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1 Introduction

Proliferation of modern sensors and sensing applications provides us with large volumes

of data. By extracting useful information from these data sets in real time, we enhance the

ability to better comprehend and analyze the environment around us. Tools for data-driven

feature extraction and pattern classification facilitate performance monitoring of distributed

dynamical systems over a sensor network, especially if the physics-based models are either

inadequate or unavailable [14]. In this regard, a critical issue is real-time analysis of sensor

time series for information compression into low-dimensional feature vectors that capture

the relevant information of the underlying dynamics [22][10][9][3]. Time series analysis is

a challenging task if the data set is voluminous (e.g., collected at a fast sampling rate),

high-dimensional, and noise-contaminated. Moreover, in a distributed sensor network, data

collection occurs simultaneously at multiple nodes. Consequently, there is a need for low-

complexity algorithms that could be executed locally at the nodes to generate compressed

features and therefore reduce the communication overhead. In general, the success of data-

driven pattern classification tools depends on the quality of feature extraction from the ob-

served time series. To this end, several feature extraction tools, such as principal component

analysis (PCA) [10], independent component analysis (ICA) [21], kernel PCA [31], dynamic

time warping [2], derivative time series segment approximation [12], artificial neural net-

works (ANN) [20], hidden Markov models (HMM) [36], and wavelet transforms [35, 26, 27]

have been reported in technical literature. Wavelet packet decomposition (WPD) [26] and

fast wavelet transform (FWT) [27] have been used for extracting rich problem-specific in-

formation from sensor signals. Feature extraction is followed by pattern classification (e.g.,

using support vector machines (SVM)) [9][3].

The concepts of Symbolic Dynamics [23] have been used for information extraction from

time series in the form of symbol sequences [14][8]. Keller and Lauffer [19] used tools of

symbolic dynamics for analysis of time series data to visualize qualitative changes of elec-

troencephalography (EEG) signals related to epileptic activity. Along this line, a real-time

data-driven statistical pattern analysis tool, called symbolic dynamic filtering (SDF) [30][13],

has been built upon the concepts of symbolic dynamics and information theory. In the

SDF method, time series data are converted to symbol sequences by appropriate parti-

tioning [13]. Subsequently, probabilistic finite-state automata (PFSA) [30] are constructed

from these symbol sequences that capture the underlying system’s behavior by means of

information compression into the corresponding matrices of state-transition probability.

SDF-based pattern identification algorithms have been experimentally validated in the lab-

oratory environment to yield superior performance over several existing pattern recognition

tools (e.g., PCA, ANN, particle filtering, unscented Kalman filtering, and kernel regression

analysis [9][3]) in terms of early detection of anomalies (i.e., deviations from the normal

behavior) in the statistical characteristics of the observed time series [29][15].

Partitioning of time series is a crucial step for symbolic representation of sensor sig-

nals. To this end, several partitioning techniques have been reported in literature, such as
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symbolic false nearest neighbor partitioning (SFNNP) [4], wavelet-transformed space parti-

tioning (WTSP) [28], and analytic signal space partitioning (ASSP) [32]. In particular, the

wavelet transform-based method is well-suited for time-frequency analysis of non-stationary

signals, noise attenuation, and reduction of spurious disturbances from the raw time se-

ries data without any significant loss of pertinent information [24]. In essence, WTSP is

suitable for analyzing the noisy signals, while SFNNP and ASSP may require additional

preprocessing of the time series for denoising. However, the wavelet transform of time series

introduces two new domain parameters (i.e., scale and shift), thereby generating an image

of wavelet coefficients. Thus, the (one-dimensional) time series data is transformed into a

(two-dimensional) image of wavelet coefficients. Jin et al. [17] have proposed a feature ex-

traction algorithm from the wavelet coefficients by directly partitioning the wavelet images

in the (two-dimensional) scale-shift space for SDF analysis.

This chapter focuses on feature extraction for pattern classification in distributed dynam-

ical systems, possibly served by a sensor network. These features are extracted as statistical

patterns using symbolic modeling of the wavelet images, generated from sensor time series.

An appropriate selection of the wavelet basis function and the scale range allows the wavelet-

transformed signal to be de-noised relative to the original (possibly) noise-contaminated

signal before the resulting wavelet image is partitioned for symbol generation. In this way,

the symbolic images generated from wavelet coefficients capture the signal characteristics

with larger fidelity than those obtained directly from the original signal. These symbolic

images are then modeled using probabilistic finite state automata (PFSA) that, in turn,

generate the low-dimensional statistical patterns, also called feature vectors. In addition,

the proposed method is potentially applicable for analysis of regular images for feature ex-

traction and pattern classification. From these perspectives, the major contributions of the

chapter are as follows:

1. Development of a SDF-based feature extraction method for analysis of two-

dimensional data (e.g., wavelet images of time series in the scale-shift domain);

2. Validation of the feature extraction method in two different applications:

(i) Behavior recognition in mobile robots by identification of their type and motion

profiles, and

(ii) Target detection and classification using unattended ground sensors (UGS) for

border security.

The chapter is organized into seven sections including the present one. Section 2 briefly

describes the concepts of symbolic dynamic filtering (SDF) and its application to wavelet-

transformed data. Section 3 presents the procedure of feature extraction from the symbolized

wavelet image by construction of a probabilistic finite state automaton (PFSA). Section 4

describes the pattern classification algorithms. Section 5 presents experimental validation

for classification of mobile robot types and their motion profiles. The experimental facility

incorporates distributed pressure sensors under the floor to track and classify the mobile

robots. Section 6 validates the feature extraction and pattern classification algorithms based

the field data of unattended ground sensors (UGS) for target detection and classification.

The chapter is concluded in Section 7 along with recommendations for future research.
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2 Symbolic Dynamics and Encoding

This section presents the underlying concepts of symbolic dynamic filtering (SDF) for

feature extraction from sensor time series data. Details of SDF have been reported in

previous publications for analysis of (one-dimensional) time series [30][13]. A Statistical

Mechanics-based concept of time series analysis using symbolic dynamics has been presented

in [14]. This section briefly reviews the concepts of SDF for analysis of (two-dimensional)

wavelet images for feature extraction. The major steps of the SDF method for feature

extraction are delineated as follows:

1. Encoding (possibly nonlinear) system dynamics from observed sensor data (e.g., time

series and images) for generation of symbol sequences;

2. Information compression via construction of probabilistic finite state automata

(PFSA) from the symbol sequences to generate feature vectors that are represen-

tatives of the underlying dynamical system’s behavior.

2.1 Review of Symbolic Dynamics

In the symbolic dynamics literature [23], it is assumed that the observed sensor time

series from a dynamical system are represented as a symbol sequence. Let Ω be a compact

(i.e., closed and totally bounded) region in the phase space of the continuously-varying

dynamical system, within which the observed time series is confined [30][13]. The region Ω

is partitioned into |Σ| cells {Φ0, · · · ,Φ|Σ|−1} that are mutually exclusive (i.e., Φj ∩ Φk =

∅ ∀j 6= k) and exhaustive (i.e.,
⋃|Σ|−1

j=0 Φj = Ω), where Σ is the symbol alphabet that labels

the partition cells. A trajectory of the dynamical system is described by the discrete time

series data as: {x0,x1,x2, · · · }, where each xi ∈ Ω. The trajectory passes through or touches

one of the cells of the partition; accordingly the corresponding symbol is assigned to each

point xi of the trajectory as defined by the mapping M : Ω → Σ. Therefore, a sequence of

symbols is generated from the trajectory starting from an initial state x0 ∈ Ω, such that

x0 � σ0σ1σ2 . . . σk . . . (1.1)

where σk , M(xk) is the symbol at instant k. (Note: The mapping in Eq. (1.1) is called

Symbolic Dynamics if it attributes a legal (i.e., physically admissible) symbol sequence to

the system dynamics starting from an initial state.) The next subsection describes how

the time series are transformed into wavelet images in scale-shift domain for generation of

symbolic dynamics.

