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DATA -ENABLED HEALTH M ANAGEMENT OF
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Abstract

Complex industrial systems, such as gas turbine engineshany heterogeneous
subsystems (e.g., thermal, mechanical, hydraulic antrelal} with complex thermal-
hydraulic, electro-mechanical, and electronic inteawi Schedule-based policies are
largely followed in the industry for maintenance of compdgstems. Since the degra-
dation profiles of individual systems are usually differdoe to manufacturing and
usage variations, a scheduled maintenance policy in messdaecomes either overly
conservative or a source of serious safety concern. This foaldevelopment of reli-
able and cost-effective health management for complexsimidili systems. However,
reliable first-principle modeling of such systems may oftenvery expensive (e.g.,
in terms of computational memory, execution time, and caist) hence may become
inappropriate for condition monitoring, fault detectialiagnostics and prognostics.

This chapter describes a data-driven framework to obtastratt models of com-
plex systems from multiple sensor observations to enahieliton monitoring, di-
agnostics and supervisory control. The algorithms are @itated in the setting of
symbolic dynamic filtering (SDF) that has been recently regzbin literature. The un-
derlying concept of SDF is built upon the principles of sydibdynamics, statistical
pattern recognition, probabilistic graphical models anfdrimation theory. SDF was
initially developed for statistically quasi-stationargtd and then it was successfully
extended to analysis of transient data. The tool-chainlvegdata space abstraction
for analyzing mixed data (i.e., continuous, discrete ateigmrical) without significant
loss of information. Spatiotemporal pattern discovery &ifun algorithms have been
built upon Markovian & Bayesian network concepts and hestiglius classifications
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by using machine learning techniques. The chapter als@pigspplications of the
generic data-driven tool in heterogeneous areas, suclulisifdection in aircraft gas
turbine engines, fatigue damage prediction in structuegemials, and health monitor-
ing in nuclear power plants & ship-board auxiliary systems.

1. Introduction

With the advent of advanced sensing and computational ressuopportunities for data-
driven technologies have become abundant in most of thesinds dealing with complex
human-engineered systems. Need for high-fidelity conditimnitoring, fault detection,
diagnostics and prognostics also grew due to the increastegconnectedness of such
electro-mechanical systems. Apart from the physical carepts, their cyber counterparts
added another dimension from the perspective of complexitgertainty and disturbance.
Although model-based approaches have shown their merisliwe the understanding of
physical phenomena to detect and isolate faults in indglstgistems, data-driven meth-
ods are receiving increased attention to address the ymugissues, such as scalability,
robustness and cost of deployment. To this end, this chaptamarizes the decade-long
development of a statistical time-series analysis todéddahe Symbolic Dynamic Filtering
(SDF) that has been shown to be extremely effective for naosindustrial systems, some
of which will be discussed here.

The chapter is organized in six sections including the prtesee which briefly intro-
duces the notion of nonlinear time series analysis and pres#iee two-time-scale problem
formulation for anomaly detection using symbolic dynamitefing. Section 1.1.2. pro-
vides a brief overview of symbolic dynamics and encodingiwiet series data. Before
describing different aspects of the SDF tool-chain, Sackiointroduces the industrial ap-
plications that will be used to illustrate the capabilitesd performance of the tool. This
applications include Gas Turbine engines, Fatigue damiag®gms, Nuclear power plants
and Ship-board auxiliary systems. The first step of the ¢tbaln is data space abstraction
where raw time-series can be transformed into a more saitiivhain via wavelet or Hilbert
transform. After the pre-processing step time-series aspatially abstracted via a dis-
cretization process known as partitioning. Details aniktias of the abstraction procedure
are presented in Section 3.. While the standard steadysstatbolic modeling is discussed
at length in 1.1., a recent development to encode shortHdirge-series motifs after parti-
tioning is discussed in Section 4.. This section also higittéi the classification scheme of
such motifs. Today’s industrial systems almost always arritared by multiple sensors of
heterogeneous modality and it is getting increasingly @lwito design health management
systems with information fusion capability. However, mothe state-of-the art fusion
technologies deployed today fuse information at the dewcifayer after extracting condi-
tion indicators from individual sensors. This strategyfeusf from acute loss of information
that may prevent early detection and prognostics. To this 8BDF has a unique advantage
especially due to the data abstraction step in the abiliseaimless fusion of multi-sensor
information at the data and feature layers and Section Septs this capability in detail.
Finally, Section 6. summarizes and concludes the chaptarracommendations for future
research directions.
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Slow time epochs

Fast time
instants

Figure 1. Pictorial view of the two time scales: Slow time scal®f system evolution and
(ii) Fast time scaldor data acquisition and signal conditioning

1.1. General Framework of Symbolic Dynamic Filtering (SDF)

Symbolic Dynamic Filtering (SDF) is built upon the conceftsm multiple disciplines
including Statistical Mechanics [1, 2], Symbolic Dynamj[8} Statistical Pattern Recogni-
tion [4], and Information Theory [5]. It is shown to be a fasfficient and computationally
inexpensive pattern recognition tool. These qualitiesmeicularly important require-
ments for autonomous cyber-physical system applicatibiisis been shown by laboratory
experimentation [6] that this method of pattern identifimatyields superior performance in
terms of early detection of anomalies and robustness tourgagnt noise in comparison
with other existing techniques such as Principal CompoAeatysis, (PCA) and Artificial
Neural Networks (ANN).

1.1.1. A Brief Overview

The Symbolic Dynamic Filtering (SDF) technique is built apihe concept of two time-
scales while analyzing time-series data from a given dyoalsiystem. Théast time scale
is related to the response time of the system dynamics. @eesptan of a given time series
data sequence, the dynamic behavior of the system is asdomadain invariant, i.e., the
process is quasi-stationary on the fast time scale. On tier band, thelow time scales
related to the time span over which the critical parametéthesystem may change and
exhibit non-stationary dynamics. The concept of two timalex is illustrated in Fig. 1,
where a long time span in the fast scale could be a tiny tineevat in the slow scale.

1.1.2. Symbolic Dynamics Encoding, and State Machine

The basic concepts &ymbolic Dynamiceclude:

1. Encoding (possibly nonlinear) system dynamics from olesktime series data for
generation of symbol sequences.
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2. Construction of probabilistic finite state automakaF(S A) from symbol sequences
for generation of pattern vectors for representation ofdindronment’s dynamical
characteristics.

