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Abstract

Maturity of engineering and scientific theories in recerdatkes has facilitated cre-
ation of advanced technology of human-engineered complgx €lectro-mechanical,
transportation, and power generation) systems. A vastnita@ these systems are of-
ten subjected to mechanical vibration. A possible consecgies performance degra-
dation and structural damage that may eventually lead t@spicead catastrophic
failures. This chapter presents a recently reported teclenof data-driven pattern
recognition, called Symbolic Dynamic Filterin§DF), for online detection of slowly
evolving anomalies (i.e., deviation from the nominal cletesastics) and the associated
behaviorial uncertainties. The underlying concepB06fFis built upon the principles
of Statistical Mechanics, Symbolic Dynamics and Informafrheory, where time se-
ries data from selected sensor(s) in the fast time scaleeoptbcess dynamics are
analyzed at discrete epochs in the slow time scale of anoewalytion. Symbolic dy-
namic filtering includes preprocessing of time series dataguthe Hilbert transform.
The transformed data is partitioned using the maximum egtpoinciple to generate
the symbol sequences, such that the regions of the data sjtha@more information
are partitioned finer and those with sparse information arétpned coarser. Subse-
quently, statistical patterns of evolving anomalies aentdied from these symbolic
sequences through construction of a (probabilistic) fieitge machine that captures
the system behavior by means of information compressioe. cbimcept ofSDF has
been experimentally validated on a special-purpose coemqmaintrolled multi-degree
of freedom mechanical vibration apparatus that is instntegkwith two accelerome-
ters for identification of anomalous patterns due to paremetanges.

*This work has been supported in part by the U.S. Army Resdaabbratory and the U.S. Army Research
Office (ARO) under Grant No. W911NF-07-1-0376 and by NASAem@rant No. NNX07AK49A.
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1. Introduction

A traditional approach of investigating the properties aidarn day human-engineered
complex (e.g., electro-mechanical, transportation, awilgp generation) systems involves
development of an analytical model of the underlying preaigsamics and identification

of its critical parameters. However, such a model-basedoagh for behavioral analysis of
a complex system is often limited due to the presence of akbd#ficulties such as: 1) high

dimensionality of the system, 2) underlying non-statigngrossibly chaotic) behavior, 3)

nonlinearity, and 4) exogenous disturbances. A vast ntgjofithese systems are often
subjected to mechanical vibration, and a major goal is entiatection and estimation of
behavioral uncertainties due to gradual development ofmaties. (Note: Anomaly in a

dynamical system is defined as a deviation of its behavidepairom the nominal pattern

that is viewed as the desired healthy behavior.)

Anomalous behavior can be associated with either parametrinon-parametric
changes in the dynamics of a complex system. ParametricgeBaare usually related
to degradation of a single or multiple parameters that aenafised to construct the an-
alytical model of the system. For example, a change in ttilmasis parameter of the di-
aphragm of a flexible mechanical coupling between two slwislead to misalignments
and cause whirling. The whirling phenomenon increases madifibrations and eventually
lead to failures of the bearing, coupling and other comptmehthe system. Therefore,
the changes in the dynamics of the system can be directlgiassd to the changes in sys-
tem model parameters. The other possible changes that caniaca system are termed
as non-parametric changes that are difficult to measuratifigeand model, and a direct
relation of their effects on the performance variables matytre explicitly known. These
non-parametric changes also affect the response of syst#sérvables. However, the ex-
act interpretation and quantification of these changes mighbe feasible because of the
lack of knowledge of the underlying physics. For example, dginowth of fatigue dam-
age in polycrystalline alloys occurs due to small micrastneal changes during the crack
initiation period. This be represented as a non-paramelrdnge, which is often difficult
to model. Therefore, time series data of sensors (e.ggsoltic flaw detectors) are used
to detect these small microstructural changes during stalyes of fatigue damage evolu-
tion [1][2].

The above discussion evinces that sole reliance on modeldbanalysis for pattern
recognition is infeasible because of the difficulties iniaeimg requisite modeling accu-
racy and in determining the accurate initial conditionshwtite available computational
resources. In general, the analytical models of completesys could be very sensitive to
the initial and boundary conditions and also on certaincaiitsystem parameters. Small
deviations in these parameters may produce large varitiotie evolution of the system
for (apparently) identical operating conditions and casgiay lead to chaos [3]. Further-
more, in real-time applications, the analysis of these risdalecomes computationally very
expensive for high-dimensional systems. As such, the proli$ tackled using an alterna-
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tive approach of observation-based estimation of the lyidgrprocess dynamics and the
relevant system parameters.

The observed behavioral pattern changes (i.e., paranoetrion-parametric) are often
indicatives of hidden anomalies that may degrade safetyediadility of mechanical vibra-
tion systems. Accurate prediction and quantification of¢h@nomalies could be infeasible
due to lack of relevant information or inadequacy of anaitiools that extract such in-
formation. This problem is often circumvented by conseéveatnforcement of large safety
factors, which could increase the life of operating machjiri®it leads to higher costs. A
possible solution to reduction of overly conservative safactors is to have frequent in-
spections that also turns out to be expensive and time-ounguif maintenance actions
are taken based on fixed usage intervals. From these pevegsedtis logical to have on-
line identification of anomalous patterns, which would allcontinual re-evaluation of the
system and enhance inherent protection against unforésgemding failures. The online
identification of parameters also reduces the frequencysgections, i.e., increases the
mean time between major maintenance actions. Furtherrearly;, detection of anoma-
lies and identification of incipient fault patterns are esise for prognosis of forthcoming
widespread failures to avert colossal loss of expensivgpetgnt and human life [4].

In view of the above discussion, the analysis of time seria ttom available sensors
is needed for real-time pattern recognition. While theristexany reported techniques
(e.g., particle filtering [5][6]) for combined model-basadd data-driven pattern recogni-
tion, the real-time execution of such tools is an open reseemsue. As such, this chap-
ter addresses the problem of real-time information extaaiising a data-driven pattern
recognition method called Symbolic Dynamic Filterin§{F') that has been presented
for anomaly detection and estimation of the critical partargeof the systemSDF is an
information-theoretic pattern recognition tool that isltaupon a fixed-structure, fixed-order
Markov chain, called th®-Markov maching7][8].