2.2 Transformation of Time Series to Wavelet Domain

This section presents the procedure for generation of wavelet images from sensor time

series for feature extraction. A crucial step in symbolic dynamic filtering [30][13] is parti-

tioning of the data space for symbol sequence generation [8]. Various partitioning techniques
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have been suggested in literature for symbol generation, which include variance-based [34],

entropy-based [6], and hierarchial clustering-based [18] methods. A survey of clustering

techniques is provided in [22]. Another partitioning scheme, based on symbolic false nearest

neighbors (SFNN), was reported by Kennel and Buhl [4]. These techniques rely on partition-

ing the phase space and may become cumbersome and extremely computation-intensive if

the dimension of the phase space is large. Moreover, if the data set is noise-corrupted, then

the symbolic false neighbors would rapidly grow in number and require a large symbol alpha-

bet to capture the pertinent information. Therefore, symbolic sequences as representations

of the system dynamics should be generated by alternative methods because phase-space

partitioning might prove to be a difficult task.

Technical literature has suggested appropriate transformation of the signal before em-

ploying the partitioning method for symbol generation [30]. One such technique is the

analytic-signal-space partitioning (ASSP) [32] that is based on the analytic signal which

provides the additional phase information in the sensor data. The wavelet-transformed space

partitioning (WTSP) [28] is well-suited for time-frequency analysis of non-stationary sig-

nals, noise attenuation, and reduction of spurious disturbances from the raw time series

data without any significant loss of pertinent information [24][13]. Since SFNNP and ASSP

may require additional preprocessing of the time series for denoising, this chapter has used

WTSP for construction of symbolic representations of sensor data as explained below.

In wavelet-based partitioning, time series are first transformed into the wavelet domain,

where wavelet coefficients are generated at different shifts and scales. The choice of the

wavelet basis function and wavelet scales depends on the time-frequency characteristics of

individual signals [13]. The wavelet transform of a function f(t) ∈ H is given by

Fs,τ =
1√
α

∫ ∞

−∞

f(t)ψ∗
s,τ (t)dt, (1.2)

where s > 0 is the scale, τ is the time shift, H is a Hilbert space, ψs,τ (t) = ψ( t−τ
s
) and

ψ ∈ L2(R) is such that
∫∞

−∞ ψ(t)dt = 0 and ||ψ||2 = 1.

Wavelet preprocessing of sensor data for symbol sequence generation helps in noise

mitigation. Let f̃ be a noise-corrupted version of the original signal f expressed as:

f̃ = f + k w, (1.3)

where w is additive white gaussian noise with zero mean and unit variance and k is the

noise level. The noise part in Eq. (1.3) would be reduced if the scales over which coefficients

are obtained are properly chosen.

For every wavelet, there exists a certain frequency called the center frequency Fc that

has the maximum modulus in the Fourier transform of the wavelet. The pseudo-frequency

fp of the wavelet at a particular scale α is given by the following formula [1]:

fp =
Fc

α ∆t
, (1.4)

where ∆t is the sampling interval. Then the scales can be calculated as follows:

αi =
Fc

f i
p ∆t

(1.5)
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FIGURE 1.1: Symbol image generation via wavelet transform of the sensor time series

data and partition of the wavelet surface in ordinate direction

where i = 1, 2, ..., and f i
p are the frequencies that can be obtained by choosing the lo-

cally dominant frequencies in the Fourier transform. The maximum pseudo-frequency fmax
p

should not exceed the Nyquist frequency [1]. Therefore, the sampling frequency fs for ac-

quisition of time series data should be selected at least twice the larger of the maximum

pseudo-frequency fmax
p and the signal bandwidth B, i.e., fs ≥ 2max(fmax

p , B).

Figure 1.1 shows an illustrative example of transformation of the (one-dimensional) time

series in Fig. 1.1(a) to a (two-dimensional) wavelet image in Fig. 1.1(b). The amplitudes of

the wavelet coefficients over the scale-shift domain are plotted as a surface. Subsequently,

symbolization of this wavelet surface leads to the formation of a symbolic image as shown

in Fig. 1.1(c).

2.3 Symbolization of Wavelet Surface Profiles

This section presents partitioning of the wavelet surface profile in Fig. 1.1(b), which is

generated by the coefficients over the two-dimensional scale-shift domain, for construction

of the symbolic image in Fig. 1.1(c). The x − y coordinates of the wavelet surface profiles

denote the shifts and the scales respectively, and the z-coordinate (i.e., the surface height)

denotes the pixel values of wavelet coefficients.

Definition 2.1 (Wavelet Surface Profile) Let H , {(i, j) : i, j ∈ N, 1 ≤ i ≤ m, 1 ≤ j ≤
n} be the set of coordinates consisting of (m×n) pixels denoting the scale-shift data points.

Let R denote the interval that spans the range of wavelet coefficient amplitudes. Then, a

wavelet surface profile is defined as

S : H → R (1.6)

Definition 2.2 (Symbolization) Given the symbol alphabet Σ, let the partitioning of the

interval R be defined by a map P : R → Σ. Then, the symbolization of a wavelet surface

profile is defined by a map SΣ ≡ P ◦ S such that

SΣ : H → Σ (1.7)

that labels each pixel of the image to a symbol in Σ.
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The wavelet surface profiles are partitioned such that the ordinates between the maxi-

mum and minimum of the coefficients along the z-axis are divided into regions by different

planes parallel to the x− y plane. For example, if the alphabet is chosen as Σ = {a, b, c, d},
i.e., |Σ| = 4, then three partitioning planes divide the ordinate (i.e., z-axis) of the surface

profile into four mutually exclusive and exhaustive regions, as shown in Fig. 1.1 (b). These

disjoint regions form a partition, where each region is labeled with one symbol from the

alphabet Σ. If the intensity of a pixel is located in a particular region, then it is coded

with the symbol associated with that region. As such, a symbol from the alphabet Σ is

assigned to each pixel corresponding to the region where its intensity falls. Thus, the two-

dimensional array of symbols, called symbol image, is generated from the wavelet surface

profile, as shown in Fig. 1.1 (c).

The surface profiles are partitioned by using either the maximum entropy partitioning

(MEP) or the uniform partitioning (UP) methods [28][13]. If the partitioning planes are sep-

arated by equal-sized intervals, then the partition is called the uniform partitioning (UP).