The continuously-varying finite-dimensional model of a dgmcal system is usually for-
mulated in the setting of an initial value problem as:

B fx().0(1.)): x(0) = x0, )
wheret € [0, c0) denotes the (fast-scale) timec R" is the state vector in the phase space;
andf € R’ is the (possibly anomalous) parameter vector varying imwslcale) timet,.
LetQ) C R™ be a compact (i.e., closed and bounded) region, within wthieltrajectory of
the dynamical system, governed by Eq. (1), is circumscriéte region(? is partitioned
into a finite number of (mutually exclusive and exhaustivad)s; so as to obtain a coordinate
grid. Let the cell, visited by the trajectory at a time ingtdoe denoted as a random variable
taking a symbol value from the alphal¥t An orbit of the dynamical system is described
by the time series data a8: = {xq, x1,x2, - - }, where eack; € 2, which passes through
or touches one of the cells of the partition. Each initiatestgy € (2 generates a sequence
of symbols defined by a mapping from the phase space into thba@yspace as:

X0 = 0§00, Ty - - - (2)

where eaclv;,, k = 0,1,--- takes a symbol from the alphabEt The mapping in Eq.
(2) is calledSymbolic Dynamicas it attributes a legal (i.e., physically admissible) spinb
sequence to the system dynamics starting from an initié.stdihe partition is called a
generating partition of the phase sp&td every legal (i.e., physically admissible) symbol
sequence uniquely determines a specific initial condixignin other words, every (semi-
infinite) symbol sequence uniquely identifies one contisuspace orbit [7].

In physics and signal processing literature, similar pdoce is known as coarse-
graining or quantization. However, in both cases, typjcattry fine and uniform quan-
tization cells are considered to reduce loss of informati@m the other hand, literature
of dynamical systems in mathematics presents the concggartifioning in the context of
symbolic dynamics. Unlike coarse-graining or quantizatioartitioning typically involves
nonuniform and much coarser representation of the phase sphich entails a low order
modeling of complex dynamical systems. Moreover, in casegg#nerating partition, there
is no loss of information. Although symbolic dynamics is galed to (possible) loss of
information resulting from granular imprecision of paditing boxes, the essential robust
features (e.g., periodicity and chaotic behavior of antpdre expected to be preserved in
the symbol sequences through an appropriate partitiorfitgegphase space [8].

Thus partitioning a finite region of the phase space leadsapping from the parti-
tioned space into the symbol alphabet [9]. This represespatial and temporal discretiza-
tion of the system dynamics defined by the trajectories. GAdfh the theory of phase-
space partitioning is well developed for one-dimensionappings [7], very few results are
known for two and higher dimensional systems. Furthermtbre,state trajectory of the
system variables may be unknown in case of systems for whitlodel as in Eq. (1) is
not known or is difficult to obtain. As such, as an alternatithe time series data set of
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selected observable outputs can be used for partitionidgsgmbolic dynamic encoding.
In general, the time series data can be generated from tlilatdgasensors and/or from
analytically derived model variables. After partitionjrtpe symbol sequence is converted
into a probabilistic finite-state machine, that is consdess the compressed abstract model
of the system.

1.1.3. Phase Space Partitioning

Several partitioning techniques have been reported imatitee for symbol genera-
tion [10][11], primarily based on symbolic false nearesgheors N N). These tech-
nigues rely on partitioning the phase space and may becombersome and extremely
computation-intensive if the dimension of the phase spadarge. Moreover, if the time
series data is noise-corrupted, then the symbolic falsghbers would rapidly grow in
number and require a large symbol alphabet to capture thiegetrinformation on the sys-
tem dynamics. Therefore, symbolic sequences as représestaf the system dynamics
should be generated by alternative methods because pbase-gartitioning might prove
to be a difficult task in the case of high dimensions and pEsef noise. The wavelet
or Hilbert transforms largely alleviate the difficulties plfiase-space partitioning and are
particularly effective with noisy data from high-dimensa dynamical systems [12, 13].
A further theoretical development has been made to gemerHlilbert transform [14] that
might prove to be a better choice as a pre-processing tastiniq

In both of these approaches, time series data are first dedver wavelet domain or
analytic signal domain, and the transformed space is themigaed with alphabet size
|X| into segments. The choice ¢f| depends on specific experiments, noise level and
also the available computation power. A lamgiphabetmay be noise-sensitive while a
small alphabet could miss the details of signal dynamicg. [Ithe partitioning can be
done such that the regions are partitioned uniformly (ewidth) or the regions with more
information are partitioned finer and those with sparsermttion are partitioned coarser.
This is achieved by maximizing the Shannon entropy [5], Wiiécdefined as:

Rl

S==> pilog(p:) 3)
i=1

wherep; is the probability of a data point to be in ti& partition segment. In this case,
the size of the cells is smaller for regions with higher dgnef data points to ensures an
unbiased partition such that each cell is allocated equabeu of visits at the nominal con-
dition. Uniform probability distribution, i.ep; = ‘% fori =1,2,...|%|, is a consequence
of maximum entropy partitioning [12]. In the illustrativeample of Fig. 2, the partitioning

contains 4 cells (i.e., line intervals in this case).

Apart from this maximum entropy (equal frequency) or umidequal width) partition-
ing schemes, partitioning can be optimized based on othjecibke functions. This will be
discussed in details later. Once the partitioning is dorik alphabet siz¢>:| at a reference
slow time scale condition, it is kept constant for all sloméi epochs, i.e., the structure of
the partition is fixed at the reference condition. Thereftine partitioning structure gen-
erated at the reference condition serve as the reference flar computation of pattern
vectors from time series data at subsequent slow time epochs
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Figure 2.An Example of Partitioning
1.1.4. Probabilistic Finite State Automata (°F'S A) Construction

Once the symbol sequence is obtained, the next step is tistrection of a Probabilistic
Finite State AutomatonKF'S A) (as shown in Fig. 3) and calculation of the respective state
probability vector. The partitioning (see Fig. 2) is penfiad at the reference slow time
epoch. APFSA is then constructed, where the states of the machine aresdefirre-
sponding to a givemlphabetsetY and window lengthD. This explicit state construction
method helps defining abstract states for systems withawgiderable domain knowledge.
The alphabet sizg:| is the total number of partition segments while the windomgté D
is the length of consecutive symbol words [15], which areseimoas all possible words of
length D from the symbol sequence. Each state belongs to an equieatdass of sym-
bol words of lengthD, which is characterized by a word of lengthat the leading edge.
Therefore, the number of such equivalence classes (i.e., states) is less tharual &othe
total permutations of the alphabet symbols within wordseofgth D. That is,n < |%|7;
some of the states may be forbidden with zero probabilityagiuorence. For example, if
¥ ={0,1}, i.e.,|X| = 2 and if D = 2, then the number of statesiis< |S|P = 4; and the
possible states afi®, 01, 10, and11.