The theme of pattern recognition and anomaly detectiomditated in this chapter, is
built upon the concepts @ymbolic Dynamic§][10], Finite State Automatfll], Infor-
mation Theoryand Statistical Mechanic§12][13] as a means to qualitatively describe the
dynamical behavior in terms of symbol sequences [14] [15fe Gore concept of DF' is
based on appropriate phase-space partitioning of the dgahsystem to obtain symbol se-
guences [16]. Alternatively, symbol sequences are gestbfedm time series data. The loss
of information is minimized by using the conceptrmBximized entropy partitioninfl7].
The chapter has adopted the method of Hilbert transform exfdtita before partitioning
for symbol sequence generation [7] [17][18]. Statisticatt@rns in symbolic sequences
are identified through construction of a (probabilistic)itérstate machine [7][11]. For
anomaly detection, it suffices that a detectable changeemdéttern represents a devia-
tion of the nominal pattern from an anomalous one. The cdnaef D F for parameter
identification has been experimentally validated on a spgxirpose computer-controlled
multi-degree of freedom mechanical vibration apparatulis @pparatus is instrumented
with two accelerometers that measure the response of thensyer a parametric change
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that is caused due to the movement of a mass block from itsmadposition.

This chapter is organized in five sections. Section 1. pesvitie background and mo-
tivation for data-driven pattern recognition for anomabteattion. Section 2. formulates
the problem of anomaly detection in mechanical vibratiostesys using the notion of two-
time-scales. Section 3. provides a brief overview of syricbhdynamic filtering for time
series data analysis and pattern recognition. Sectiored4epts the description of a multi-
degree of freedom mechanical vibration apparatus thatugpgd with accelerometers
for measuring the vibration data. Section 5. presents @rpetal results of the mechani-
cal vibration apparatus to demonstrate the efficacy Dif'-based pattern recognition and
anomaly detection technique. Section 6. summarizes anduwites the chapter with rec-
ommendations for future research.

2. Problem Formulation

This section formulates the problem of anomaly detecticcomplex systems (e.g., the
mechanical vibration systems) using the concepts of syimbghamic filtering 6§D F).
In the current chapter the problem of anomaly detectionrsefe detection of parametric
changes in mechanical vibration systems. The underlyiatyfes and essential details of
SDF [7][13] are presented in the next section.

Anomaly detection using D F' is formulated as a two-time-scale problem as explained
below.

e Thefast scalds related to the response time of process dynamics. Ovaptoeof a
given time series data sequence, the behavioral statigtibe system are assumed to
remain invariant, i.e., the process is assumed to havetstatly stationary dynamics
at the fast scale. In other words, statistical variationtheinternal dynamics of the
system are assumed to be negligible on the fast time scale.

e Theslow scaleis related to the time span over which the process may exmilvit
stationary dynamics due to (possible) evolution of anoesaliThus, an observable
non-stationary behavior can be associated with anomalisgieg at a slow scale.

A pictorial view of the two time scales is presented in Figlirén general, a long time
span in the fast scale is a tiny (i.e., several orders of ntag@ismaller) interval in the slow
scale. For example, fatigue damage evolves on a slow scasiby in the order of months
or years, in machinery structures that are operated in stestale approximately in the
order of seconds or minutes. Hence, the behavior patteratigiie damage is essentially
invariant on the fast scale. Nevertheless, the notion dfdad slow scales is dependent
on the specific application, loading conditions and opegagnvironment. As such, from
the perspective of anomaly detection, sensor data adgnisé done on the fast scale at
different slow time epochs.
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Figure 1. Pictorial view of the two time scales: dlpw time scalevhere anomalies evolve
and 2)fast time scalevhere data acquisition is done.

Anomalies (e.g., microscopic fatigue damage) in completesys such as rotating ma-
chinery, civil infrastructures and aviation systems aterobbserved as changes in the be-
havioral characteristics of the system. These changeseamonitored using time-series
data (e.g. vibration) of self-excited systems [19] or frdma tesponse to an external stim-
uli [20]. Vibration-based fault detection and identificatihas been reported in recent lit-
erature for a variety of applications such as gear-box 2{][bearings [23], rotating ma-
chines [24], and mechanical structures [25][26]. Anomadyedtion using vibration char-
acteristics is a useful method as it partially alleviates tieed for a prior knowledge of
an analytical model of the system. However, time seriesyaisabf the vibration data for
detecting embedded fault signatures in the system is aeclyaflg task. Several methods
of feature extraction and time-series analysis can be us#ug effect. Methods such as
Fourier and wavelet transforms [27], Hilbert-Huang transf [28], Hidden Markov Mod-
eling [29], Artificial Neural Network (ANN) [30], and fuzzynference systems [31] have
been used for analysis of vibration signals. Often the dwwiuof anomalies leads to non-
linear (possibly chaotic [32]) dynamics which may be diffido model or approximate.
Small changes in the system dynamical behavior may not kettjirdiscernable using fre-
guency spectrum or modal analysis and present the needvianeel signal processing and
pattern recognition methods. These issues have motivagesttidy of anomaly detection
in vibration systems from the perspectives of dynamicalesys [33][34].

Symbolic Dynamic Filtering SDF’) for anomaly detection presented in this chap-
ter has been experimentally validated for real-time exenuin different applications,
such as electronic circuits [35], mechanical structures fidigue damage monitor-
ing [1][36][37][2][38][40], gasification systems for detiéon of refractory degradation [39],
and rotating machinery for detection of shaft misalignnidai. Furthermore, it has been
shown thatS D F' yields superior performance in terms of early detectionnafmaalies and
robustness to measurement noise by comparison with otligtingxtechniques such as
Principal Component AnalysigAC A) and Artificial Neural NetworksAN N) [35][1].

The task of anomaly detection is to enable bothdjagnosis- detection and extrac-
tion of anomalous behavior, and (ognosis tracking failure precursors leading to faults.
Therefore, the anomaly detection problem is partitiondéd iwo problems [7]: (iforward
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Figure 2.Conceptual view of symbolic dynamic filtering.

problem of pattern recognitiofior monitoring the evolution of system dynamics by (of-
fline) analysis of the anomalous behavior, relative to thminal behavior; and (iijnverse
problem of pattern identificatiofor (online) estimation of parametric or non-parametric
changes based on the knowledge assimilated in the forwalidgon and the observed time
series data of quasi-stationary process response. Thaénpeblem could be ill-posed or
have no unique solution. That is, it may not always be possibidentify a unique anomaly
pattern based on the observed behavior of the dynamicamydilevertheless, the feasi-
ble range of parameter variation estimates can be narros@d &tom the intersection of
the information generated from inverse images of the resgmwnnder several stimuli. The
algorithms of SDF' can be implemented to solve both these problems; howe\eGui
rent chapter has addressed only the forward problem of dgafetection and the inverse
problem of parameter estimation is reported as an areawk&fuiork.