Intuitively, it is more reasonable if the information-rich regions of a data set are partitioned

finer and those with sparse information are partitioned coarser. To achieve this objective,

the maximum entropy partitioning (MEP) method has been adopted in this chapter such

that the entropy of the generated symbols is maximized. The procedure for selection of the

alphabet size |Σ|, followed by generation of a MEP, has been reported in [13]. In general,

the choice of alphabet size depends on specific data set and experiments. The partition-

ing of wavelet surface profiles to generate symbolic representations enables robust feature

extraction, and symbolization also significantly reduces the memory requirements [13].

3 Construction of Probabilistic Finite-state Automata for Feature

Extraction

This section presents the method for construction of a probabilistic finite state automaton

(PFSA) for feature extraction from the symbol image generated from the wavelet surface

profile.

3.1 Conversion from Symbol Image to State Image

For analysis of (one-dimensional) time series, a PFSA is constructed such that its states

represent different combinations of blocks of symbols on the symbol sequence. The edges

connecting these states represent the transition probabilities between these blocks [30][13].

Therefore, for analysis of (one dimensional) time series, the ‘states’ denote all possible sym-

bol blocks (i.e., words) within a window of certain length. Let us now extend the notion of

‘states’ on a two-dimensional domain for analysis of wavelet surface profiles via construction

of a ‘state image’ from a ‘symbol image’.

Definition 3.1 (State) Let W ⊂ H be a two-dimensional window of size (` × `) that is
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denoted as |W| = `2. Then, the state of a symbol block formed by the window W is defined

as the configuration q=SΣ

(

W
)

.

Let the set of all possible states (i.e., two-dimensional words or blocks of symbols) in a

window W ⊂ H be denoted as Q , {q1, q2, ...., q|Q|}, where |Q| is the number of (finitely

many) states. Then, |Q| is bounded above as |Q| ≤ |Σ||W|; the inequality is due to the fact

that some of the states might have zero probability of occurrence. Let us denote Wi,j ⊂ H
to be the window where (i, j) represents the coordinates of the top-left corner pixel of the

window. In this notation, qi,j=SΣ

(

Wi,j

)

denotes the state at pixel (i, j) ∈ H. Thus, every

pixel (i, j) ∈ H corresponds to a particular state qi,j ∈ Q on the image. Every pixel in the

image H is mapped to a state , excluding the pixels that lie at the periphery depending on

the window size. Figure 1.2 shows an illustrative example of the transformation of a symbol

image to the state image based on a sliding window W of size (2× 2). This concept of state

formation facilitates capturing of long range dynamics (i.e., word to word interactions) on

a symbol image.

In general, a large number of states would require a high computational capability and

hence might not be feasible for real-time applications. The number of states, |Q|, increases
with the window size |W| and the alphabet size |Σ|. For example, if ` = 2 and |Σ| = 4, then

the total number of states are |Q| ≤ |Σ|`2 = 256. Therefore, for computational efficiency, it

is necessary to compress the state set Q to an effective reduced set O , {o1, o2, ...., o|O|} [13]

that enables mapping of two or more different configurations in a windowW to a single state.

State compression must preserve sufficient information as needed for pattern classification,

albeit possibly lossy coding of the wavelet surface profile.

In view of the above discussion, a probabilistic state compression method is employed,

which chooses the m most probable symbols, from each state as a representation of that

particular state. In this method, each state consisting of ` × ` symbols is compressed to

a reduced state of length m < `2 symbols by choosing the top m symbols that have the

highest probability of occurrence arranged in descending order. If two symbols have the

same probability of occurrence, then either symbol may be preferred with equal probability.

This procedure reduces the state set Q to an effective set O, where the total number of

compressed states is given as: |O| = |Σ|m. For example, if |Σ| = 4, |W| = 4 and m = 2,
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then the state compression reduces the total number of states to |O| = |Σ|m = 16 instead

of 256. This method of state compression is motivated from the renormalization methods in

Statistical Physics that are useful in eliminating the irrelevant local information on lattice

spin systems while still capturing the long range dynamics [14]. The choice of |Σ|, ` and

m depends on specific applications and noise level as well as the available computational

power, and is made by an appropriate tradeoff between robustness to noise and capability

to detect small changes. For example, a large alphabet may be noise-sensitive while a small

alphabet could miss the information of signal dynamics [13].

3.2 Construction of PFSA

A probabilistic finite state automaton (PFSA) is constructed such that the states of

the PFSA are the elements of the compressed state set O and the edges are the transition

probabilities between these states. Figure 1.3(a) shows an example of a typical PFSA with

four states. The transition probabilities between states are defined as:

℘(ok|ol) =
N(ol, ok)

∑

k′=1,2,...,|O|N(ol, ok′)
∀ ol, ok ∈ O (1.8)

where N(ol, ok) is the total count of events when ok occurs adjacent to ol in the direction

of motion. The calculation of these transition probabilities follows the principle of sliding

block code [23]. A transition from the state ol to the state ok occurs if ok lies adjacent to ol
in the positive direction of motion. Subsequently, the counter moves to the right and to the

bottom (row-wise) to cover the entire state image, and the transition probabilities ℘(ok|ol),
∀ ol, ok ∈ O are computed using Eqn. (1.8). Therefore, for every state on the state image,

all state-to-state transitions are counted, as shown in Fig. 1.3(b). For example, the dotted

box in the bottom-right corner contains three adjacent pairs, implying the transitions o1 →
o2, o1 → o3, and o1 → o4 and the corresponding counter of occurrences N(o1, o2), N(o1, o3)

and N(o1, o4), respectively, are increased by one. This procedure generates the stochastic

state-transition probability matrix of the PFSA given as:

Π =







℘(o1|o1) . . . ℘(o|O||o1)
...

. . .
...

℘(o1|o|O|) . . . ℘(o|O||o|O|)






(1.9)

where Π ≡ [πjk] with πjk = ℘(ok|oj). Note: πjk ≥ 0 ∀j, k ∈ {1, 2, ...|O|} and
∑

k πjk = 1 ∀j
∈ {1, 2, ...|O|}.

In order to extract a low-dimensional feature vector, the stationary state probability

vector p is obtained as the left eigenvector corresponding to the (unique) unity eigenvalue

of the (irreducible) stochastic transition matrix Π. The state probability vectors p serve as

the ‘feature vectors ’ and are generated from different data sets from the corresponding state

transition matrices. These feature vectors are also denoted as ‘patterns ’ in this chapter.

3.3 Summary of SDF for Feature Extraction

The major steps of SDF for feature extraction are summarized below:
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(b) Feature extraction from the state image

FIGURE 1.3: An example of feature extraction from stage image by constructing a PFSA

• Acquisition of time series data from appropriate sensor(s) and signal conditioning as

necessary;

• Wavelet transform of the time series data with appropriate scales to generate the

wavelet surface profile;

• Partitioning of the wavelet surface profile and generation of the corresponding symbol

image;

• Conversion from symbol image to state image via probabilistic state compression

strategy;

• Construction of PFSA and computation of the state transition matrices that in turn

generate the state probability vectors as the feature vectors (i.e., patterns).

The advantages of SDF for feature extraction and subsequent pattern classification are

summarized below:

• Robustness to measurement noise and spurious signals;

• Adaptability to low-resolution sensing due to the coarse graining in space parti-

tions [30];

• Capability for detection of small deviations because of sensitivity to signal distortion;

• Real-time execution on commercially available inexpensive platforms.