The choice of|3| and D depends on specific applications and the noise level in the
time series data as well as on the available computation pang memory availability.
As stated earlier, a largephabetmay be noise-sensitive and a small alphabet could miss
the details of signal dynamics. Similarly, while a largefueaof D is more sensitive to
signal distortion, it would create a much larger number atiest requiring more computation
power and increased length of the data sets. For the analydeta sets in this research,
the window length is set td=1; consequently, the set of stat€sis equivalent to the
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Figure 3. Example of Finite State Automaton

symbol alphabek. With the selection of the parametefs=1 and|>|=8, the PF'S A has
only 8 states, which yields very fast computation and low mgmequirements; hence, the
algorithm is capable of early detection of anomalies anéieant faults. However, other
applications, such as two-dimensional image processi@y, nequire larger values of the
parametetrD and hence possibly larger number of states inflies A.

Using the symbol sequence generated from the time serias tthat state machine is
constructed on the principle of sliding block codes [3]. Wiedow of lengthD on the
symbol sequence..o;, oy, ...0, ... is shifted to the right by one symbol, such that it
retains the lastp-1) symbols of the previous state and appends it with the ry@abel
o;, at the end. The symbolic permutation in the current windovegjrise to a new state.
The PF'S A constructed in this fashion is called tii&Markov machine [15], because of
its Markov properties.

Definition 1..1. A symbolic stationary process is callé&tMarkov if the probability of the
next symbol depends only on the previdusymbols, i.e.,
P (0-7;0‘O-i—l""o'ifDO'ifol"") =P (Uz'o’Uz',l----Ui,D)-

The finite state machine constructed above Basglarkov properties because the prob-
ability of occurrence of symbat;, on a particular state depends only on the configuration
of that state, i.e., the previouds symbols. Once the alphabet si2& and word lengthD
are determined at the nominal condition (i.e., time ep¢hthey are kept constant for all
other slow time epochs. That is, the partitioning and theesteachine structure generated
at the reference condition serve as the reference framefarahalysis at subsequent slow
time epochs.
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The states of the machine are marked with the correspongimbalic word permuta-
tion and the edges joining the states indicate the occugreha symbob;,. The occurrence
of a symbol at a state may keep the machine in the same stateverinto a new state.

Definition 1..2. The probability of transitions from statg to stateg;, belonging to the set
Q) of states under a transitiof : () x ¥ — @ is defined as

ij:P(UGE\é(qj,a)%qk);Zﬂjkzl; 4)
k

Thus, for aD-Markov machine, the irreducible stochastic maililx= [r;;] describes
all transition probabilities between states such that st &iamost>|”*! nonzero entries.
The left eigenvectop corresponding to the unit eigenvalue f is the state probability
vector under the (fast time scale) stationary conditiorhefdynamical system [15].

On a given symbol sequence.o;, 0;,...05, ... generated from the time series data col-
lected at a slow time epoch, a window of lendthis moved by keeping a count of occur-
rences of word sequences - - - 0;,0;,,, ando;, --- 0;;,, Which are respectively denoted
by N(oi, - - 0ip0ip,,) @NdN (0, - - - 05,). Note that it N (o, - - - 05, ) = 0, then the state
q = 04, ---0i, € Q has zero probability of occurrence. Fdi(o;, ---0;,) # 0, the
transitions probabilities are then obtained by these faqy counts as follows:

Plar: 4j) _ P(oy, - 0i,0)
P(qj) P(Uh "'UiD)
N(Uil"'UiDU)
N(Uil "'UiD)

ik = Parlg;) =

where the corresponding states are denoteg by o;, 04, - - - 05, andqy, = 0, - - 04, 0.

The time series data at the reference condition, set as &imank, generates thatate
transition matrixII that, in turn, is used to obtain thetate probability vectoiq whose
elements are the stationary probabilities of the stateovewshereq is the left eigenvector of
IT corresponding to the (unique) unit eigenvalue. The staibahility vectorp is obtained
from time series data at a (possibly) faulty condition. Thetifoning of time series data
and the state machine structure should be the same in batk basthe respective state
transition matrices could be different.

Pattern changes may take place in dynamical systems owertish® epochs due to
various reasons. The pattern changes are quantified asioesicom the reference pattern
(i.e., the probability distribution at the reference cdiudh). To identify variation of a single
parameter in the dynamical system, the resulting anomg@lesdeviations of the evolving
patterns from the reference pattern) are characterized dwalar-valued function, called
anomaly measurg. The anomaly measures are obtained as:

p=d(p,q) (6)

where thel(e, e) is an appropriately defined distance function. An extenefdhis method
for identification of multiple parameters in dynamical et has also been made in [16].
Instead of using the low dimensional state probability ¥ees a pattern, the entire Perron-
Frobenius operator (state transition matrix) may be useith@pattern to reduce loss of
information.
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1.1.5. Stopping Rule for Determining Symbol Sequence Lenigt

A stopping rule is necessary to find a lower bound on the lenfigymbol sequence re-
quired for parameter identification of the stochastic malli. The stopping rule [17] is
based on the properties of irreducible stochastic matfit@ls The state transition matrix,
constructed at the'” iteration (i.e., from a symbol sequence of length r), is dedas
II(r) that is ann x n irreducible stochastic matrix under stationary condgio8imilarly,
the state probability vectqy(r) = [p1(r) p2(r) - pn(r)] is obtained as

pi(r) = S (7)

j=17i
wherer; is the number of symbols in thé" state such thap ", = r for a symbol
sequence of length r. The stopping rule makes use of therREBrabenius Theorem [18]
to establish a relation between the veqiér) and the matridI(r). Since the matridI(r)
is stochastic and irreducible, there exists a unique eaaew = 1 and the corresponding
left eigenvectop(r) (normalized to unity in the sense of absolute sum). The Igérevec-
tor p(r) represents the state probability vector, provided thaitlagrix parameters have
converged after a sufficiently large number of iteration$atTis, under the hypothetical
arbitrarily long sequences, the following condition iswasegd to hold.

