problems often become ill-posed and challenging due to the following reasons: (a) high
dimensionality of the parameter space under investigationand (b) in absence of a unique
solution where change in multiple parameters can lead to thesame observations.

In presence of sources of uncertainties, any parameter inference strategy requires esti-
mation of parameter values and also the associated confidence intervals, or the error bounds,
to the estimated values. As such, inverse problems are usually solved using the Bayesian
methods that allow observation based inference of parameters and provide a probabilistic
description of the uncertainty of inferred quantities. A good discussion of inverse problems
is presented by Tarantola [49].

In context of anomaly detection, the tasks and solution steps of these two problems as
followed in this chapter are discussed below.

3.6.1. Forward Problem

The primary objective of the forward problem is identification of changes in the behavioral
patterns of system dynamics due to evolving anomalies on theslow time scale. Specifically,
the forward problem aims at detecting the deviations in the statistical patterns in the time
series data, generated at different time epochs in the slow time scale, from the nominal
behavior pattern. The solution procedure of the forward problem requires the following
steps:

F1. Collection of time series data sets (at fast time scale) from the available sensor(s) at
different slow time epochs;

F2. Analysis of these data sets using theSDF method as discussed in earlier sections to
generate pattern vectors defined by the probability distributions at the corresponding
slow time epochs. The profile of anomaly measure is then obtained from the evolution
of this pattern vector from the nominal condition;

F3. Generation of a family of such profiles from multiple experiments performed under
identical conditions to construct a statistical pattern ofanomaly growth. Such a fam-
ily represents the uncertainty in the evolution of anomalies in dynamical systems due
to its stochastic nature. For eg., in case of fatigue damage,the uncertainty arises
from the random distribution of microstructural flaws in thebody of the component
leading to a stochastic behavior [50].

3.6.2. Inverse Problem

The objective of the inverse problem is to infer the anomalies and to provide estimates of
system parameters from the observed time series data and system response in real time [37].
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Therefore, as a precursor to the solution of the inverse problem, generation of an ensem-
ble of data sets is required during the forward problem for multiple experiments conducted
under identical operating conditions. Anomaly estimates can be obtained at any particular
instant in a real-time experiment with certain confidence intervals using the information
derived from the ensemble of data sets of anomaly evolution generated in the forward prob-
lem [7][37]. The solution procedure of the inverse problem requires the following steps:

I1. Collection of time series data sets (in the fast time scale) from the available sensor(s)
at different slow time epochs up till the current time epoch in a real-time experiment
as in step F1 of the forward problem;

I2. Analysis of these data sets using theSDF method to generate pattern vectors defined
by probability distributions at the corresponding slow time epochs. The value of
anomaly measure at the current time epoch is then calculatedfrom the evolution
of this pattern vector from the nominal condition. The procedure is similar to the
step F2 of the forward problem. As such, the information available at any particular
instant in a real-time experiment is the value of the anomalymeasure calculated at
that particular instant;

I3. Detection, identification and estimation of an anomaly (if any) based on the computed
anomaly measure and the statistical information derived instep F3 of the forward
problem.

The family of anomaly measure profiles is analyzed in the inverse problem to generate
the requisite statistical information. In general inverseproblem corresponds to estimation
of parametric or non-parametric changes based on the knowledge assimilated in the for-
ward problem and the observed time series data of quasi-stationary process response. The
estimates of critical parameters can only be obtained within certain bounds at a particu-
lar confidence level. The online statistical information ofthe anomaly status is significant
because it can facilitate early scheduling for the maintenance or repair of critical compo-
nents or to prepare an advance itinerary of the damaged parts. The information can also
be used to design control policies for damage mitigation andlife extension. This chapter
has addressed only the forward problem of detection of anomalous behavior and the inverse
problem of parameter estimation is reported as an area of future work.