4 Pattern Classification Using SDF-based Features

Once the feature vectors are extracted in a low-dimensional space from the observed

sensor time series, the next step is to classify these patterns into different categories based

on the particular application. Technical literature abounds in diverse methods of pattern

classification, such as divergence measure, k-nearest neighbor (k-NN) algorithm [7], support

vector machine (SVM) [3], and artificial neural network (ANN) [16]. The main focus of this

chapter is to develop and validate the tools of Symbolic Dynamic Filtering (SDF) for feature
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FIGURE 1.4: Flow chart of the proposed methodology

extraction from wavelet surface profiles generated from sensor time series data. Therefore,

the SDF method for feature extraction is used in conjunction with the standard pattern

classification algorithms, as described in the experimental validation sections.

Pattern classification using SDF-based features is posed as a two-stage problem, i.e.,

the training stage and the testing stage. The sensor time series data sets are divided into

three groups: i) partition data, ii) training data, and iii) testing data. The partition data

set is used to generate partition planes that are used in the training and the testing stages.

The training data set is used to generate the training patterns of different classes for the

pattern classifier. Multiple sets of training data are obtained from independent experiments

for each class in order to provide a good statistical spread of patterns. Subsequently, the

class labels of the testing patterns are generated from testing data in the testing stage. The

partition data sets may be part of the training data sets, whereas the training data sets and

the testing data sets must be mutually exclusive.

Figure 1.4 depicts the flow chart of the proposed algorithm that is constructed based

on the theory of SDF. The partition data is wavelet-transformed with appropriate scales

to convert the one-dimensional numeric time series data into the wavelet image. The cor-

responding wavelet surface is analyzed using the maximum entropy principle [28][13] to

generate the partition planes that remain invariant for both the training and the testing

stage. The scales used in the wavelet transform of the partitioning data also remain invariant

during the wavelet transform of the training and the testing data. In the training stage, the

wavelet surfaces are generated by transformation of the training data sets corresponding to

different classes. These surfaces are symbolized using the partition planes to generate the

symbol images. Subsequently, PFSAs are constructed based on the corresponding symbol

images, and the training patterns (i.e., state probability vectors p or state transition ma-

trices Π) are extracted from these PFSAs. Similar to the training stage, the PFSA and the

associated pattern is generated for different data sets in the testing stage. These patterns

are then classified into different classes using pattern classifier, such as SVM, k-NN and

ANN.

Consider a classification problem of |C| classes, where C is the set of class labels. In the
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training stage, feature vectors pCi

j , j = 1, 2, ...ni are generated from the training data sets

of class Ci, where ni is the number of samples in class Ci. The same procedure is carried

out for all other classes. In the testing stage, a testing feature vector ptest with unknown

class labels is generated using SDF. Two examples of using the pattern classifiers with

SDF are provided here. For k-NN algorithm, the estimated class label of a testing feature

vector ptest is equal to the most frequent class among the k-nearest training features [7]. For

SVM, a separating hyperplane/hypersurface is generated based on training feature vectors

(pCi

j , j = 1, 2, ...ni). The estimated class label of the testing feature vector ptest depends

on which side of the hyperplane/hypersurface the testing feature vector falls [3].

5 Validation I: Behavior Recognition of Mobile Robots in a Labo-

ratory Environment

This section presents experimental validation of the proposed wavelet-based feature

extraction method in a laboratory environment of networked robots. The objective here is to

identify the robot type and the motion profile based on the sensor time series obtained from

the pressure sensitive floor. These experiments are inspired from various real-life applications

of pattern classification, such as (i) classification of enemy vehicles across the battlefield

through analysis of seismic and acoustic time series data; and (ii) classification of human

and animal movements through analysis of seismic time series.

5.1 Experimental Procedure for Behavior Identification of Mobile

Robots

The experimental set up consists of a wireless network incorporating mobile robots,

robot simulators, and distributed sensors as shown in Fig. 1.5 and Fig. 1.6. A major com-

ponent of the experimental set up is the pressure sensitive floor that consists of distributed

piezoelectric wires installed underneath the floor to serve as arrays of distributed pressure

sensors. A coil of piezoelectric wire is placed under a 0.65m × 0.65m square floor tile as

shown in Fig. 1.6(a) such that the sensor generates an analog voltage due to pressure ap-

plied on it. This voltage is sensed by a BrainstemTM microcontroller using one of its 10-bit

A/D channels thereby yielding sensor readings in the range of 0 to 1023. The sampling

frequency of the pressure sensing device that captures the dynamics of robot motion is 10

Hz, while the maximum pseudo-frequency fmax
p is 4.44 Hz (see Subsection 2.2). A total

of 144 sensors are placed in a 9 × 16 grid to cover the entire laboratory environment as

shown in Fig. 1.6(b). The sensors are grouped into four quadrants, each being connected

to a stack consisting of 8 networked Brainstem microcontrollers for data acquisition. The

microcontrollers are, in turn, connected to two laptop computers running Player [11] server

that collects the raw sensor data and distributes to any client over the wireless network for

further processing.
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FIGURE 1.5: The Robot Hardware: Pioneer 2AT (Left) and Segway RMP (Right)

(a) Sensor (b) Distribution of Sensors

FIGURE 1.6: Layout of the Distributed Pressure Sensors in the Laboratory Environment

TABLE 1.1: Parameters used for various types of motion

Motion Type Parameter Value

Circular Diameter 4m

Square Edge length 3m

Random Uniform distribution x-dir 1 to 7 m

y-dir 1 to 4 m

Figure 1.5 shows a pair of Pioneer robots and a Segway RMP that have the following

features:

• Pioneer 2AT is a four-wheeled robot that is equipped with a differential drive train

system and has an approximate weight of 35 kg.

• Segway RMP is a two-wheeled robot (with inverted pendulum dynamics) that has a

zero turn radius and has an approximate weight of 70 kg.

Since Pioneer is lighter than Segway and Pioneer’s load on the floor is more evenly

distributed, their statistics are dissimilar. Furthermore, since the kinematics and dynamics

of the two types of robots are different, the texture of the respective pressure sensor signals

are also different.

The objective is to identify the robot type and motion type from the time series data.

The Segway RMP and Pioneer 2AT robots are commanded to execute three different motion

trajectories, namely, random motion, circular motion and square motion. Table 1.1 lists the

parameters for the three types of robot motion. In the presence of uncertainties (e.g., sensor

noise and fluctuations in robot motion), a complete solution of the robot type and motion
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FIGURE 1.7: Example of Sensor Readings and Plot of Haar Wavelet

identification problem may not be possible in a deterministic setting because the patterns

would not be identical for similar robots behaving similarly. Therefore, the problem is posed

in the statistical setting, where a family of patterns is generated from multiple experiments

conducted under identical operating conditions. The requirement is to generate a family

of patterns for each class of robot behavior that needs to be recognized. Therefore, both

Segway RMP and Pioneer 2AT robots were made to execute several cycles of each of the

three different types of motion trajectories on the pressure sensitive floor of the laboratory

environment. Each member of a family represents the pattern of a single experiment of one

robot executing a particular motion profile. As a robot changes its type of motion from one

(e.g., circular) to another (e.g., random), the pattern classification algorithm is capable of

detecting this change after a (statistically quasi-stationary) steady state is reached. During

the brief transient period, the analysis of pattern classification may not yield accurate results

because the resulting time series may not be long enough to extract the features correctly.