p(r+1) =p(r)I(r) = p(r) =p(r)I(r) asr — oo (8)
Following Eg. (7), the absolute error between successivatibns is obtained such that
1
I (p(r) = p(r +1)) [loo=ll P(r) (I = IL(r)) floc< — )

where|| e || is the max norm of the finite-dimensional vecwor
To calculate the stopping point;,,, a tolerance of) (0 < n < 1) is specified for the
relative error such that:

| (p(r) — p(r+1)) llo
| (P()) lloo

The objective is to obtain the least conservative estinmatef,, such that the dominant
elements of the probability vector have smaller relativersrthan the remaining elements.
Since the minimum possible value pf(p(r)) ||« for all r is 1, wheren is the dimension
of p(r), the least of most conservative values of the stopping psiobtained from Eqgs.
(9) and (10) as:

<n Vr2> T'stop (10)

Tstop = int <E> (1))
n

whereint(e) is the integer part of the real number
More advanced forms of stopping rules are reported by WerRayd[19, 20], where
the parameten in Eq. 10 is statistically determined.

2. Overview of Industrial System Testbeds

This section briefly introduces the industrial applicatidhat will be used in the sequel
to validate the effectiveness of the SDF tool. The applicetiinclude aircraft gas turbine
engines, fatigue damage problems, nuclear power plantstapeboard auxiliary systems.
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2.1. Aircraft Gas Turbine Engines

This section presents the C-MAPSS test bed along with thi ifgaction scheme. The
C-MAPSS simulation test bed [21] was developed at NASA foipécal commercial-scale
two-spool turbofan engine and its control system. Figureois the schematic diagram of
a commercial aircraft gas turbine engine used in the C-MABIBfalation test bed. The

Fan Combustor NI  LPT

Nozzle

LPC HPC N2

Figure 4. Gas turbine engine schematic [21]

engine under consideration produces a thrust of approzlynd00,000 N and is designed
for operation at altitude4) from the sea level (i.e., 0 m) up to 12,200 m, Mach number
(M) from 0 to 0.90, and temperatures from approximate0°C to 50°C. The throttle
resolving angle TRA) can be set to any value in the range betwéemt the minimum
power level and 00° at the maximum power level. The gas turbine engine systersigisn

of five major rotating components, namely, fan (F), low puesscompressor (LPC), high
pressure compressor (HPC), high pressure turbine (HP@)lomnpressure turbine (LPT),
as seen in Figure 4. Apart from the rotating componentsetactuators are modeled in the
simulation test bed, namely, Variable Stator Vane (VSVjJjalde Bleed Valve (VBV), and
Fuel Pump that controls the fuel flow rate (Wf).

Given the inputs of 'RA, A and M, the interactively controlled component models in
the simulation test bed compute nonlinear dynamics oftread-turbofan engine operation.
A gain-scheduled control system is incorporated in therenglystem, which consists of
speed controllers and limit regulators for engine comptsenOut of the different types
of sensors (e.g., pressure, temperature, and shaft spssdijruthe C-MAPSS simulation
test bed, Table 1 lists those sensors that are commonly edlapthe Instrumentation &
Control system of commercial aircraft engines, as seengargis.

In the current configuration of the C-MAPSS simulation tesd kithere are 13 compo-
nent level health parameter inputs, namely, efficiencyrpatars (), flow parameters(
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Figure 5. Schematic diagram of the C-MAPSS engine model 8&thsors

Table 1. Sensor Suite for the Engine System

Sensors Description
Toy LPC exit/ HPC inlet temperature
Ps3g HPC exit static pressure
Tug HPT exit temperature
Psg LPT exit pressure
Ny Fan spool speed
N, Core spool speed

and pressure ratio modifiers, that simulate the effectsuifSfand/or degradation in the en-
gine components. Ten, out of these 13 health parametersel@aed to modify efficiency
(n) and flow @) that are defined as:

e 1) £ Ratio of actual enthalpy and ideal enthalpy changes.
e ¢ £ Ratio of rotor tip and axial fluid flow velocities.

For the engine’s five rotating components F, LPC, HPC, LP®, RT, the ten respec-
tive efficiency and flow health parameters arez((r), Wrpc, Corc), WrPc, Capo),
(Wrpr, Capr), and ¢ rpr, (rpr). An engine componerd' is considered to be in nom-
inal condition if bothy and({s are equal td and fault can be injected in the component
C by reducing the values af- and/or(-. For exampley g pc = 0.98 signifies a2% rel-
ative loss in efficiency of HPC. Actuator faults can also edted through the scale shift
parameters for the three actuators, VSV, VBV and WH.

2.2. Fatigue Damage in Polycrystalline Alloys

Fatigue damage is one of the most commonly encounteredesoofcstructural degrada-
tion of mechanical structures, made of polycrystallineyal Therefore, analytical tools for
online fatigue damage detection are critical for a wide eanfjengineering applications.
The process of fatigue damage is broadly classified into taas@s: crack initiation and
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crack propagation. The damage mechanism of these two paessegynificantly different
and similar feature extraction policies may not work effegy to classify different damage
levels in these two phases. For example, damage evolutitheiarack initiation phase is
much slower, resulting in smaller change in ultrasonic &igras compared to that in the
crack propagation phase. The phase transition from cratiition to crack propagation
occurs when several small micro-cracks coalesce togethéevelop a single large crack
that propagates under the oscillating load. Several cremagation models have been de-
veloped based on the inherent stochastic nature of fatigmagde evolution for prediction
of the remaining useful life. Due to stochastic nature oferiat microstuctures and op-
erating conditions, a physics-based model would requigktiowledge of the parameters
associated with the material and geometry of the comporiEmtse parameters are often
randomly varying and may not be accurately predicted aipi@mack propagation rate is a
function of crack length and, after a certain crack lengthecomes unstable.
Experimental Apparatus and Test Procedusen experimental apparatus is designed
to study the fatigue damage growth in mechanical structurbs apparatus consists of an
MTS 831.10 Elastomer Test System that is integrated witlmplys BX Series microscope
with a long working-distance objective. A camera, mountadh® microscope, takes im-
ages with a resolution of 2 micron per pixel at a distance ah20 The ultrasonic sensing
device is triggered at a frequency of 5 MHz at each peak of tieuating load. Various
components of the apparatus communicate over a TCP/IP rietwd post sensor, micro-
scope and fatigue test data on the network in real time. Téia dan used by analysis
algorithms for anomaly detection and health monitoringhef $pecimens in real-time.
Figure 6 shows a side-notched 7075-T6 aluminum alloy spatiosed in the fatigue
damage test apparatus. Each specim&wisn thick and50 mm wide, and has a slot of
1.58 mm x 4.57 mm on one edge. The notch is made to increase the stress caimantr
factor that localizes crack initiation and propagation emthe fluctuating load. Fatigue
tests were conducted at a constant amplitude sinusoidaélftwdow-cycle fatigue, where
the maximum and minimum loads were kept constant at 87MPd &51Pa, respectively.
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For low cycle fatigue studied in this study, the stress atugi at the crack tip is suffi-
ciently high to observe the elasto-plastic behavior in thecgénens under cyclic loading.
A significant amount of internal damage caused by multiplalsonacks, dislocations and
microstructural defects alters the ultrasonic impedamdgch results in signal distortion
and attenuation at the receiver end.