4. Description of Experimental Apparatus

This section presents the description of the experimental apparatus that has been designed
and fabricated specifically to study the characteristics ofcomplex mechanical vibration
systems that have the capacity of multiple degrees of freedom for motion along different
coordinate directions. This special purpose experimentalapparatus is shown in Figure 4.
The experimental apparatus can be used to replicate the vibration response of a mechanical
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Figure 4. Multi-degree of freedom mechanical vibration apparatus

structure such as a support beam under external excitation (e.g. seismic). The apparatus has
three principle degrees of freedom that arise from three actuators that provide the capability
of motion along three different directions. Each of the actuator is excited using a remote
computer through an electro-hydraulic position feedback control and is capable of providing
a force up to 3,400 kgf. The actuators can be excited over a wide band of frequency range
and can produce oscillations of significant magnitude.

The experimental apparatus consists of a rectangular base that is bolted to the ground
and supports two beams - horizontal (Bh) and vertical (Bv), and three actuators - bottom
(Ay), back (Az) and horizontal (Ax). Figure 5 gives a two-dimensional schematic of the ap-
paratus. The base of the vertical beam Bv is connected to the bottom actuator Ay that moves
the vertical beam in theyz-plane about the hinge hy. The back actuator Az is mounted on
the vertical beam and moves the horizontal beam Bh, pivoted at hz, in theyz-plane. The
horizontal actuator Ax rotates the test beam about the pivot point hx in thexy-plane. Thus,
the angular motion of the beams Bv and Bh about the hinges hx, hy and hz are controlled by
the linear motions of the three actuators Ax, Ay and Az. For small angular displacements of
the beams, their angular motions translate into the movement of the pointP in three axes -
x, y andz. The test beam is mounted at pointP and it can be given a desired base excitation
in all or any direction of motion. The structure of beams is made from6mm thick hollow
square steel sections.

The multi-degree of freedom mechanical vibration apparatus in Figure 4 is logically
partitioned into two subsystems as described below.

a) The plant subsystemconsists of the mechanical structure including flexible hinges
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Figure 5. 2-D schematic of the Multi-degree of freedom apparatus (a) Top View (b) Side
View

Figure 6. Schematic of the test beam structure

that connect the beams, the hydraulic system, and the actuators and

b) The control and instrumentation subsystemconsists of control computers, data ac-
quisition and processing system, communications hardwareand software, and the
sensors. The sensors include: i) linear variable differential transformers (LV DT ) for
displacement measurement and b) integrated circuit-piezoelectric shear accelerome-
ters that are used to measure the vibrations of the tip and thebase of the horizontal
beam (see Figure 6). The sensitivity of sensor is2.727 mV/ms−2. The control sys-
tem and data acquisition software is executed under DSpace platform on the windows
operating system. The feedback control system shown in Figure 7 is installed on a
Pentium pc along with necessary A/D and D/A interface to the feedback amplifiers
connected to the sensors and actuators of the test apparatus.
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Figure 7. Control circuit for the mechanical vibration apparatus

4.1. Hardware implementation and software structure

The multi-degree of freedom mechanical vibration apparatus (Figure 4) is interfaced with
a DSpace Data Acquisition Board having 16 A/D channels and 8 D/A channels. Data
acquisition is carried out with a sampling rate at 1 KHz for monitoring and control. The time
series data for statistical pattern recognition can be decimated as required. The real-time
instrumentation and control subsystem of this test apparatus is implemented on a Pentium
PC platform. The software runs on the Windows XP Operating System and is provided
with A/D and D/A interfaces to the amplifiers serving the sensors and actuators through the
Control desk front end. The Control desk front end loads a Simulink (Matlab based) module
on to the data acquisition card to perform real-time communication tasks, in addition to data
acquisition and built-in tests (e.g., software limit checks and saturation checks).

4.2. Experimental procedure

This section describes the experimental procedure to detect the parametric changes in the
system. The horizontal beam as shown in Figure 4 and 5 has a slender test beam attached to
it through an intermediate complex truss structure. The test beam has a length of 1150 mm.
The test beam has a movable mass (∼158 gm ) attached to it that has the provision of being
secured at different positions on the test beam. The schematic of this arrangement is shown
in Figure 6. A change in the position of the mass on the test beam causes a change in the
mass moment of inertia of the beam causing a change in the dynamics of the test system.
Therefore, a change in the mass position affects the vibration response of the system. The
apparatus is equipped with two accelerometers to measure the vibration response at the tip
(Atip) and the base (Abase) of the test beam as shown in Figure 6. In the current investigation,
the parameter under consideration is the position of the mass and any change in this position
is measured using the analysis of the time series data of two accelerometers.