Figure 1.7(a) shows an example of the sensor reading when the robot moves over it.

The voltage generated by the piezoelectric pressure sensor gradually increases as the robot

approaches the sensor, and discharge occurs in the sensor when the robot moves away

from the sensor and hence the voltage resumes to be 0. The choice of mother wavelet

depends on the shape of the sensor signal; the mother wavelet should match the shape of

the sensor signal in order to capture the signature of the signal. Haar wavelet (db1), as

shown in Fig. 1.7(b), is chosen to be the mother wavelet in this application. The sensor

data collected by the 9× 16 grid is stacked sequentially to generate a one-dimensional time

series. For each motion trajectory consisting of several cycles, the time series data collected

from the pressure sensors was divided into 40 to 50 data sets. The length of each data set

is 3.0× 105 data points, which corresponds to about three minutes of the experiment time.

The data sets are randomly divided into half training and half testing. Among the training

data, 10 sets are chosen to serve as the partitioning data sets as well.
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FIGURE 1.8: Ensemble Mean of the State Probability Vectors (feature vectors)

5.2 Pattern Analysis for Behavior Identification of Mobile Robots

This subsection provides a description of the application of different pattern analysis

methods to time series data of pressure sensors for classification of the robots and their

motion types.

For feature extraction using SDF, each data set of a family (or class) is analyzed to

generate the corresponding state probability vectors (i.e., patterns). Thus, the patterns

pCi

j , j = 1, 2, ..., ni, are generated for ni samples in each class Ci corresponding to robot

type and motion. Following the SDF procedure, each time-series data set is analyzed using

|Σ| = 8, ` = 2 and m = 1. Ensemble mean of pattern vectors for different motion profiles of

Segway and Pioneer robots is shown in Fig. 1.8. It can be observed in Fig. 1.8 that the state

probability vectors of Segway and Pioneer robots are quite distinct. Following Fig. 1.4, for

each motion type, the state probability vectors pCi

j were equally divided into training sets

and testing sets.

In this application, the efficacy of SDF for feature extraction is evaluated by comparison

with PCA. The time series data are transformed to the frequency domain for noise miti-

gation and then the standard PCA method is implemented to identify the eigen-directions

of the transformed data and to obtain an orthogonal linear operator that projects the

frequency-domain features onto a low-dimensional compressed-feature space. For the pur-

pose of comparison, the dimension of this compressed feature space is chosen to be the

same as that of the feature vectors obtained by SDF. In this application, the support vec-

tor machine (SVM), k-NN algorithm, radial basis Neural Network (rbfNN), and multilayer

perceptron Neural Network (mlpNN) have been used as the pattern classifiers to identify
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FIGURE 1.9: Tree Structure for Pattern Classification

different classes of feature vectors extracted by SDF and PCA. The pattern classifiers iden-

tify the type of the robot and its motion profile, based on the acquired statistical patterns.

Since, in this pattern classification problem, there are two robots and each robot has three

different types of motion profiles, it is natural to formulate this problem as a two-layer

classification problem, where the robot type is identified in the first layer followed by iden-

tification of the motion type in the second layer. Thus, the above problem is formulated

using a tree-structure classification as shown in Fig. 1.9.

5.3 Experimental Results for Behavior Identification of Mobile Robots

The performance comparison between SDF and PCA that are used in conjunction with

different classifiers is presented in Table 1.2. The left part of Table 1.2 shows the results of

robot type and robot motion classification using SDF for feature extraction, and the right

part shows the corresponding results using PCA for feature extraction. As stated earlier,

SVM, k-NN, rbfNN, and mlpNN have been used as pattern classifiers in both cases. The

polynomial kernel is used in SVM [5], and a neighbor size of k = 5 is used in the k-NN

classifier. The rbfNN uses one hidden layer and one output layer with a single neuron.

Optimal training is obtained with 100 neurons in the hidden layer that uses a radial basis

function, while the output layer uses a linear transfer function. The mlpNN utilizes a feed-

forward back-propagation network that consists of one hidden layer with 50 neurons and

an output layer with a single neuron; the tangent sigmoid function has been used in the

hidden layers as a transfer function, while the output layer uses a linear function.

It is noted that since the tree structure is used for pattern classification, the motion

recognition results are affected by the robot recognition results. For example, the samples

that are incorrectly classified in the robot recognition stage will be incorrectly classified for

motion recognition also. However, this particular aspect is application dependent and the

tree structure for classification can be redesigned accordingly. The classification results are

presented in Table 1.2 that show the accuracy percentage equal to
(

# correct classifications
# total data sets

×
100

)

. In the left part of Table 1.2, the combination of SDF with all four classifiers yield

good accuracy in recognizing the robot type, namely, 100% for Segway and more than 94%

for Pioneer. Although not explicitly shown in Table 1.2, but all four classifiers successfully

identified the three types of motions of the Pioneer robot with 100% accuracy in the robot

motion classification stage. The errors in the motion recognition, as seen in Table 1.2,
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TABLE 1.2: Results of robot and motion classification

Feature Extraction using SDF Feature Extraction using PCA

Pattern Robot Recognition Motion Recognition Pattern Robot Recognition Motion Recognition

Classifier Robot Result Motion Result Total Classifier Robot Result Motion Result Total

SVM

Segway
100%

(58
58

)

Random 92% ( 23
25
)

95%

(55
58

)

SVM

Segway
91%

(53
58

)

Random 84% ( 21
25
)

81%

(47
58

)
Circular 92% ( 12

13
) Circular 77% ( 10

13
)

Square 100% ( 20
20
) Square 80% ( 16

20
)

Pioneer
94%

(61
65

)

Random 100% ( 20
20
)

94%

(61
65

)
Pioneer

100%

(65
65

)

Random 20% ( 4

20
)

65%

(42
65

)
Circular 90% ( 18

20
) Circular 65% ( 13

20
)

Square 92% ( 23
25
) Square 100% ( 25

25
)

k-NN

Segway
100%

(58
58

)

Random 88% ( 22
25
)

91%

(53
58

)

k-NN

Segway
100%

(58
58

)

Random 84% ( 21
25
)

52%

(30
58

)
Circular 85% ( 11

13
) Circular 69% ( 9

13
)

Square 100% ( 20
20
) Square 0% ( 0

20
)

Pioneer
94%

(61
65

)

Random 95% ( 19
20
)

94%

(61
65

)
Pioneer

88%

(57
65

)

Random 0% ( 0

20
)

51%

(33
65

)
Circular 100% ( 20

20
) Circular 55% ( 11

20
)

Square 88% ( 22
25
) Square 88% ( 22

25
)

rbfNN

Segway
100%

(58
58

)

Random 84% ( 21
25
)

91%

(53
58

)

rbfNN

Segway
100%

(58
58

)

Random 92% ( 23
25
)

72%

(42
58

)
Circular 92% ( 12

13
) Circular 31% ( 4

13
)

Square 100% ( 20
20
) Square 75% ( 15

20
)

Pioneer
97%

(63
65

)

Random 95% ( 19
20
)

97%

(63
65

)
Pioneer

95%

(62
65

)

Random 0% ( 0

20
)