The optical images were collected automatically at evey &&les by the optical mi-
croscope which is always focussed in the crack tip. As sooorask is visible by the
microscope, crack length is noted down after every 200 syclditrasonic waves with a
frequency of 5 MHz were triggered at each peak of the sinasd@mhd to generate data
points in each cycle. Since the ultrasonic frequency is nfiggher than the load frequency,
data acquisition was done for a very short interval in thestgoale of load cycling. There-
fore, it can be implied that ultrasonic data were collectati@peak of each sinusoidal load
cycle, where the stress is maximum and the crack is openrgaosaximum attenuation of
the ultrasonic waves. The slow time epochs for data analysis chosen to be 1000 load
cycles (i.e.~80 sec) apart. To generate training and test data samplgladkperiments
are conducted on different specimen. For each specimeiftralbonic signals are labeled
with crack length.

2.3. Nuclear Power Plants

The International Reactor Innovative & Secure (IRIS) siaboil of nuclear power plants
is based on the design of a next-generation nuclear realtt@.a modular pressurized
water reactor (PWR) with an integral configuration of alhpary system components. Fig-
ure 8 shows the layout of the primary side of the IRIS systeat it offered in config-
urations of single or multiple modules, each having a powé&ng of 1000M Wt (about
335MWe) [22]. The nominal reactor core inlet and outlet tempeeduare557.6° F
(292°C) and 626° F' (330°C"), respectively. The pressurizer, eight steam generaam,
the control rod mechanism are integrated into the pressessel with the reactor core.
There is no huge pipe used to connect these components. &igncavoids the large loss
of coolant accident (LOCA). The entire control rod mechanis mounted inside the pres-
sure vessel to avoid the problem of penetrating the the yres®ssel head by the control
rod. The test-bed is built using FORTRAN programming lamggual his FORTRAN model
includes a reactor core model, a helical coil steam genefldtoSG) model.

The test-bed is implemented on a Quad Core 2.83 GHz CPU 8 GB RAlkkstation
in the laboratory of Penn State. The IRIS simulator is ogetran theintegrated control
mode through built-in PID controllers, which operates htiee subsystems (i.e., turbine,
feedwater flow and control rods) to combine the rapid respafis reactor-following sys-
tem with the stability of a turbine-following system [23]ofa load increase in the turbine,
the control system makes the control rods to be withdrawnta@edeedwater flow rate to
be increased. Simultaneously, the control system temiporaduces the turbine header
pressure set point. The turbine governor valves open totemaithe turbine speed and to
reduce the main steam header pressure to the new set poirgaétsr core power, primary
to secondary heat transfer, and steam flow rate graduallgase, the turbine header pres-
sure recovers and its set point is returned to the steatly&itue. In this way, the control
system achieves a rapid response and a smooth transitiwedieturbine loads [23].
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Figure 8. Layout of the primary side of the IRIS system [22]

The IRIS test-bed is capable of simulating both normal dions at different opera-
tional modes (e.g., normal power maneuvers, reactor gparénd turbine loading) and a
variety of anomalous scenarios that include:

e Actuator anomalies, e.g., feedwater pump trip, malfumstiof reactor coolant pump
and control rod mechanism;

e Sensor failures, e.g., malfunctions of temperature, pressind flow-rate sensors;

e Internal anomalies, e.g., uncertainties in the fuel terjoee coefficient of reactivity,
coolant heat capacity, and feedwater heat capacity.

In the IRIS test-bed, sensor degradations are realizegesrsed noise and disturbances.
Depending on the location and modality of a sensor, therldmiseveral different degra-
dation levels. For example, the degradation levels in aspressensor have different char-
acteristics from those of a temperature sensor. Furthesndepending on the location and
operating environment, even sensors of the same modalitg tave different degradation
characteristics. In general, sensor degradation is caregioas the following [24, 25]:

e Constant bias and drift (i.e., slowly-varying bias);
e Change in sensor response time due to aging; and

e Change in the variance of sensor noise (e.g., due to largenaxtelectromagnetic
radiation from electric motors).

Amongst the above sensor degradation types, only sensmadigimpn due to changes in the
noise variance are investigated in this study. The rateisathat the sensors are assumed
to be periodically tested and calibrated; hence, sensoradation due to aging, bias, and
drift is much less likely.

In a PWR plant, the primary coolant and feedwater tempegatare measured using
resistance thermometer detectors (RTDs), and the teroperaft the outlet water from the
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reactor core is measured using thermocouples (TCs). Thafgwainly used for temper-
ature monitoring, whereas the primary coolant RTDs typidaled the plant’s control and
safety system [25]. A case study has been presented in thisteoalidate the anomaly
detection methodology, in which the reactor coolant pumBFIRis chosen to be the loca-
tion of a component-level degradation and the primary cddlemperatureX(;; ;) sensor
(RTD) in the hot leg piping is chosen for anomaly detectiothim RCP.

Since the plant controller receives feedback signals fitoeT §;;, sensor, any degrada-
tion in this sensor could pervade through the plant, whidhpetentially affect the outputs
of the remaining components due to the inherent electrdaar@cal and control feedback.
Component-level anomaly detection under different sensige variance is posed as a
multi-class classification problem in the sequel.