3. Review of Symbolic Dynamic Filtering 6 DF)

This section presents the underlying concepts and sakattires ofSDF' for anomaly
detection in complex dynamical systems. While the deta#sraported in previous pub-
lications [7][8][13][17][42], the essential concepts g@lage partitioning, symbol sequence
generation, construction of a finite-state machine fromgeerated symbol sequence and
pattern recognition are consolidated here and succinetbgribed for self-sufficiency and
completeness of the chapter.

3.1. Symbolic Dynamics and Encoding

This subsection briefly describes the conceptSyhbolic Dynamickor:
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1. Encoding nonlinear system dynamics from observed timessédata for generation
of symbol sequences, and

2. Construction of a probabilistic finite state machideFS M) from the symbol se-
gquence for generation of pattern vectors as representatitiie dynamical system’s
characteristics.

The continuously-varying finite-dimensional model of a dgrical system is usually
formulated in the setting of an initial value problem as:
dx(t)

“a f(x(t),0(7)); x(0) = xo, 1)

wheret € [0,00) denotes the (fast-scale) time; € R" is the state vector in the phase
space; and < R’ is the (possibly anomalous) parameter vector varying iowscale)
time 7. The gradual change in the parameter veétar R’ due to possible evolution of
anomalies on the slow time scale can alter the system dysana hence change the state
trajectory.

Let2 C R™ be a compact (i.e., closed and bounded) region, within wihielrajectory
of the dynamical system, governed by Eq. (1), is circumsctibs illustrated in Fig. 2.
The regionQ is partitioned ag®o, - - - , @5, } consisting off X[ mutually exclusive (i.e.,
®; Ny =0 Vj # k), and exhaustive (i.el)” ' @; = ) cells, wheres is thesymbol
alphabetthat labels the partition cells. A trajectory of the dynaahigystem is described by
the discrete time series data &<y, x1, X2, - - - }, Where eack; € Q. The trajectory passes
through or touches one of the cells of the partition; acewigi the corresponding symbol
is assigned to each point; of the trajectory as defined by the mapping : Q@ — X.
Therefore, a sequence of symbols is generated from thetivajestarting from an initial
statexg € €, such that:

Xp = 805152 .--S5j5 ... (2)

wheres, = M(x;) is the symbol generated at the (fast scale) instanfThe symbols
sk, k=0,1,...areidentified by an index sét: Z — {0,1,2,...|X|—1},i.e.,Z(k) = i},
andsy = o;, Whereo;, _c . Equivalently, Eq. (2) is expressed as:

X0 ™ OigTiy Ty -+ T - - - 3)

The mapping in Egq. (2) and Eq. (3) is call&mbolic Dynamicgs it attributes a
legal (i.e., physically admissible) symbol sequence tosystem dynamics starting from
an initial state. The partition is called a generating piariiof the phase spade if every
legal (i.e., physically admissible) symbol sequence ueliguletermines a specific initial
conditionxg. In other words, every (semi-infinite) symbol sequence wligidentifies one
continuous space orbit [15].

Symbolic dynamics may also be viewed as coarse grainingeopltase space, which
is subjected to (possible) loss of information resultingnfrgranular imprecision of parti-
tioning boxes. However, the essential robust features, @egodicity and chaotic behavior
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of an orbit) are expected to be preserved in the symbol segsethrough an appropriate
partitioning of the phase space [14].

Figure 2 pictorially elucidates the concepts of partittena finite region of the phase
space and the mapping from the partitioned space into thédyaiphabet, where the
symbols are indicated by Greek letters (e@g.3,~,d,---). This represents a spatial and
temporal discretization of the system dynamics defined bytitjectories. Figure 2 also
shows conversion of the symbol sequence into a finite-statshime and generation of the
state probability vectors at the current and the referenoditions. The states of the finite
state machine and the histograms in Fig. 2 are indicated byerios (i.e., 1, 2, 3 and
4); the necessary details are provided later in Section 2l@ough the theory of phase-
space patrtitioning is well developed for one-dimensionappings [15], very few results
are known for two and higher dimensional systems. Furthezntbe state trajectory of the
system variables may be unknown in case of systems for whicbdel as in Eg. (1) is not
known or is difficult to obtain. As such, as an alternative, time series data set of selected
observable outputs can be used for symbolic dynamic engddae Section 3.2. for further
details).

3.2. Analytic Signal Space Partitioning

As described earlier, a crucial step in symbolic dynamiefiifig (SDF) is partitioning of
the phase space for symbol sequence generation [10]. $paetiioning techniques have
been reported in literature for symbol generation [43][1@jmarily based on symbolic
false nearest neighbor$ £'NN). These techniques rely on partitioning the phase space
and may become cumbersome and extremely computatiorsineifithe dimension of the
phase space is large. Moreover, if the time series datasefuairrupted, then the symbolic
false neighbors would rapidly grow in number and requirergdaymbol alphabet to cap-
ture the pertinent information on the system dynamics. &foee, symbolic sequences as
representations of the system dynamics should be gendnatdternative methods because
phase-space partitioning might prove to be a difficult tasthe case of high dimensions
and presence of noise.

The wavelet-space partitioningi{S P) [7][17] was introduced as an alternative to
SFN N partitioning. The wavelet coefficients at selected scake(@ stacked back to back
to transform the 2-dimensional scale-shift wavelet doniratim a one-dimensional domain.
The resulting scale-series data sequence is converteddquersce of symbols byax-
imum entropy partitionind17]. The wavelet transform [44] largely alleviates the a&bo
mentioned shortcomings &f F'N N partitioning and is particularly effective with noisy
data from high-dimensional dynamical systems [17].

Although W S P is significantly computationally faster th&i¥" /N N partitioning and is
suitable for real-time application8} S P has several shortcomings as follows:

e Selection of an appropriate wavelet basis functidhis selection is made such that
the shape of the basis function closely matches that of tieakiwhich may vary
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with the window size. Apparently, there is no precise way elésting a wavelet
basis that is “best” for partitioning.

e Identification of scales for generation of wavelet coeffitse Scales are identified
from the center frequency (that is based on inspection optiveer spectral density
of the Fourier transform) and the selected wavelet basis.

e Dimension reduction of the scale-shift wavelet domaiinis reduction to a one-
dimensional domain afcale-seriesequences is hon-unique and may not be a “best”
way.

Therefore, another alternative to the existing partiignmethods has been recently
proposed, called analytic signal space partitionidg'6 P) [18]. Although ASSP is not
aimed to be a generating partition, it is designed with tha&l @b satisfying the important
property of a generating partitioifthe inverse image of a small neighborhood in the symbol
space is a small neighborhood in the data spapeept possibly in the vicinity of partition
boundaries. The underlying concept4§ S P partitioning is built upon Hilbert transform
of the observed real-valued data sequence into the corrdsgpcomplex-valued analytic
signal [45] as explained below.