The horizontal (Ax) and back (Az) actuators are excited by a trapezoidal reference input
of amplitude 2 V and frequency6.35Hz as shown in Figure 8, while the bottom actuator
Ay is held fixed. The trapezoidal input is achieved by a rectifiedsine wave. This excitation
signal is generated in such a way that at any time instant at least one of the actuators is
in motion and there is a phase difference between the two actuators Ax and Az. This is
done to ensure less power consumption from the hydraulic unit which helps to reduce the
overheating of hydraulic fluids and reduce the noise. The same excitation signal is given
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Figure 8. Excitation signal generation

to the closed loop plant for each position of the movable masson the test beam and time
series data from both accelerometers is recorded for 30 seconds after the system reaches
its steady state. The sampling frequency is1kHz to accurately measure the performance of
the system under parametric changes. This experimental procedure is repeated for different
positions of the mass on the test beam.

Each run of the experiment starts with the movable mass placed at a reference point
(yref) that is fixed at a distance of 540 mm from the base of the test beam (see Figure 6).
The mass is moved by a total of125 mm towards the tip of the test beam in increments of
12.5 mm and the corresponding time series data is recorded. The set of time series data is
used to measure anomaly (i.e., a change in the performance) in the system due to change in
the mass position as compared to the reference condition.

5. Results and Discussion

This section presents the results generated from differentexperiments conducted on the
multi-degree of freedom mechanical vibration apparatus described in the previous section.
The set of time series data generated for different positions of the mass from the two ac-
celerometers was processed using the method of symbolic dynamic filtering (SDF ) as
described in Section 3.. Both accelerometers used in the experiment give the horizontal
and vertical component of acceleration asVx andVz respectively. The resultant time-series
obtained asVr =

√
(V 2

x + V 2
z ) has been used for further analysis. Time series data corre-

sponding to the position of the mass at maximum distance fromthe reference (i.e., ym−yref

= 125 mm) was used to create a partition for the analysis because the data displays maxi-
mum amplitude at this position. The partitioning was done using the Analytic Signal Space
Partitioning (ASSP ) [18] (see Section 3.), where the concept of maximum entropyparti-



22 Shalabh Gupta, Dheeraj Singh, Abhishek Srivastav and Asok Ray

tion was used to divide the Hilbert transformed data into|Σ| = |ΣR| · |ΣA| = 12 cells
such that|ΣR|=4 and|ΣA|=3. The depth of D-Markov machine was chosen to be D=1 for
this analysis. Thus the number of states of the machine is thesame as the alphabet size.
The anomaly measure (Eq. 12) was computed for each position of the mass on the test
beam. A non-zero anomaly measure indicates changes in the response of the sensors due to
parametric changes relative to the nominal condition.

Figure 9 shows the results derived from time series data of the tip accelerometer (Atip).
The figure is divided into six subplots, where each subplot contains three figures - (i) the top
figure showing the vertical component of tip acceleration with sensor outputVz in volts, (ii)
the middle figure showing the horizontal component of tip acceleration with sensor output
(Vx) in volts, and (iii) the bottom figure showing the probability distribution of different
symbolic states (i.e., cells) along the radial and angular directions of the partition of the
Hilbert transformed data. The probability distributions are derived from the resultant of
the vertical (Vz) and horizontal (Vx) components of the data. Each subplot in Figure 9
corresponds to a different position of the movable massm on the beam. The first subplot,
i.e., case(a), corresponds to the nominal condition of system when the mass is placed at
the reference position ym = yref on the test beam (see Figure 6). Each of the subsequent
subplots, i.e., cases (b) to (f), corresponds to the mass position shifted by 25 mm towards
the tip of the beam such that ym − yref =25, 50, 75, 100 and 125 mm, respectively.