2.4. Navy Ship-board Auxiliary Unit

A simulation test bed of shipboard auxiliary systems hastwmyeloped for testing the
proposed algorithm of sensor fusion in distributed phygicacesses. The test bed is built
upon the model of a notational hydraulic system that is cedip¥ith a notional electrical
system under an adjustable thermal loading.

The simulation model is implemented in MATLAB/Simulink ases in Fig. 9. This
distributed notional system is driven by an external spemdnoandw,.; that serves as
a set point for the speed,., of the permanent magnet synchronous motor (PMSM). A
mechanical shaft coupling connects the fixed displacemamipgFDP) to the PMSM. The
torque load of the PMSMI;,,, is obtained from the shaft model of the hydraulic system. In
turn, the speed of the PMSM,, is an input to determine the angular speed of the shaft,
which drives the FDP and the cooling fan in the thermal systarturn, the FDP drives the
hydraulic motor (HM) with a dynamic load, which consists b&tthermal load];, and a
time-varying mechanical torque load. The proportion#kgnal (P1) controller regulates the

p— e ]

Speed Ref we i m Thermal
(rpm) P Tm

ws Tt

A 4

Hydraulic

Electrical

Figure 9. Notional coupled electrical, hydraulic and tharsystems.

PMSMs electrical frequency under dynamic loading condgithat arise due to fluctuations
in hydraulic and thermal loading. There is a mechanical ingpetween the PMSM and
the FDP of the hydraulic system, which is modeled by a rataliepring-damper system
applied to an inertial load. The mechanical system outp@shatft velocity that drives the
FDP and the cooling fan of the thermal system. The pump, im @nives the HM through
the pipeline. The HM is subjected to a time-varying load veithrofile defined by the user
as well as the thermal load that varies with the fan efficiesfdhe cooling mechanism. The
systems are further coupled with a feedback loop since tlygieorequirement of the HM
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is input to the PMSM of the electrical system. The model hakiptel parameters that can
simulate various fault conditions. There are multiple sesn$n each system with different
modalities such as Hall Effect sensors, torque, speedemtitemperature and hydraulic
pressure sensors that are explained further in Section 5.2.

The governing equations of the elecﬁrlcal co ponen&motwhafollows

g dld —

dt L,
(Y Rig +wLgiqg

dt L4

wy  Te =T, — Bw,

dt J

T = P+ (L Lodiai

Wy =

IS

where subscriptd andg have their usual significance of direct and quadrature axdte
equivalent 2-pole representatian;i, and L are the corresponding axis voltages, stator cur-
rents and inductance®& andw are the stator resistance and inverter frequency, respcti
Ay is the flux linkage of the rotor magnets with the statBiis the number of pole pairg;
is the generated electromagnetic tordligs the load torquepB is the damping coefficient;
w, IS the rotor speed; and is the moment of inertia.

The governing equations of the fixed displacement pump (Fbdel are as follows:

dp = Dpwp - kleakpp
Tp — DPPP
TIm
krp
kleak =
vp
L Dpwnom(l - nv)ynomp
HP P
nom

The governing equations of the hydraulic motor (HM) model @s follows:

w _ qm — kleakpm
m Dm
k
kleak = ~he
vp
D 1-—
kHP _ mwnom(F) nv)Vnomp (12)
nom

where the subscripts andm denote pump and motor parameters, respectively; the sub-
script nom denotes nominal valueg; and P is the pressure differentials across delivery
and terminal pointsT’ is the shaft torqueD is the displacement; is the angular velocity;
kieai 1S the flow leakage coefficient;y p is the Hagen-Poiseuille coefficient; andv,,, are

the volumetric and mechanical efficiencies, respectivatygly andp are the fluid kinematic
viscosity and density, respectively.
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3. Data Space Abstraction

The first step of the SDF tool-chain involves abstractionhef data space that gives it a
unique capability to fuse information from heterogeneoersssrs. This also enables inte-
gration of mixed i.e., continuous, discrete and categbdeta. While spatial partitioning
is the major step of the abstraction process, often suitidnieain transformation facilitates
better feature extraction.

3.1. Data Preprocessing

Recently, it has been shown that Wavelet or Hilbert tramsé&tion of data before partition-
ing improves time-series feature extraction as both tintefeaguency domain information
are considered. The wavelet space partitioni§Pis particulary effective for noisy data
from high-dimensional dynamical systems. However, WSPskasral other shortcomings
such as identification of an appropriate basis functiorecsieln of appropriate scales, and
non-unigue and lossy conversion of the two-dimensiondesskift wavelet domain to a
one-dimensional domain of scale-series sequences [1BbuSand Ray [13] have reported
use of Hilbert transform to alleviate these problems. Th&thod is called the analytic
signal space partitioningASSR as Hilbert transform converts data from time domain to
analytic signal space. However, for noisy systems, it iseetgd that number of machine
states typically increases largely, which in turn degram@aputation efficiency (e.g., in-
creased execution time and memory requirements) [6].

This section reviews a generalization of the classical éttlransform to modiffASSP
for application to noisy systems. The objective here is taitian the transformed signal
space such thdd-Markov machines can be constructed with a srballithout significant
loss of information for noisy signals. The key idea is to pdeva mathematical structure
of the generalized Hilbert transform such that the low-fieugy region is more heavily
weighted than that in the classical Hilbert transform.

3.1.1. Generalization of Hilbert Transform

Hilbert transform and the associated concept of analygieads, introduced by Gabor [26],
have been widely adopted for time-frequency analysis ierdiy applications of signal pro-
cessing. Hilbert transform [27] of a real-valued sign@l) is defined as:

() 2 Ha)(t) = = / 1) 4 (13)

T pt—T

That is,Z(t) is the convolution of:(t) with L overR £ (—o0, cc), which is represented
in the Fourier domain as:

~

(W) = ~i sgn(w) T(w) (14)
whers) & 7o) andignt & { 1 17
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Given the Hilbert transform of a real-valued signdt), the complex-valued analytic
signal [27] is defined as:

X(t) 2 z(t)+1i7(t) (15)

and the (real-valued) transfer function with inpift.) and output¥' (w) is formulated as:
a f(w) _

Gw) = F@) 14 sgn(w) (16)

Lohmann et al. [28] introduced the concept of a generalizédekt transform in the
fractional Fourier space instead of the conventional Feowpace; a discrete version of
this generalized Hilbert transform was developed latet.[E®r geophysical applications,
Luo et al. [30] proposed another type of generalized Hiltrarisform that is essentially the
windowed version of traditional Hilbert transform. Howewie notion of generalization of
Hilbert transform presented in the sequel is different fithiatt in the previously published
literature.