Let xz(¢) be a real-valued function whose domain is the real fieléd= (—oo, +00).
Then, Hilbert transform [18] of:(¢) is defined as:

) = Hel(®) =+ [ 2 ar @

T pt—T

That is,z(¢) is the convolution ofc(¢) with % overR, which is represented in the Fourier
domain as:

Flz](§) = —i sgn(&) Flz](€) ()
where sgn(§) = i_i :: g z 8

Given the Hilbert transform of a real-valued sign4t), the corresponding complex-
valued analytic signal is defined as:

Alz](t) = 2(t) + i 2(t) (6)

The construction of Eg. (6) is based on the fact that the gabid-ourier transform of a
real-valued function at negative frequencies are redurdlanto their Hermitian symmetry
imposed by the transform. Thus, the phase of the Hilberstoam z(¢) is in quadrature to
the phase of(¢). That is, the analytic signal can be expressed as:

Alz](t) = A(t) exp (i ¢(t)) @)

where A(t) and (t) are called the instantaneous amplitude and instantanduase of
Alz|(t), respectively. Vakman [46] has pointed out that the amgditand phase of an
analytic signal satisfy the following three physical projes:
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1. Amplitude ContinuityA small perturbation in:(¢) induces a small change i(¢).

2. Phase independence of scaBxalingz(¢) by a constant > 0 has no effects op(¢)
and multipliesA(t) by c.

3. Harmonic correspondence A mono-frequency signal (i.e., a pure sinusoid
Apcos(wot + o)) yields A(t) = Ap andp(t) = wot + o for all ¢.

Thus, for a mono-frequency signal, which is embedded in arizdsional state space, a
direct parallel can be drawn between the phase plot and tlherdtiransform plot. The
procedure fordS'S P is formulated next.

Let the observed signal be available as a real-valued tinessef N data points. Upon
Hilbert transformation of this data sequence, a pseudsehbot is constructed from the re-
sulting analytic signal by a bijective mapping of the comdield ontoR?, i.e., by plotting
the real and the imaginary parts of the analytic signal onzthendz, axes, respectively.
It is important to note that the pseudo-phase space is aliwayslimensional, whereas the
phase space of the dynamical system is a representatiore afFdimensional manifold,
wheren could be an arbitrarily large positive integer.

The time-dependent analytic signal in Eqg. (6) is now represkas a (one-dimensional)
trajectory in the two-dimensional pseudo-phase space.Zlmt a compact region in the
pseudo-phase space, which encloses the trajectory. Tleetiobjis to partition= into
finitely many mutually exclusive and exhaustive segmentsere each segment is labeled
with a symbol or letter. The segments are conveniently deterd by the magnitude and
phase of the analytic signal as well as based on the dengiigtafpoints in these segments.
That s, if the magnitude and phase of a data point of the oalgnal lies within a segment
or on its boundary, then the data point is labeled with theesponding symbol. Thus, a
symbol sequence is derived from the (complex-valued) semuef the analytic signal. The
set of (finitely many) symbols is called the alphahket

One possible way of partitioning is to divide the magnitude and phase of the time-
dependent analytic signal in Eq. (6) into uniformly spacednsents between their maxi-
mum and minimum values, respectively. This is called théoumi partitioning. An alter-
native method, known as the maximum entropy partitioning,[Inaximizes the entropy
of the partition that is characterized by the alphabet Bizethereby imposing a uniform
probability distribution on the symbols. The maximum epyrgartitioning is generated by
maximizing the Shannon entropy [47], which is defined as:

131

S=— Z pi log(pi) (8)
=0

wherep; is the probability of a data point to be in tifé partition segment. In this partition-
ing, regions with rich information are partitioned into firsegments than those with sparse
information. Computationally the maximum entropy paotitican be obtained by sorting
the data sequence in an ascending order. This sorted datareeqjs then partitioned into
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|| equal segments of Ienglﬂ%J, whereN is the length of the data sequence and is
the greatest integer less than or equattoEach of these segments is assigned a symbol
and all data points in a given segment are assigned the porréisg symbol.

The magnitude and phase of the analytic signal in Eq. (6) argtipned separately
according to either uniform partitioning, maximum entrgmrtitioning or any other type
of partitioning; the type of partitioning may depend on tlmam@cteristics of the physical
process. In essence, each point in the data set is repreédsnge pair of symbols — one
belonging to the alphabéir based on the magnitude (i.e., in the radial direction) aed th
other belonging to the alphabgty based on the phase (i.e., in the angular direction). The
analytic signal is converted into a one dimensional symbguence by associating each
pair of symbols into a symbol from a new alphabkas:

by £ {(UZ',UJ') L 0; € ER, 0j S EA} and|2| = |ER| . |EA|

3.3. Probabilistic Finite State Machine (PFSM) and Pattern Recognition

Once the symbol sequence is obtained, the next step is ttstrgction of a Probabilistic
Finite State Machinel{ F'S M) and calculation of the respective state probability veat
depicted in the lower part of Fig. 2 by the histograms. Théeitpaming is performed at the
reference condition.

A PFSM is then constructed, where the states of the machine areedeforrespond-
ing to a givenalphabetsetY and window lengthD. The alphabet sizg:| is the total num-
ber of partition segments while the window lengthis the length of consecutive symbol
words [7], which are chosen as all possible words of ledgtiiom the symbol sequence.
Each state belongs to an equivalence class of symbol wotdegth D, which is character-
ized by a word of lengttD at the leading edge. Therefore, the numbef such equivalence
classes (i.e., states) is less than or equal to the totalytetions of the alphabet symbols
within words of lengthD. That is,n < |%|”; some of the states may be forbidden, i.e.,
these states have zero probability of occurrence. For eeaifip = {«, 5}, i.e.,|X| = 2
and if D = 2, then the number of statesris< |%|” = 4; and the possible states are words
of lengthD = 2, i.e.,aq, af, Ba, andG3, as shown in Fig. 3.

&
i

(pa,

Figure 3. Example of Finite State Machine with D=2 &nd- {«, 5}
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The choice of|X| and D depends on specific applications and the noise level in the
time series data as well as on the available computation pameememory availability. As
stated earlier, a largglphabetmay be noise-sensitive and a small alphabet could miss the
details of signal dynamics. Similarly, while a larger valfeD is more sensitive to sig-
nal distortion, it would create a much larger number of staggjuiring more computation
power and increased length of the data sets. In the resglisis®f this chapter, the analy-
sis of time series data sets is done using the window lengtal égD=1; consequently, the
set of stateg) is equivalent to the symbol alphak¥@ét With the selection of the parameters
D=1 and|X|=8, the PF'SM hasn = 8 states. With this choice of parameters, $18 F'
algorithm is shown to be capable of detection of parametranges in the mechanical sys-
tem. However, other applications such as two-dimensianabe processing, may require
larger values of the parametBrand hence possibly larger number of states in/t#eS M.