As the mass is moved towards the tip of the test beam, the amplitude of time series
data obtained from the tip accelerometer increases with increase in vibrations of the beam.
When the distance of the mass from the reference position is small, the changes in the
raw time series data cannot be directly detected by visual inspection of the data. This is
evident from the plots of time series data in Figure 9 for cases (a), (b) and (c), that corre-
spond to the position of the mass at ym − yref= 0, 25 and50 mm, respectively. However,
the bar plots corresponding to each of these three cases showappreciable change in the
probability distribution with respect to the nominal condition (i.e., case (a)). This indicates
that the method of Symbolic Dynamic Filtering (SDF ) is able to extract the embedded
signatures of parametric changes in the system from the vibration characteristics of the ac-
celerometer data. As the mass is moved further towards the tip, the changes in the vibration
characteristics become more pronounced. This is reflected in drastic changes in the corre-
sponding probability distribution plots. When the mass is moved to the maximum distance
of approximately125 mm, the probability distribution converges to uniform distribution of
states indicating a high vibrating condition.

The probability distributions shown in Figure 9 contain thevibration characteristics of
the system. The anomaly measure (Eq. 12) is computed to quantify the changes in the state
probabilities as compared to the reference condition. Thisanomaly measure is then used to
track the changes in the vibrations of the test beam with shifts in the position of the mass.
The reference condition is chosen to be the mass position at ym = yref (i.e., case (a) in
Figure 9). Plots of anomaly measure versus the position of the mass (ym − yref) are shown
in Figure 10 for the tip and the base sensors.
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Figure 10 shows the anomaly measure profiles derived from thetime series data of the
sensors mounted at the tip and the base of the test beam (see Figure 6). As the mass is
moved from the reference point (yref) towards the tip of the beam, the mass moment of
inertia of the beam changes causing a greater influence on thevibration characteristics of
the beam. This trend is in agreement with the observation of the experimental data. It can
be seen in the plots of Figure 10 that anomaly measure profilesof both the tip and the base
sensors increase as the mass is moved away from the referencepoint towards the tip of the
test beam. It is to be noted that anomaly measure is a relativemeasure and is computed
with respect to the nominal condition (ym = yref), therefore, it is not an indicative of the
true position of the mass. A change in the value of anomaly measure indicates a parametric
change in the system; however, estimation of such a change isthe inverse problem [37].

For solution of the inverse problem multiple experiments need to be conducted under
similar experimental conditions to generate sufficient statistical data. Variations among
experiments conducted under (apparently) identical conditions are normally expected due
to the uncertainties present in the system. These uncertainties are caused due to several
factors such as: i) measurement noise, ii) errors in the positioning of the mass, and iii) small
fluctuations in the excitation waveform caused by imprecisions in the electro-hydraulic and
mechanical connections. Therefore anomaly measure profiles from different experiments
may show similar trends but their profiles would not be exactly identical. As such, solution
of the inverse problem for parameter estimation [37] is currently under investigation and
would be reported in future publications.
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6. Summary, Conclusions and Future Work

A vast majority of human-engineered complex systems are subjected to mechanical
vibration, where a major goal is online detection and estimation of behavioral uncertainties
due to gradual development of anomalies (i.e., deviations from the nominal condition).
These anomalies (benign or malignant) may alter the quasi-static behavior of mechanical
vibration mechanism that causes degradation of system performance and may eventually
lead to widespread catastrophic failures. Since it is ofteninfeasible to achieve the required
modeling accuracy and precision in complex dynamical systems, time series analysis of
appropriate sensor measurements provides one of the most powerful tools for degradation
monitoring of complex vibration systems.