Let us define a generalized Hilbert transform &S of a real-valued signat(t¢) as the
convolution:

FO() 2 HO] (1) = a(t) + (39"(“ ) forae (0.1 (17)

[t
It is shown in the sequel that, as? 1 (i.e., the values ofv form an increasing sequence
of positive real numbers with the limit equal to I,* converges tdH, where# is the
classical Hilbert transform defined in Eq. (13); thatfi€, = #.

Two lemmas are presented, which are necessary for denwvattilie main results in the
Fourier space (detailed proofs can be found in [14]).

Lemma 3..1.
0wt , 2Tl —«) . /7
/_oo ngn(t)dt =—1 sgn(w);Wsm (5(1 — a)> (18)
wherea € (0,1); andT'(1 — a) £ [ S=dy.
Lemma 3..2. Asa 1 1, the integralffooo %sgn(t)dt — —i sgn(w), i.e.,
. 2 0w
2%11111(1 —a) (;smg (1— a)> = 1. (19)

Taking Fourier transform of the convolution in Eq. (17) and application of
Lemma 3..1 yield:

(W) = F (:U(t) ) Sgn(t)>

[t

—Fatt) -7 ()

sin (gu . a)> (20)
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Sincel'(1 — «) < oo for @ € (0,1), the generalized Hilbert transforii*(¢) can be
evaluated by taking the inverse Fourier transformofw).

The above formulation shows that reduceguts more weight on the low frequency
part of the signak(¢) and hence more effectively attenuates the high-frequeniserthan
the classical Hilbert transform. Following Lemma 3..20a$ 1, Fourier transform of the
signal Sft“(ﬁ) converges te-i sgn(w). This leads to the fact, that ast 1, H converges to
‘H, where? is the classical Hilbert transform defined in Eq. (13).

Analogous to the analytic signal in Eqg. (15), the (complaksed) generalized analytic
signal of the real-valued signalt) is defined as:

XO(t) 2 a(t) +3°() (21)

and the (real-valued) transfer function with inpiftv) and output/f’a(w) is formulated as:

G*(w) = ;(w) =1+ sgn(w) (wﬁyx))(l—a) (22)

-
wherewg(a) £ (ﬁsm (Z2(1—a)) > e
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Figure 10. Impulse respon M) of the generalized Hilbert transform

[t|*

Remark 3..1. For o« = 1, it follows from Eq. (17) that the real-valued signa(t) is con-
voluted with. The implication is that the effects of memory in the sigra) reduce as
fast asﬁ. Asa is decreased, the tail of the impulse response of the gaenedaHilbert
transformz®(t) becomes increasingly fat as seen in Fig. 10. Hencepfer o < 1, the
generalized analytic signalk’®(t) captures more (low-frequency) information from time

series data than that for = 1.



20 Soumik Sarkar, Soumalya Sarkar and Asok Ray

4 ;
—— Alpha=1.0
3 . - = = Alpha=0.5
s~ 3 n
n

© 1

o 27 -

= A3

3] Seo -

s | T
—_ 1 0

L mmmm-aa -

[%)] =~

c S

o s

— \Y

: "

S ]

s 1 v

> ]

_2 i i
-10 -5 0 5 10

Frequency w

Figure 11. Transfer functio&®(w) of the generalized analytic signal

Remark 3..2. Fourier transform of a real-valued signal does not contaimy aadditional
information beyond what is provided by the positive freqyeromponents, because of the
symmetry of its spectrum. Therefore, in the constructioanodnalytic signal in Eq. (15)
and its transfer function in Eq. (16), Hilbert transform rewes the negative frequency
components while doubling the positive frequency comgenéor a < 1, it follows from
Fig. 11 that the negative frequency components of the tearfahction G*(w) of a gen-
eralized analytic signal are no longer zero. Therefore, glemeralized analytic signal in
Eq. (21) is not an analytic signal in the sense of Gabor [26] f0 < 1. However, the
transfer functions of both analytic and generalized arialgignals are real-valued almost
everywhere in the range € R. The phase of the (real-valued) transfer funct@fi(w) is
either0 or —x as explained below.

e The phase of#(w) (i.e., G*(w) for « = 1) is 0 radians in the frequency range
(0,00). Its magnitude in the negative frequency rarigex, 0) is identically equal
to 0; therefore, the phase in this range is inconsequential.

e For 0 < a < 1, the phase oiG*(w) is —= radians in the frequency range
(—wo(a),0), wherewy is defined in Eq. (22), and sradians in the frequency range

( — 00, —wo(a)) J(0, 0).

3.1.2. Test Results and Validation

The concept of generalized Hilbert transform is tested atidated by symbolic analysis of
time series data, generated from the same apparatus ofi@anélectronic systems reported
in the earlier publication [13].
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The nonlinear active electronic system in the test appsienulates the forced Duffing

equation: ,
(ciiT;E + 5% + z(t) + 23(t) = Acos(wt) (23)

Having the system parameters sefite= 0.24, A = 22.0, andw = 5.0, time series data
of the variablez(t) were collected from the electronic system apparatus. THatesets
do not contain any substantial noise because the laborappgratus is carefully designed
to shield spurious signals and noise. Therefore, to emthateffects of noise in the time
series data, additive first-order colored Gaussian noiseimacted to the collected time
series data to investigate the effects of signal-to-nasie (S NV R). The profile of a typical
signal, contaminated withO db additive Gaussian noise (i.e5,N R = 10), is shown in

Fig. 12.

State x

800 1000 1200 1400 1600 1800
time

Figure 12. Signal contaminated with db additive colored Gaussian noise

Construction of the Transformed Phase Spatet the real-valued noisy time-series
datax(t) containN data points. Upon generalized Hilbert transformation a$ tdata
sequence, a complex-valued generalized analytic sigiiat) is constructed. Similar to
the procedure described in [13}(¢) is represented as a one-dimensional trajectory in
the two-dimensional pseudo-phase space.{Lbe a compact region in the pseudo-phase
space, which encloses the trajectoryNo$uch data points.