Using the symbol sequence generated from the time serias tti@t state machine is
constructed on the principle of sliding block codes [9]. Timdow of lengthD on a
symbol sequence is shifted to the right by one symbol, sughitietains the most recent
(D-1) symbols of the previous state and appends it with the ryembel at the extreme
right. The symbolic permutation in the current window givese to a new state. The
PFSM constructed in this fashion is called tie-Markov machine [7], because of its
Markov properties.

Definition 3..1 A symbolic stationary process is callétMarkov if the probability of the
next symbol depends only on the previdusymbols, i.e.P (s;|sj_1....5j—psj—p—1....) =
P(Sj|3j—1-'--3j—D)-

The finite state machine constructed abovebadarkov properties because the proba-
bility of occurrence of symbat € ¥. on a particular state depends only on the configuration
of that state, i.e., the previous symbols. The states of the machine are marked with the
corresponding symbolic word permutation and the edgesithe states indicate the oc-
currence of a symbat. The occurrence of a symbol at a state may keep the machihe in t
same state or move it to a new state.

Definition 3..2 Let= be the set of all states of the finite state machine. Then riapility
of occurrence of symbols that cause a transition from state state¢;, under the mapping
0:Z x X — Zis defined as:

Tk =P (0 €S ]0(&,0) = &) Y mik = 1; 9)
k

Thus, for aD-Markov machine, the irreducible stochastic maililx= [r;;] describes
all transition probabilities between states such that st &tlamost>:|”+! nonzero entries.
The definition above is equivalent to an alternative repred®n such that,

P(&, &)  Ploiy--0ip_,0ip)

PE) — Plow -oip) (10)

ik = P(§l€;) =
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where the corresponding states are denoted} by o;, - - - 05, , and§y, = oy, - - - 05,,. This
phenomenon is a consequence of WES M construction based on the principle of sliding
block codes described above, where the occurrence of a mabwodyauses a transition to
another state or possibly the same state.

For computation of the state transition probabilities framiven symbol sequence at a
particular slow time epoch, &-block (i.e., a window of lengttD) is moved by counting
occurrences of symbol blocks, - --o;, ,0;, ando;, ---0;, ,, which are respectively
denoted byZV(O'Z‘O s UiD—laiD) andN(aiO s JiD—l)' Note that ifN(O'Z'O s JiD—l) =0,
then the state;, - - - 0;,, , € = has zero probability of occurrence. R¥(o;, - - - 0, ,) #

0, the estimates of the transitions probabilities are theained by these frequency counts

as follows:

N(Uio U O-Z'Dflo-iD)
N(oig -+ 0ip_y)

Tk R~ (1)
where the criterion for convergence of the estimatgd is given in the next subsection 3.4.
as a stopping rule for frequency counting.

The symbol sequence generated from the time series data atférence condition,
set as a benchmark, is used to computestiage transition matridI using Eq. (11). The
left eigenvectorg corresponding to the unique unit eigenvalue of the irrdalacstochastic
matrix IT is the probability vector whose elements are the statiopaopabilities of the
states belonging t& [7]. Similarly, the state probability vectqgr is obtained from time
series data at a (possibly) anomalous condition. The joaitig of time series data and the
state machine structure should be the same in both casdsehgspective state transition
matrices could be different. The probability vectprandq are estimates of the respective
true probability vectors and are treated as statisticabpeat. The termprobability vector
andpattern vectorare used interchangeably in the sequel.

Pattern changes may take place in dynamical systems dueumatation of faults and
progression of anomalies. The pattern changes are qudrdasi€leviations from the ref-
erence pattern (i.e., the probability distribution at teéerence condition). The resulting
anomalies (i.e., deviations of the evolving patterns frbm teference pattern) are charac-
terized by a scalar-valued function, calladomaly measurg. The anomaly measures are
obtained as:

p=d(p,q) (12)

where thel(e, ) is an appropriately defined distance function.

3.4. Stopping Rule for Symbol Sequence Generation

This subsection presents a stopping rule that is necessfinglta lower bound on the length
of symbol sequence required for parameter identificatiothefstochastic matriXI. The
stopping rule [8] is based on the properties of irreducibbelsastic matrices [48]. The state
transition matrix, constructed at thé" iteration (i.e., from a symbol sequence of length r),
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is denoted a¥I(r) that is amm x n irreducible stochastic matrix under stationary condgion
Similarly, the state probability vect@n(r) = [p1(r) p2(r) --- p,(r)] is obtained as
T

pi(r) = zni

j=1Tj

(13)

wherer; is the number oD-blocks representing th€" state such that)~’_, ;) +D—1 =

r is the total length of the data sequence under symbolizalibe stopping rule makes use
of the Perron-Frobenius Theorem [48] to establish a reidtietween the vectqy(r) and

the matrixII(r). Since the matriXI(r) is stochastic and irreducible, there exists a unique
eigenvalue\ = 1 and the corresponding left eigenvecpr) (normalized to unity in the
sense of absolute sum). The left eigenvegtpr) represents the state probability vector,
provided that the matrix parameters have converged afteffiaisntly large number of it-
erations. That is, under the hypothetical arbitrarily I@eguences, the following condition
is assumed to hold.

p(r+1) =p(r)IL(r) = p(r) =p(r)I(r) asr — oo (14)

Following Eg. (13), the absolute error between successirations is obtained such

that
1

I (p(r) = p(r +1)) [loo=]l P(r) (I = IL(r)) [loc= — (15)

where|| e || is the max norm of the finite-dimensional vecwor
To calculate the stopping point,,,, a tolerance of), where0 < n < 1, is specified
for the relative error such that:

[ (p(r) = p(r+1)) llc
1 (P(r)) lloo

The objective is to obtain the least conservative estinmate,f,, such that the dominant
elements of the probability vector have smaller relativersrthan the remaining elements.
Since the minimum possible value pf(p(r)) ||« for all r is 2, wheren is the dimension
of p(r), the least of most conservative values of the stopping psiobtained from Egs.
(15) and (16) as:

S n vr Z 7nstop (16)

Tstop = int <ﬁ> an
n

whereint(e) is the integer part of the real number

3.5. Summary ofSD F-based Pattern Recognition

The symbolic dynamic filtering YD F) method of statistical pattern recognition for
anomaly detection is summarized below.

e Acquisition of time series data from appropriate sensaa(g)/or analytical model
variables at a reference condition, when the system is as$tonbe in the healthy
state (i.e., zero anomaly measure)
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e Generation of the Hilbert transform coefficients [18]

e Maximum entropy partitioning in the domain of transformegnsl at the nominal
condition (see Section 3.2.) and generation of the correfipg symbol sequence

e Construction of the)-Markov machine and computation of the state probability ve
tor q at the reference condition

e Generation of a time series data sequence at another (lypssibmalous condition
and conversion to the wavelet domain to generate the regpegimbolic sequence
based on the partitioning constructed at the referenceitimmd

e Computation of the corresponding state probability vegtarsing the finite state
machine constructed at the reference condition

e Computation of scalamnomaly measurg (see Eq. (12)).