66%

(43
65

)
Circular 100% ( 20

20
) Circular 100% ( 20

20
)

Square 96% ( 24
25
) Square 92% ( 23

25
)

mlpNN

Segway
100%

(58
58

)

Random 96% ( 24
25
)

98%

(57
58

)

mlpNN

Segway
100%

(58
58

)

Random 96% ( 24
25
)

98%

(57
58

)
Circular 100% ( 13

13
) Circular 100% ( 13

13
)

Square 100% ( 20
20
) Square 100% ( 20

20
)

Pioneer
100%

(65
65

)

Random 100% ( 20
20
)

100%

(65
65

)
Pioneer

100%

(65
65

)

Random 85% ( 17
20
)

92%

(60
65

)
Circular 100% ( 20

20
) Circular 95% ( 19

20
)

Square 100% ( 25
25
) Square 96% ( 24

25
)



18 Distributed Sensor Networks - 2nd Edition

TABLE 1.3: Comparison of computational complexity of feature extraction methods

Method
Training Stage Testing Stage

execution time memory requirement execution time memory requirement

SDF 5.21 sec 65.2 MB 5.17 sec 64.9 MB

PCA 6.62 sec 233.85 MB 0.04 sec 37.5 MB

originate from the robot recognition stage. The success rate in recognizing Segway motion is

slightly lower due to the following possible reasons: (i) complicated kinematics of the Segway

robot, and (ii) the non-stationarity in the samples due to uncertainties in the laboratory

environment (e.g., floor friction). It is expected that this accuracy would further improve

if the number of stationary samples is increased. The right part of Table 1.2 shows that

PCA yields slightly worse (but still comparable) results than SDF in robot recognition.

However, SDF significantly outperforms PCA in motion recognition, because the feature

vectors extracted by PCA lack class separability among different types of motions, which

in turn yields poor motion recognition accuracy.

The proposed SDF-based method has a computational complexity of O(N) for a given

algebraic structure of the PFSA, with a leading constant that is proportional to the number

of scales used in the wavelet transform [25]. A comparison of the computational complexity

of SDF and PCA is presented in Table 1.3 in terms of execution time and memory require-

ments for processing each data set. For the data set consisting of 3.0 × 105 data points,

which is about 3.5 minutes of the experimentation time, it takes an average of 5.21 seconds

for SDF and 6.62 seconds for PCA to process each data set in the training stage, respec-

tively. The memory requirement is 65.2 MB for SDF, and 233.9 MB for PCA. PCA takes

longer execution time and consumes more memory in the training stage because it needs to

calculate the covariance matrix using all training data sets. In the testing stage, the execu-

tion time and memory requirement for SDF are almost the same as those in the training

stage, while the PCA requires less time and memory than those in the training stage. Both

feature extraction methods have real-time implementation capability since the execution

time in the testing stage is much less than the experiment time spent for collecting each

data set. The rationale for SDF taking longer time than PCA in the testing stage is that

the SDF-based method involves wavelet transformation and PFSA construction from the

two-dimensional wavelet image in both training and testing stages, while the PCA-based

method only involves Fourier transform and finding the projection of the testing data set

using the projection matrix that is already constructed in the training stage; this is a price

paid for the superior performance and robustness achieved in SDF-based feature extraction

(see Table 1.2). It is anticipated that the PCA-based method will be relatively slower if

the raw time-series is (more effectively) de-noised by wavelet transform instead of Fourier

transform. In these experiments, the data analysis was performed on a 2.83 GHz Quad Core

CPU desktop computer with 8.0 GB of RAM.
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6 Validation II: Target Detection and Classification Using Seismic

and PIR Sensors

The objective of this application is to detect and classify different targets (e.g., humans,

vehicles, and animals led by human), where seismic and PIR sensors are used to capture the

characteristic signatures. For example, in the movement of a human or an animal across the

ground, oscillatory motions of the body appendages provide the respective characteristic

signatures.

The seismic and PIR sensor data, used in this analysis, were collected on multiple days

from test fields on a wash (i.e., the dry bed of an intermittent creek) and at a choke point

(i.e., a place where the targets are forced to go due to terrain difficulties). During multiple

field tests, sensor data were collected for several scenarios that consisted of targets walking

along an approximately 150 meters long trail, and returning along the same trail to the

starting point. Figure 1.10 illustrates a typical data collection scenario.

Start
Return 

Start 

Point

Sensor Site 1 Sensor Site 2

Sensor Site 3

Point

150 meters

FIGURE 1.10: Illustration of the test scenario with three sensor sites

( ) H (b) V hi l ( ) A i l l d b h(a) Human (b) Vehicle (c) Animal led by human

FIGURE 1.11: Examples of test scenarios with different targets

The targets consisted of (male and female) humans, animals (e.g., donkeys, mules, and

horses), and all-terrain vehicles (ATVs). The humans walked alone and in groups with

and without backpacks; the animals were led by their human handlers (simply denoted as

“animal” in the sequel) and they made runs with and without payloads; and ATVs moved

at different speeds (e.g., 5 mph and 10 mph). Examples of the test scenarios with different

targets are shown in Fig. 1.11. There were three sensor sites, each equipped with seismic

and PIR sensors. The seismic sensors (geophones) were buried approximately 15 cm deep
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FIGURE 1.12: Tree structure formulation of the detection & classification problem

underneath the soil surface, and the PIR sensors were collocated with the respective seismic

sensors. All targets passed by the sensor sites at a distance of approximately 5 m. Signals

from both sensors were acquired at a sampling frequency of 10 kHz.

The tree structure in Fig. 1.12 shows how the detection and classification problem is

formulated. In the detection stage, the pattern classifier detects the presence of a moving

target against the null hypothesis of no target present; in the classification stage, the pattern

classifiers discriminate among different targets, and subsequently identify the movement

type and/or payload of the targets. While the detection system should be robust to reduce

the false alarm rates, the classification system must be sufficiently sensitive to discriminate

among different types of targets with high fidelity. In this context, feature extraction plays

an important role in target detection and classification because the performance of classifiers

largely depends on the quality of the extracted features.

In the classification stage, there are multiple classes (i.e., humans, animals, and vehicles);

and the signature of the vehicles is distinct from those of the other two classes. Therefore,

this problem is formulated into a two-layer classification procedure. A binary classification

is performed to detect the presence of a target and then to identify whether the target

is a vehicle or a human/animal. Upon recognizing the target as a human/animal, another

binary classification is performed to determine its specific class. More information could be

derived upon recognition of the target type. For example, if the target is recognized as a

human, then further binary classifications are performed to identify if the human is running

or walking, and if the human is carrying a payload or not.

Field data were collected in the scenario illustrated in Fig. 1.10. Multiple experiments

were made to collect data sets of all three classes, i.e., human, vehicle and animal. The data

were collected over three days at different sites. Table 1.4 shows the number of runs of each

class.
Each data set, acquired at a sampling frequency of 10 kHz, has 100, 000 data points

that correspond to 10 seconds of the experimentation time. In order to test the capability

of the proposed algorithm for target detection, a similar data set was collected with no

target present. The problem of target detection is then formulated as a binary pattern

classification, where no target present corresponds to one class, and target present (i.e.,
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TABLE 1.4: The number of feature vectors for each target class

Day 1 Day 2 Day 3 Total

No target 50 36 32 118

Vehicle 0 8 0 8

Human 30 22 14 66

Animal 20 6 18 44

human, vehicle or animal) corresponds to the other class. The data sets, collected by the

channel of seismic sensors that are orthogonal to the ground surface and the PIR sensors

that are collocated with the seismic sensors, are used for target detection and classification.