This chapter presents a recently reported technique of data-driven pattern recognition,
called Symbolic Dynamic Filtering (SDF ), for online detection and estimation of behav-
ioral uncertainties due to slowly evolving anomalies. The underlying concept ofSDF

is built upon the principles of Statistical Mechanics, Symbolic Dynamics and Informa-
tion Theory, where time series data from selected sensor(s)in the fast time scale of the
process dynamics are analyzed at discrete epochs in the slowtime scale of anomaly evo-
lution. Symbolic dynamic filtering includes preprocessingof time series data using the
Hilbert transform. The transformed data is partitioned using the maximum entropy prin-
ciple. Subsequently, statistical patterns of evolving anomalies are identified from these
symbolic sequences through construction of a (probabilistic) finite-state machine that cap-
tures the system behavior by means of information compression. The concept ofSDF

has been experimentally validated on a special-purpose computer-controlled multi-degree
of freedom mechanical vibration apparatus that is instrumented with two accelerometers for
identification of anomalous patterns due to parametric changes.

The work, reported in this chapter, is a step toward buildinga reliable instrumenta-
tion system for early detection of parametric and non-parametric changes (e.g., incipient
faults) and prognosis of potential catastrophic failures.Further theoretical and experimen-
tal research is necessary before its usage in industry. The online information, provided by
symbolic patterns that are derived from the sensor time series data, is useful for decision and
control of human-engineered complex system to sustain order and normalcy under both an-
ticipated and unanticipated faults and disturbances. In this context, solution of the inverse
problem and development of performance bounds for safe reliable operation of different
engineering applications is an active area of current research [37].

Acknowledgements

The authors acknowledge the contributions of Dr. Amol Khatkhate for design and fab-
rication of the experimental apparatus that has been used inthe current investigation for
validation of the proposed concepts of anomaly detection incomplex dynamical systems.



26 Shalabh Gupta, Dheeraj Singh, Abhishek Srivastav and Asok Ray

References

[1] S. Gupta, A. Ray, and E. Keller, “Symbolic time series analysis of ultrasonic data
for early detection of fatigue damage,”Mechanical Systems and Signal Processing,
vol. 21, no. 2, pp. 866–884, 2007.

[2] S. Gupta,Complex Systems in Engineering: A Symbolic Dynamics Approach for
Anomaly Detection. VDM-Verlag Publishers, Germany, ISBN 978-3-639-10105-8,
2008.

[3] E. Ott.,Chaos in Dynamical Systems. Cambridge University Press, 1993.

[4] S. Ozekici,Reliability and Maintenance of Complex Systems, vol. 154. NATO Ad-
vanced Science Institutes (ASI) Series F: Computer and Systems Sciences, Berlin,
Germany, 1996.

[5] A. Doucet, N. de Freitas, and N. Gordon,Sequential Monte Carlo Methods in Prac-
tice. Springer, New York, 2001.

[6] C. Andrieu, A. Doucet, S. Singh, and V. B. Tadic, “Particle methods for change detec-
tion, system identification, and control,”Proceedings IEEE, vol. 92, no. 3, pp. 423–
438, 2004.

[7] A. Ray, “Symbolic dynamic analysis of complex systems for anomaly detection,”Sig-
nal Processing, vol. 84, no. 7, pp. 1115–1130, 2004.

[8] S. Gupta and A. Ray,Symbolic Dynamic Filtering for Data-Driven Pattern Recogni-
tion. Chapter 2 in Pattern Recognition: Theory and Application,Editor- E.A. Zoeller,
Nova, Science Publisher, Hauppage, NY,USA, 2007.

[9] D. Lind and M. Marcus,An Introduction to Symbolic Dynamics and Coding. Cam-
bridge University Press, United Kingdom, 1995.

[10] C. S. Daw, C. E. A. Finney, and E. R. Tracy, “A review of symbolic analysis of exper-
imental data,”Review of Scientific Instruments, vol. 74, no. 2, pp. 915–930, 2003.

[11] H. E. Hopcroft, R. Motwani, and J. D. Ullman,Introduction to Automata Theory,
Languages, and Computation, 2nd ed.Addison Wesley, Boston, 2001.

[12] R. K. Pathria,Statistical Mechanics. Elsevier Science and Technology Books, 1996.