Capability of SDF' has been demonstrated for anomaly detection at early stiges
gradually evolving faults by real-time experimental vatidn. Application examples in-
clude active electronic circuits [35] and fatigue damagenitaoing in polycrystalline al-
loys [1][36][37]. It has been shown th&D F' yields superior performance in terms of
early detection of anomalies and robustness to measuremo&s# by comparison with
other existing techniques such as Principal Componenty&isa{PC A) and Atrtificial Neu-
ral Networks AN N) [35][1]. In this regard, major advantages.®D F' for small anomaly
detection are listed below:

e Robustness to measurement noise and spurious signals [17]

e Adaptability to low-resolution sensing due to the coarsairgng in space parti-
tions [7]

e Capability for early detection of anomalies because of iieityg to signal distor-
tion [1] and

e Real-time execution on commercially available inexpemgilatforms [35][1].

3.6. Forward and Inverse problems

As stated earlier in Section 1., the anomaly detection probis separated into two
sub-problems: 1) théorward (or analysis) problenand 2) thanverse (or synthesis) prob-
lem The forward problentonsists of prediction of outcomes, given a priori knowkedd
the underlying model parameters. In absence of an existiodeirthis problem requires
generation of behavioral patterns of the system evolutimauigh off-line analysis of an
ensemble of the observed time series data. On the other thenidiverse probleronsists
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of estimation of critical parameters characterizing th&tesyn under investigation using the
actual observations [37]. Inverse problems arise in difielengineering disciplines such
as geophysics, structural health monitoring, weatherctseng, and astronomy. Inverse
problems often become ill-posed and challenging due to diewiing reasons: (a) high
dimensionality of the parameter space under investigatiuh (b) in absence of a unique
solution where change in multiple parameters can lead tedahee observations.

In presence of sources of uncertainties, any parameteaeirfe strategy requires esti-
mation of parameter values and also the associated condidigiecvals, or the error bounds,
to the estimated values. As such, inverse problems arelysadVed using the Bayesian
methods that allow observation based inference of parasate provide a probabilistic
description of the uncertainty of inferred quantities. Adaliscussion of inverse problems
is presented by Tarantola [49].

In context of anomaly detection, the tasks and solutionsstéphese two problems as
followed in this chapter are discussed below.

3.6.1. Forward Problem

The primary objective of the forward problem is identificatiof changes in the behavioral
patterns of system dynamics due to evolving anomalies osltinetime scale. Specifically,

the forward problem aims at detecting the deviations in th8ssical patterns in the time
series data, generated at different time epochs in the s$tow s¢cale, from the nominal
behavior pattern. The solution procedure of the forwardlem requires the following

steps:

F1. Collection of time series data sets (at fast time scabe) the available sensor(s) at
different slow time epochs;

F2. Analysis of these data sets using @ F' method as discussed in earlier sections to
generate pattern vectors defined by the probability digiobs at the corresponding
slow time epochs. The profile of anomaly measure is thenmdxddirom the evolution
of this pattern vector from the nominal condition;

F3. Generation of a family of such profiles from multiple espeents performed under
identical conditions to construct a statistical patteramdmaly growth. Such a fam-
ily represents the uncertainty in the evolution of anongaliedynamical systems due
to its stochastic nature. For eg., in case of fatigue damiigeuncertainty arises
from the random distribution of microstructural flaws in tihedy of the component
leading to a stochastic behavior [50].

3.6.2. Inverse Problem

The objective of the inverse problem is to infer the anonsadiad to provide estimates of
system parameters from the observed time series data aedwsesponse in real time [37].
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Therefore, as a precursor to the solution of the inversel@nobgeneration of an ensem-
ble of data sets is required during the forward problem foltipla experiments conducted
under identical operating conditions. Anomaly estima#s loe obtained at any particular
instant in a real-time experiment with certain confidenderivals using the information

derived from the ensemble of data sets of anomaly evolugnegated in the forward prob-
lem [7][37]. The solution procedure of the inverse probleaquires the following steps:

I1. Collection of time series data sets (in the fast timeedabm the available sensor(s)
at different slow time epochs up till the current time epatlaireal-time experiment
as in step F1 of the forward problem;

[2. Analysis of these data sets using 1B F' method to generate pattern vectors defined
by probability distributions at the corresponding slow dirapochs. The value of
anomaly measure at the current time epoch is then calcufeded the evolution
of this pattern vector from the nominal condition. The pihoe is similar to the
step F2 of the forward problem. As such, the information lalde at any particular
instant in a real-time experiment is the value of the anomadasure calculated at
that particular instant;

I3. Detection, identification and estimation of an anomilsify) based on the computed
anomaly measure and the statistical information derivestep F3 of the forward
problem.

The family of anomaly measure profiles is analyzed in therse@roblem to generate
the requisite statistical information. In general invepseblem corresponds to estimation
of parametric or non-parametric changes based on the kdge/lassimilated in the for-
ward problem and the observed time series data of quagisay process response. The
estimates of critical parameters can only be obtained witleirtain bounds at a particu-
lar confidence level. The online statistical informationtlod anomaly status is significant
because it can facilitate early scheduling for the maimeaaor repair of critical compo-
nents or to prepare an advance itinerary of the damaged pHnts information can also
be used to design control policies for damage mitigation ldadextension. This chapter
has addressed only the forward problem of detection of almradehavior and the inverse
problem of parameter estimation is reported as an areawk&fuiork.