For computational efficiency, the data were downsampled by a factor of 10 with no apparent

loss of information.

Figure 1.13 depicts the flow chart of the proposed detection and classification algorithm

that is constructed based on the theories of symbolic dynamic filtering (SDF) and support



22 Distributed Sensor Networks - 2nd Edition

vector machines (SVM) [3]. The proposed algorithm consists of four main steps: signal

preprocessing, feature extraction, target detection, and target classification, as shown in

Fig. 1.13.

In the signal preprocessing step, the DC component of the seismic signal is eliminated,

and the resulting zero-mean signal is normalized to unit variance. The amplitude of seismic

signal of an animal with a heavy payload walking far away is possibly similar to that of

a pedestrian passing by at a close distance due to the fact that the signal-to-noise ratio

(SNR) decreases with the distance between the sensor and the target. The normalization of

all signals to unit variance makes the pattern classifier independent of the signal amplitude

and any discrimination should be solely texture-dependent. For PIR signals, only the DC

component is removed and the normalization is not performed because the range of PIR

signals do not change during the field test.

In the feature extraction step, SDF captures the signatures of the preprocessed sensor

time-series for representation as low-dimensional feature vectors. Based on the spectral

analysis of the ensemble of seismic data at hand, a series of pseudo-frequencies from the

1-20 Hz bands have been chosen to generate the scales for wavelet transform, because

these bands contain a very large part of the footstep energy. Similarly, a series of pseudo-

frequencies from the 0.2-2.0 Hz bands have been chosen for PIR signals to generate the

scales. Upon generation of the scales, continuous wavelet transforms (CWT) are performed

with an appropriate wavelet basis function on the seismic and PIR signals. The wavelet

basis db7 is used for seismic signals because it matches the impulse shape of seismic signals,

and db1 is used for the PIR case because PIR signals’ shape is close to that of square

waves. A maximum-entropy wavelet surface partitioning is then performed. Selection of the

alphabet size |Σ| depends on the characteristics of the signal; while a small alphabet is

robust against noise and environmental variations, a large alphabet has more discriminant

power for identifying different objects. The same alphabet is used for both target detection

and classification. The issues of optimization of the alphabet size and data set partitioning

are not addressed in this chapter. Subsequently, the extracted low-dimensional patterns are

used for target detection and classification. One pattern is generated from each experiment,

and the training patterns are used to generate the separating hyperplane in SVM.

6.1 Performance Assessment using Seismic Data

This subsection presents the classification results using the patterns extracted from seis-

mic signals using SDF. The leave-one-out cross-validation method [3] has been used in the

performance assessment of seismic data. Since the seismic sensors are not site-independent,

they require partial information of the test site, which is obtained from the training set

in the cross-validation. Results of target detection and classification, movement type and

target payload identification are reported in this section.

6.1.1 Target Detection and Classification

Figure 1.14 shows the normalized seismic sensor signals and the corresponding feature

vectors extracted by SDF of the three classes of targets and the no target case. It is observed
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FIGURE 1.14: Examples of seismic sensor measurements (top) and the corresponding

feature vectors extracted by SDF of the four classes (bottom)

TABLE 1.5: Confusion matrices of leave-one-out cross-validation using SDF and kurtosis

SDF No target Vehicle Human Animal

No target 114 1 1 2

Vehicle 0 7 1 0

Human 3 0 61 2

Animal 0 0 1 43

Kurtosis No target Vehicle Human Animal

No target 102 0 5 11

Vehicle 0 0 7 1

Human 1 0 47 18

Animal 1 0 30 13

that the feature vectors are quite different among the no target, vehicle, and human/animal

cases. The feature vectors of human and animal are somewhat similar and yet still dis-

tinguishable. In the feature vector plots in Fig. 1.14, the states with small index number

corresponds to the wavelet coefficients with large values, and vice versa.

For the purpose of comparative evaluation, kurtosis analysis [33] has been used for target

detection and classification as a benchmark tool of footstep detection. Kurtosis analysis is

useful for footstep detection because the kurtosis value is much higher in the presence of



24 Distributed Sensor Networks - 2nd Edition

TABLE 1.6: Comparison of detection and classification accuracy using SDF and kurtosis

Detection
Classification

Vehicle vs. Others Human vs. Animal

SDF 97.0% 99.1% 97.2%

Kurtosis 92.4% 93.1% 55.6%

impulse events (i.e., target present) than in the absence of a target [33]. The results of

SDF and kurtosis analysis are shown in Table 1.5. The shaded area in Table 1.5 represents

the confusion matrices of target classification. The detection and classification accuracy is

summarized in Table 1.6. Although the performance of kurtosis analysis is slightly inferior,

it is comparable to that of SDF for target detection and vehicle classification; however, SDF

significantly outperforms kurtosis analysis for distinguishing humans from animals.

The execution of the Matlab code takes 2.27 seconds and 43.73 MB of memory for SDF

and SVM on a desktop computer to process a data set of 10, 000 points and perform pattern

classification with the following parameters: alphabet size |Σ| = 8, number of scales |α| = 4,

window size ` × ` = 2 × 2, number of most probable symbol m = 1, and quadratic kernel

for SVM. Pattern classification consumes about 80% of the total execution time because by

using leave-one-out cross-validation, the pattern classifier need to be trained with all the

remaining patterns (e.g., 235 in the detection stage). The choice of quadratic kernel in SVM

improves the performance of the classifier; however, it also increases the computation time

in training the classifier. It is expected that the execution time and memory requirements

will be reduced significantly if fewer training patterns are used.

6.1.2 Movement Type Identification

Upon recognition of human, more information can be derived by performing another

binary classification to identify whether the human is running or walking. The physical

explanations are: i) the cadence (i.e., interval between events) of human walking is usually

larger than the cadence of human running; ii) the impact of running on the ground is much

stronger than that of walking, and it takes longer for the oscillation to decay. Figure 1.15

shows the seismic signal and corresponding feature vectors of human walking and running.

The feature vectors of human walking and running are very different from each other,

which is a clear indication that the SDF-based feature extraction method is able to capture

these features (cadence and impact). It is noted that the feature vectors shown in Fig. 1.15

are different from those in Fig. 1.14 because different partitions are used in the target

classification and movement type identification stages.

Ideally, the identification of movement type should be performed based on the results of

human classification. However, in order to assess the performance of SDF in this particular

application, a binary classification between human walking and human running is directly

performed, and the result is shown in Table 1.7. It is seen in Table 1.7 the proposed feature

extraction algorithm and SVM are able to identify the human movement type with an

accuracy of 90.9%.
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FIGURE 1.15: Examples of seismic sensor measurements (top) and the corresponding

feature vectors extracted by SDF (bottom) for human walking and running

TABLE 1.7: Confusion matrix of leave-one-out cross-validation for movement type iden-

tification

Human Walking Human Running

Human Walking 47 1

Human Running 5 13

6.2 Performance Assessment using PIR Data

PIR sensors are widely used for motion detection. In most applications, the signals from

PIR sensors are used as discrete variables (i.e., on or off). This may work for target detection,

but will not work well for target classification because the time-frequency information is

lost in the discretization. In this chapter, the PIR signals are considered to be continuous

signals, and continuous wavelet transform (CWT) is used to reveal the distinction among

different types of targets in the time-frequency domain. Since the PIR sensor does not

emit an infrared beam but merely passively accepts incoming infrared radiation, it is less

sensitive to environmental variations (i.e., variation in test sites) than the seismic sensor.