[13] S. Gupta, and A. Ray,“Statitical Mechanics of Complex Systems for Pattern Identifi-
cation,”Journal of Statistical Physics, vol. 134, no. 2, pp. 337-364, 2009.

[14] R. Badii and A. Politi,Complexity hierarchical structures and scaling in physics.
Cambridge University Press, United Kingdom, 1997.



Measurement of Behavioral Uncertainties in Mechanical Vibration Systems 27

[15] C. Beck and F. Schl̈ogl, Thermodynamics of chaotic systems: an introduction. Cam-
bridge University Press, United Kingdom, 1993.

[16] M. Buhl and M. KennelPhys. Rev. E, vol. 71, 046213, 2005.

[17] V. Rajagopalan and A. Ray, “Symbolic time series analysis via wavelet-based parti-
tioning,” Signal Processing, vol. 86, no. 11, pp. 3309–3320, 2006.

[18] A. Subbu and A. Ray, “Space partitioning via hilbert transform for symbolic time
series analysis,”Applied Physics Letters, vol. 92, p. 084107, February 2008.

[19] W. J. Wang, Z. T. Wu, and J. Chen, “Fault identification inrotating machinery using
the correlation dimension and bispectra,”Nonlinear Dynamics, vol. 25, pp. 383–393,
August 2001.

[20] C. N. M. S. S. T. M. T. L. P. L. Moniz, J.M. Nichols and L. Virgin, “A multivari-
ate, attractor-based approach to structural health monitoring,” Journal of Sound and
Vibration, vol. 283, pp. 295–310, May 2005.

[21] P. D. McFadden, “Detection of gear faults by decomposition of matched differences of
vibration signals,”Mechanical Systems and Signal Processing, vol. 14, pp. 805–817,
Sept. 2000.

[22] M. R. Dellomo, “Helicopter gearbox fault detection: A neural network based ap-
proach,”Journal of Vibration and Acoustics, vol. 121, no. 3, pp. 265–272, 1999.

[23] Z. K. Peng, P. W. Tse, and F. L. Chu, “A comparison study ofimproved hilbert-huang
transform and wavelet transform: Application to fault diagnosis for rolling bearing,”
Mechanical Systems and Signal Processing, vol. 19, pp. 974–988, Sept. 2005.

[24] H. Ocak and K. A. Loparo, “Estimation of the running speed and bearing defect fre-
quencies of an induction motor from vibration data,”Mechanical Systems and Signal
Processing, vol. 18, pp. 515–533, May 2004.

[25] H. Sohn, J. A. Czarnecki, and C. R. Farrar, “Structural health monitoring using statis-
tical process control,”Journal of Structural Engineering, vol. 126, no. 11, pp. 1356–
1363, 2000.

[26] J. Sakellariou and S. Fassois, “Vibration based fault detection and identification in an
aircraft skeleton structure via a stochastic functional model based method,”Mechani-
cal Systems and Signal Processing, vol. 22, pp. 557–573, April 2008.

[27] C. Kar and A. Mohanty, “Vibration and current transientmonitoring for gearbox fault
detection using multiresolution fourier transform,”Journal of Sound and Vibration,
vol. 311, pp. 109–132, March 2008.



28 Shalabh Gupta, Dheeraj Singh, Abhishek Srivastav and Asok Ray

[28] Z. K. Peng, P. W. Tse, and F. L. Chu, “An improved hilbert-huang transform and its
application in vibration signal analysis,”Journal of Sound and Vibration, vol. 286,
pp. 187–205, August 2005.

[29] H. Ocak and K. A. Loparo, “Hmm-based fault detection anddiagnosis scheme for
rolling element bearings,”Journal of Vibration and Acoustics, vol. 127, no. 4, pp. 299–
306, 2005.

[30] J. Sanz, R. Perera, and C. Huerta, “Fault diagnosis of rotating machinery based on
auto-associative neural networks and wavelet transforms,” Journal of Sound and Vi-
bration, vol. 302, pp. 981–999, May 2007.