4. Description of Experimental Apparatus

This section presents the description of the experimempigdtus that has been designed
and fabricated specifically to study the characteristiceahplex mechanical vibration
systems that have the capacity of multiple degrees of fraeido motion along different
coordinate directions. This special purpose experimapghratus is shown in Figure 4.
The experimental apparatus can be used to replicate thetieibresponse of a mechanical



18 Shalabh Gupta, Dheeraj Singh, Abhishek Srivastav ané Rsey

Base
Accelerometer

Vertical Beam

Beam

Figure 4. Multi-degree of freedom mechanical vibrationaagus

structure such as a support beam under external excit&tigngeismic). The apparatus has
three principle degrees of freedom that arise from thregedets that provide the capability
of motion along three different directions. Each of the atitu is excited using a remote
computer through an electro-hydraulic position feedbackrol and is capable of providing
a force up to 3,400 kgf. The actuators can be excited over a haahd of frequency range
and can produce oscillations of significant magnitude.

The experimental apparatus consists of a rectangular baséstbolted to the ground
and supports two beams - horizontal,jBand vertical (B), and three actuators - bottom
(A,), back (A.) and horizontal (4). Figure 5 gives a two-dimensional schematic of the ap-
paratus. The base of the vertical beagi$connected to the bottom actuatoy that moves
the vertical beam in thgz-plane about the hinge,h The back actuator Ais mounted on
the vertical beam and moves the horizontal begmmvoted at h, in theyz-plane. The
horizontal actuator Arotates the test beam about the pivot poiptrhthe zy-plane. Thus,
the angular motion of the beams Bnd B, about the hinges,hh, and h, are controlled by
the linear motions of the three actuatorg, A, and A.. For small angular displacements of
the beams, their angular motions translate into the moveoféhe pointP in three axes -
x,y andz. The test beam is mounted at poihtand it can be given a desired base excitation
in all or any direction of motion. The structure of beams iglm&om6mm thick hollow
square steel sections.

The multi-degree of freedom mechanical vibration apparatuFigure 4 is logically
partitioned into two subsystems as described below.

a) The plant subsystemonsists of the mechanical structure including flexibleghin
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Figure 5. 2-D schematic of the Multi-degree of freedom aaper (a) Top View (b) Side
View

tip

Figure 6. Schematic of the test beam structure

that connect the beams, the hydraulic system, and the aduatd

b) The control and instrumentation subsysteansists of control computers, data ac-
quisition and processing system, communications hardaadesoftware, and the
sensors. The sensors include: i) linear variable difféaetransformers LV DT) for
displacement measurement and b) integrated circuit-pleztvic shear accelerome-
ters that are used to measure the vibrations of the tip antdabe of the horizontal
beam (see Figure 6). The sensitivity of sensd.¥®7 mV/ms2. The control sys-
tem and data acquisition software is executed under DSpatterm on the windows
operating system. The feedback control system shown inr&igus installed on a
Pentium pc along with necessary A/D and D/A interface to #etlback amplifiers
connected to the sensors and actuators of the test apparatus
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Figure 7. Control circuit for the mechanical vibration aggias

4.1. Hardware implementation and software structure

The multi-degree of freedom mechanical vibration apparéfiigure 4) is interfaced with
a DSpace Data Acquisition Board having 16 A/D channels and/ dhannels. Data
acquisition is carried out with a sampling rate at 1 KHz fomitaring and control. The time
series data for statistical pattern recognition can bendaeid as required. The real-time
instrumentation and control subsystem of this test apparatimplemented on a Pentium
PC platform. The software runs on the Windows XP Operatingte3y and is provided
with A/D and D/A interfaces to the amplifiers serving the sessand actuators through the
Control desk front end. The Control desk front end loads au8itk (Matlab based) module
on to the data acquisition card to perform real-time commation tasks, in addition to data
acquisition and built-in tests (e.g., software limit cheeld saturation checks).

4.2. Experimental procedure

This section describes the experimental procedure to titeg@arametric changes in the
system. The horizontal beam as shown in Figure 4 and 5 hasdeslest beam attached to
it through an intermediate complex truss structure. Thebeam has a length of 1150 mm.
The test beam has a movable masdl68 gm ) attached to it that has the provision of being
secured at different positions on the test beam. The scieofdhis arrangement is shown
in Figure 6. A change in the position of the mass on the teshb&muses a change in the
mass moment of inertia of the beam causing a change in therdgsaf the test system.
Therefore, a change in the mass position affects the vilraisponse of the system. The
apparatus is equipped with two accelerometers to measein@lfation response at the tip
(Atip) and the base (4sg Of the test beam as shown in Figure 6. In the current invatstig,
the parameter under consideration is the position of thes iawad any change in this position
is measured using the analysis of the time series data ofteglerometers.

The horizontal (A) and back (A) actuators are excited by a trapezoidal reference input
of amplitude 2 V and frequency.35Hz as shown in Figure 8, while the bottom actuator
A, is held fixed. The trapezoidal input is achieved by a rectifieg wave. This excitation
signal is generated in such a way that at any time instantast lene of the actuators is
in motion and there is a phase difference between the twatctiA, and A.. This is
done to ensure less power consumption from the hydraulicwiiich helps to reduce the
overheating of hydraulic fluids and reduce the noise. Theesaxaitation signal is given
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Figure 8. Excitation signal generation

to the closed loop plant for each position of the movable noasthe test beam and time
series data from both accelerometers is recorded for 3(hdecafter the system reaches
its steady state. The sampling frequencykbiz to accurately measure the performance of
the system under parametric changes. This experimente¢guoe is repeated for different
positions of the mass on the test beam.

Each run of the experiment starts with the movable mass glatea reference point
(Yep) that is fixed at a distance of 540 mm from the base of the temhligee Figure 6).
The mass is moved by a total 825 mm towards the tip of the test beam in increments of
12.5 mm and the corresponding time series data is recordesl st of time series data is
used to measure anomaly (i.e., a change in the performamt®) system due to change in
the mass position as compared to the reference condition.

5. Results and Discussion

This section presents the results generated from diffeeepériments conducted on the
multi-degree of freedom mechanical vibration apparatiseiileed in the previous section.
The set of time series data generated for different posita@frthe mass from the two ac-
celerometers was processed using the method of symboliandgrfiltering (DF) as
described in Section 3.. Both accelerometers used in theriexpnt give the horizontal
and vertical component of accelerationlgsandV, respectively. The resultant time-series
obtained a¥/,. = /(V;2 + V2) has been used for further analysis. Time series data corre-
sponding to the position of the mass at maximum distance fhemeference (i.€.,.y— Yef
=125 mm) was used to create a partition for the analysis becaesdata displays maxi-
mum amplitude at this position. The partitioning was doriagithe Analytic Signal Space
Partitioning (A.S.SP) [18] (see Section 3.), where the concept of maximum entpaoyi-
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tion was used to divide the Hilbert transformed data o = |Xg| - |X 4] = 12 cells
such thatX z|=4 and|X 4|=3. The depth of D-Markov machine was chosen to be D=1 for
this analysis. Thus the number of states of the machine isdhee as the alphabet size.
The anomaly measure (Eq. 12) was computed for each posititheamass on the test
beam. A non-zero anomaly measure indicates changes ingbense of the sensors due to
parametric changes relative to the nominal condition.