A three-way cross-validation [3] is used for the performance assessment of PIR data. The

data are divided into three sets by date (i.e., Day 1, Day 2 and Day 3) and three different

sets of experiments are performed:

1. Training: Day 1 + Day 2; Testing: Day 3

2. Training: Day 1 + Day 3; Testing: Day 2

3. Training: Day 2 + Day 3; Testing: Day 1
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FIGURE 1.16: Examples of PIR sensor measurements (top) and the corresponding feature

vectors extracted by SDF (bottom) of the four classes

Training and testing on feature vectors from different days is very meaningful in practice.

In each run of the cross-validation, no prior information is assumed for the testing site or

the testing data. The classifiers’ capability to generalize to an independent data set is

thoroughly tested in the three-way cross-validation. In this section, four types of targets

are considered, namely, no target, human walking, human running, animal led by human.

Following Fig. 1.13, the following cases are tested:

1. Detection of target presence against target absence;

2. Classification of target type, i.e., Human vs. Animal;

3. Classification of target movement type (i.e., walking vs. running) upon recognition of

the target as human.

Figure 1.16 shows the PIR sensor measurements (top) and the corresponding feature

vectors extracted by SDF (bottom) of the four classes. For the no target case, the PIR

signal fluctuates around zero and no information is embedded in the wavelet coefficients,

thus the states in the middle (i.e., states 3-10) are occupied; whereas for the target present

cases, the PIR sensors are excited by the presence of the targets, so states 1-2 and 11-12

that correspond to the crests and troughs in the PIR signals are more populated than other

states.

The following parameters are used in SDF and SVM for processing the PIR signals:

alphabet size |Σ| = 12, number of scales |α| = 3, window size ` × ` = 2 × 2, number of

most probable symbol m = 1, and quadratic kernel for SVM. The execution of SDF and

SVM takes 1.13 seconds and 39.83 MB of memory on a desktop computer to process a data

set of 1× 104 points, which is a clear indication of the real-time implementation capability

onboard UGS systems.

Table 1.8 shows the confusion matrix of the three-way cross-validation results using PIR

sensors. The shaded area represents the target classification stage. It is seen in Table 1.8
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TABLE 1.8: Confusion matrix of the three-way cross-validation

No target
Human

Animal
Walking Running

No target 110 0 0 0

Human
Walking 1 33 7 7

Running 0 5 13 0

Animal 0 2 0 42

that the proposed feature extraction algorithm works very well with the PIR sensor; the

target detection accuracy is 99.5%, the human/animal classification accuracy is 91.7%, and

the human movement type classification accuracy is 79.3%. Leave-one-out cross-validation

usually underestimates the error rate in generalization because more training samples are

available; it is expected that the classification accuracy will further improve for the PIR

signals if leave-one-out cross-validation is used.

7 Summary, Conclusions and Future work

This chapter addresses feature extraction from sensor time-series data for situation

awareness in distributed sensor networks. While wavelet transformation of time series has

been widely used for feature extraction owing to their time-frequency localization properties,

the work reported here presents a symbolic dynamics-based method for feature extraction

from wavelet images of sensor time series in the (two-dimensional) scale-shift space. In this

regard, symbolic dynamics-based models (e.g., probabilistic finite state automata (PFSA))

are constructed from wavelet images as information-rich representations of the underlying

dynamics, embedded in the sensor time series. Subsequently, low-dimensional feature vec-

tors are generated from the associated Perron-Frobenius operators (i.e., the state-transition

probability matrices) of the PFSA. These feature vectors facilitate in-situ pattern classifica-

tion for decision-making in diverse applications. The proposed method has been experimen-

tally validated for two different applications: (i) identification of mobile robots and their

motion profiles in a laboratory environment, and (ii) target detection & classification from

the field data of unattended ground sensors (UGS).

The proposed SDF-based feature extraction and pattern classification methodology is

executable in real time on commercially available computational platforms. A distinct ad-

vantage of this method is that the low-dimensional feature vectors, generated from sensor

time series in real time, can be communicated as short packets over a limited-bandwidth

wireless sensor network with limited-memory nodes.

Further theoretical and experimental research is recommended in the following areas:

1. Exploration of other wavelet transform techniques for wavelet image generation;
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2. Optimization of the partitioning scheme for symbolization of the wavelet images;

3. Experimental validation in other applications.
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[25] Arrate Mun̈oz, Raphaël Ertlé, and Michael Unser. Continuous wavelet transform with

arbitrary scales and o(n) complexity. Signal Processing, 82(5):749 – 757, 2002.

[26] D. B. Percival and A. T. Walden. Wavelet Methods for Time Series Analysis. Cam-

bridge University Press, Cambridge, UK, 2000.

[27] S. Pittner and S. V. Kamarthi. Feature extraction from wavelet coefficient for pattern

recognition tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence,

21(1):83–88, 1999.



Symbolic Dynamic Filtering for Pattern Recognition in Distributed Sensor Networks 31

[28] V. Rajagopalan and A. Ray. Symbolic time series analysis via wavelet-based partition-

ing. Signal Processing, 86(11):3309–3320, Nov 2006.

[29] C. Rao, A. Ray, S. Sarkar, and M. Yasar. Review and comparative evaluation of

symbolic dynamic filtering for detection of anomaly patterns. Signal, Image, Video

Processing, 3:101–114, 2009.

[30] A. Ray. Symbolic dynamic analysis of complex systems for anomaly detection. Signal

Processing, 84(7):1115–1130, 2004.

[31] R. Rosipal, M. Girolami, and L. Trejo. Kernel PCA feature extraction of event-related

potentials for human signal detection performance. Proc. Int. Conf. Artificial Neural

Networks Medicine Biol., pages 321–326, 2000.

[32] A. Subbu and A. Ray. Space partitioning via Hilbert transform for symbolic time series

analysis. Applied Physics Letters, 92(8):084107–1 to 084107–3, 2008.

[33] G.P. Succi, D. Clapp, R. Gampert, and G. Prado. Footstep detection and tracking.

In Unattended Ground Sensor Technologies and Applications III, volume 4393, pages

22–29. SPIE, 2001.

[34] C. J. Veenman, M. J. T. Reinders, E. M. Bolt, and E. Baker. A maximum variance

cluster algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence,

24(9):1273–1280, 2002.

[35] K. P. Zhu, Y. S. Wong, and G. S Hong. Wavelet analysis of sensor signals for tool

condition monitoring: A review and some new results. International Journal of Machine

Tools and Manufacture, 49:537–553, 2009.

[36] Walter Zucchini and Iain L. MacDonald. Hidden Markov Models for Time Series: An

Introduction. CRC Press, Boca raton, FL, USA, 2009.