[31] X. Lou and K. A. Loparo, “Bearing fault diagnosis based on wavelet transform and
fuzzy interference,”Mechanical Systems and Signal Processing, vol. 18, pp. 1077–
1095, 2004.

[32] B. I. Epureanu, L. S. Tang, and M. P. Paı̈doussis, “Exploiting chaotic dynamics for de-
tecting parametric variations in aeroelastic systems,”AIAA Journal, vol. 42, pp. 728–
735, April 2004.

[33] D. Chelize and J. P. Cusumano, “A dynamical systems approach to failure prognosis,”
Journal of Vibration and Acoustics, vol. 126, pp. 2–8, January 2004.

[34] J. M. Nichols, M. Seaver, S. T. Trickey, M. D. Todd, C. Olson, and L. Overbey, “De-
tecting nonlinearity in structural systems using the transfer entropy,”Physical Review
E (Statistical, Nonlinear, and Soft Matter Physics), vol. 72, no. 4, p. 046217, 2005.

[35] S. Chin, A. Ray, and V. Rajagopalan, “Symbolic time series analysis for anomaly
detection: A comparative evaluation,” no. 9, pp. 1859–1868, September 2005.

[36] S. Gupta, A. Ray, and E. Keller, “Fatigue damage monitoring by ultrasonic measure-
ments: A symbolic dynamics approach,”International Journal of Fatigue, vol. 29,
no. 6, pp. 1100–1114, 2007.

[37] S. Gupta and A. Ray, “Real-time fatigue life estimationin mechanical systems,”Mea-
surement Science and Technology, vol. 18, no. 7, pp. 1947–1957, 2007.

[38] A. Khatkhate, A. Ray, E. E. Keller, S. Gupta, and S. Chin,“Symbolic time series anal-
ysis for anomaly detection in mechanical systems,”IEEE/ASME Trans. on Mecha-
tronics, vol. 11, no. 4, pp. 439–447, 2006.

[39] S. Chakraborthy, S. Sarkar, S. Gupta and A. Ray, “DamageMonitoring of Refractory
Wall in a Generic Entrained-bed Slagging Gasification System,” Proceedings of the
Institution of Mechanical Engineers: Part A- Journal of Power and Energy, vol. 222,
no. 8, pp. 791-807, 2008.



Measurement of Behavioral Uncertainties in Mechanical Vibration Systems 29

[40] S. Gupta, A. Ray, and A. Mukhopadhyay, “Anomaly detection in thermal pulse com-
bustors using symbolic time series analysis,”Proceedings of the Institution of Me-
chanical Engineers- Part I- Journal of Systems and Control Engineering, vol. 220,
no. 5, pp. 137–146, 2006.

[41] A. Khatkhate, S. Gupta, A. Ray, and R. Patankar, “Anomaly detection in flexible me-
chanical couplings via symbolic time series analysis,”Journal of Sound and Vibration,
vol. 311, no. 3-5, pp. 608–622, 2008.

[42] S. Gupta and A. Ray, “Pattern identification using lattice spin systems: A thermody-
namic formalism,”Applied Physics Letters, vol. 91, no. 19, p. 194105, 2007.

[43] H. Kantz and T. Schreiber,Nonlinear Time Series Analysis, 2nd ed. Cambridge Uni-
versity Press, United Kingdom, 2004.

[44] S. Mallat,A Wavelet Tour of Signal Processing 2/e. Academic Press, 1998.

[45] D. GaborJournal of Communication Engineering, vol. 93, 429, 1946.

[46] L. Cohen, P. Loughlin, and D. VakmanSignal Processing, vol. 79, 301, 1999.

[47] T. M. Cover and J. A. Thomas,Elements of Information Theory. John Wiley, New
York, 1991.

[48] R. B. Bapat and T. E. S. Raghavan,Nonnegative Matrices and Applications. Cam-
bridge University Press, 1997.

[49] A. Tarantola,Inverse Problem Theory. Society for Industrial and Applied Mathemat-
ics, 2005.

[50] K. Sobczyk and B. F. Spencer,Random Fatigue: Data to Theory. Academic Press,
Boston, MA, 1992.