Figure 9 shows the results derived from time series dataeofipraccelerometer ().
The figure is divided into six subplots, where each subplaotaios three figures - (i) the top
figure showing the vertical component of tip acceleratiothwensor output’,, in volts, (ii)
the middle figure showing the horizontal component of tiped&@tion with sensor output
(V) in volts, and (iii) the bottom figure showing the probalildistribution of different
symbolic states (i.e., cells) along the radial and anguil@ctons of the partition of the
Hilbert transformed data. The probability distribution®s aerived from the resultant of
the vertical {,) and horizontal {,) components of the data. Each subplot in Figure 9
corresponds to a different position of the movable massn the beam. The first subplot,
i.e., case(a), corresponds to the nominal condition ofesystvhen the mass is placed at
the reference position,y = y,.; on the test beam (see Figure 6). Each of the subsequent
subpilots, i.e., cases (b) to (f), corresponds to the massguoshifted by 25 mm towards
the tip of the beam such that,y- y,s =25, 50, 75, 100 and 125 mm, respectively.

As the mass is moved towards the tip of the test beam, the @mi@lof time series
data obtained from the tip accelerometer increases witle@se in vibrations of the beam.
When the distance of the mass from the reference positiomal,sthe changes in the
raw time series data cannot be directly detected by visisgeiction of the data. This is
evident from the plots of time series data in Figure 9 for sgs¢, (b) and (c), that corre-
spond to the position of the mass af ¥ y,e~ 0, 25 and50 mm, respectively. However,
the bar plots corresponding to each of these three cases abyueciable change in the
probability distribution with respect to the nominal catiali (i.e., case (a)). This indicates
that the method of Symbolic Dynamic FilteringDF) is able to extract the embedded
signatures of parametric changes in the system from thatidor characteristics of the ac-
celerometer data. As the mass is moved further towardsghtiné changes in the vibration
characteristics become more pronounced. This is reflentddastic changes in the corre-
sponding probability distribution plots. When the mass et to the maximum distance
of approximatelyl 25 mm, the probability distribution converges to uniform dhastion of
states indicating a high vibrating condition.

The probability distributions shown in Figure 9 contain thigration characteristics of
the system. The anomaly measure (Eq. 12) is computed toifyutng changes in the state
probabilities as compared to the reference condition. &hamnaly measure is then used to
track the changes in the vibrations of the test beam withisstiifthe position of the mass.
The reference condition is chosen to be the mass positiop, at Wy, (i.€., case (a) in
Figure 9). Plots of anomaly measure versus the positioneofritass (y, — Y,¢) are shown
in Figure 10 for the tip and the base sensors.
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Figure 10 shows the anomaly measure profiles derived frortirtteeseries data of the
sensors mounted at the tip and the base of the test beam (gae B). As the mass is
moved from the reference point,f)) towards the tip of the beam, the mass moment of
inertia of the beam changes causing a greater influence orilttagion characteristics of
the beam. This trend is in agreement with the observatiohetkperimental data. It can
be seen in the plots of Figure 10 that anomaly measure profilegth the tip and the base
sensors increase as the mass is moved away from the refgra@int¢éowards the tip of the
test beam. It is to be noted that anomaly measure is a rela@asure and is computed
with respect to the nominal condition (y= V,), therefore, it is not an indicative of the
true position of the mass. A change in the value of anomalysoreandicates a parametric
change in the system; however, estimation of such a charge isverse problem [37].

For solution of the inverse problem multiple experimentechto be conducted under
similar experimental conditions to generate sufficientigieal data. Variations among
experiments conducted under (apparently) identical ¢mmdi are normally expected due
to the uncertainties present in the system. These unceetiare caused due to several
factors such as: i) measurement noise, ii) errors in theiposig of the mass, and iii) small
fluctuations in the excitation waveform caused by impredisiin the electro-hydraulic and
mechanical connections. Therefore anomaly measure @dfden different experiments
may show similar trends but their profiles would not be eyadintical. As such, solution
of the inverse problem for parameter estimation [37] is @ity under investigation and
would be reported in future publications.
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6. Summary, Conclusions and Future Work

A vast majority of human-engineered complex systems argesigal to mechanical
vibration, where a major goal is online detection and ediitnaof behavioral uncertainties
due to gradual development of anomalies (i.e., deviatioos fthe nominal condition).
These anomalies (benign or malignant) may alter the quasédehavior of mechanical
vibration mechanism that causes degradation of systenorpgathce and may eventually
lead to widespread catastrophic failures. Since it is afteasible to achieve the required
modeling accuracy and precision in complex dynamical systdime series analysis of
appropriate sensor measurements provides one of the mastfpbtools for degradation
monitoring of complex vibration systems.

This chapter presents a recently reported technique ofdifatan pattern recognition,
called Symbolic Dynamic FilteringD F’), for online detection and estimation of behav-
ioral uncertainties due to slowly evolving anomalies. Tmelerlying concept ofSDF
is built upon the principles of Statistical Mechanics, Syhid Dynamics and Informa-
tion Theory, where time series data from selected sensior(tle fast time scale of the
process dynamics are analyzed at discrete epochs in theislenscale of anomaly evo-
lution. Symbolic dynamic filtering includes preprocessigtime series data using the
Hilbert transform. The transformed data is partitionechgghe maximum entropy prin-
ciple. Subsequently, statistical patterns of evolvingraalies are identified from these
symbolic sequences through construction of a (probaibjlifinite-state machine that cap-
tures the system behavior by means of information compmessihe concept o6 D F
has been experimentally validated on a special-purposeutamcontrolled multi-degree
of freedom mechanical vibration apparatus that is instniswewith two accelerometers for
identification of anomalous patterns due to parametric gésin

The work, reported in this chapter, is a step toward buildaingeliable instrumenta-
tion system for early detection of parametric and non-patamchanges (e.g., incipient
faults) and prognosis of potential catastrophic failuestther theoretical and experimen-
tal research is necessary before its usage in industry. filnednformation, provided by
symbolic patterns that are derived from the sensor timeseata, is useful for decision and
control of human-engineered complex system to sustairr artttnormalcy under both an-
ticipated and unanticipated faults and disturbances. ithcibntext, solution of the inverse
problem and development of performance bounds for safebielioperation of different
engineering applications is an active area of current rekd87].
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