Partitioning and Symbol Generatiorl.he next task is to partitiof into finitely many
mutually exclusive and exhaustive segments, where eacheseds labelled with a symbol
or letter. The partitioning is based on the magnitude andg@béthe complex-valued signal
X“(t) as well as the density of data points in these segmentswiolipthe procedure
described in [13]. Each point in the partitioned data setsesented by a pair of symboals;
one belonging to the alphabEt; based on the magnitude (i.e., in the radial direction) and
the other belonging to the alphale}, based on the phase (i.e., in the angular direction).
In this way, the complex-valued signal“(t) is partitioned into a symbol sequence by
associating each pair of symbols to a single symbol belgngmnan alphabek that is
defined as:

Y 2 {(0i,0;) € g x T4} and|S| = [Sg|[S4] (24)

The results presented in this chapter are generated>Wwjtk= 8 in the radial direction
andX 4 = 5in the angular direction, i.e[X| = 40.

State Transition MatricesThe symbol sequence is now used to constixd¥larkov
machine models [15]. The assumption of statistical statiby of the symbol sequence is
implicit in the construction of Markov models. In this stud§arkov chain models of depth
D =1andD = 2 have been constructed.
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Modeling of the symbolic process as A (= 1) Markov chain involves evaluation of
theII' matrix, where the;* matrix elementr}j is defined as the probability that + 1)
state isi given that theu'” state wag, i.e.,

i = P (tner =i 0y =) (25)

wheregy, is the state at discrete time insté@ntEvidently, the size of thB matrix is|3|x |3,
where|X| is the number of symbols in the alphahet

Modeling the symbolic process as B (= 2) Markov chain involves evaluation of a
3-dimensional matrix, where thigk!" matrix elementrfjk is defined as:

2 A

Tk = P (dpya = ilany = J,an = k) (26)
and size of the (sparsé)’ matrix is|X| x [2| x |2

Remark 3..3. Elements of botfil* andII? matrices are estimated by conditional frequency
count and their convergence requires a symbol sequenceffafieot length. This aspect
has been discussed in [17][6] and is referred to as the stogplle that assigns a bound
on the length of the symbol sequence for parameter ideridicaf the stochastic matrices
It and 1.

Computation of Mutual InformationEffectiveness of generalized Hilbert transform
for Markov model construction has been examined from arrinétion theoretic perspec-
tive [5]. The rationale is that, in a noise-corrupted systkigher values of mutual informa-
tion imply less uncertainties in the symbol sequence. ThiatinformationZ is expressed
in terms of entropys for both (D = 1) and (D = 2) Markov chains in the following set of
equations:

T (qnt3; qnt2) = S (qn+3) — S (nsslgn+2) (27)
|%]

S (qn4s) 2 =) P (qnis = 1) logy P (qnss =0) (28)
/=1

Usage of maximum entropy partitioning [12] for symbol gexiem yields: S (¢,,+3) =
log, (|Z]).

Dy
S (gn+3lgnt2) = Z P (gnt2 =1) S(qn+3|ant+2 = 1) (29)
/=1
where
by
S(Qn—l—?JQn—i—Z = E) = - ZP(QTL-‘,-?) :.7 ‘ gn+2 = 6) .
j=1

logy P (qn+3 = jlani2 = £) (30)
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T (Gn+3; Gns2, Gnt1) = S (nes) — S (qn+3]dns2s Gnr1) (31)

S (qnt3lan+2, dn+1)

1] 1%
= _ZZP(QTH-Q = Z‘;Qn—l—Z :,7) :
i=1 j=1
S (Qn+3‘Qn+2 = ia dn+1 = ]) (32)

where

S (Qn+3’%z+2 =1, qnt1 = ])

3
= ZP((]n—HS = £|Qn+2 =1,qnt1 = j) ’
/=1
logy P (qn+3 = gnt2 = i, qntj = J) (33)

Based on Eq. (25) and Egs. (27) to (30), the mutual informafidq,,+3; gn+2) IS
calculated from thell! matrix. Similarly, based on Eq. (26) and Egs. (31) to (33),
T (Gn+3; @ni2s Guy1) is calculated from thél? matrix. Then, information gain (abbrevi-
ated asZg) with D = 2 instead ofD = 1 in the Markov chain construction is defined
as:

Zg = I (qn+3; Gnt2s Gnt1) — L (Gn+3; Gns2) (34)

Pertinent Results:

The pertinent results on mutual information and infornratgain are presented in
Fig. 13 and Fig. 14, respectively. Although results are showly for SNR = o0, 10,4
and0, several other experiments with intermediate valueS ik betweernsoc and0 were
performed, which shows the same trend.

The information gain is always a positive quantity as sedaqn(34). In other words,
there is always a gain in information upon increasing thetdepthe Markov chain model.
Pertinent inferences, drawn from these results, are presdelow.

1. Mutual information increases with decreasevimrespective ofD and SN R as seen
in Fig. 13.

2. Information gairZg (see Eq. (34) and Fig. 14) is minimal f6tN R — oo (i.e., for
the signal with no noise injection). Therefoi2s1 Markov chain should be adequate
with ASS P using conventional Hilbert transform (see Eq. 13) for lovise signals.

3. AsSNR is decreased (i.e., percentage of additive noise is ined@asmformation
gainZg increases for all values af in the range ofl.0 down to abou®.2. As «
is decreased, information gain decreases as seen in FiglHerefore, even for a
considerable amount of noise, a smaller valuexathould be able to achieve noise
attenuation and thus allow usageldf= 1 in D-Markov machines.
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4. Results for a pathological case wittiv R — 0, (i.e., complete noise capture of the
signal) in Fig. 13 and Fig. 14 show similar trends as abovee @itossing of the
information gain curves in Fig. 14 at low values®@fe.g.,a < 0.2) could possibly
be attributed to the effects of coarse graining [7] due tolsyingeneration.

The rationale for the observed trends in Fig. 13 and Fig. Idiisrated as follows. An
increase in depttD captures the effects of longer memory in the signal, andlaityire-
duceda puts more weight on the low-frequency components, whicis@ssoise reduction.

.
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Figure 13. Profiles of mutual information

The following conclusions are drawn from the validationufessof the proposed gener-
alization of Hilbert transform on a laboratory apparatusiaflinear electronic systems as
presented above.

e Generalized Hilbert transform with a smaller value of pagtana is capable of ex-
tracting more information from a data sequence irrespeaivthe depth of the D-
Markov machine chosen for modeling.

e Information gain for a larger depth reduces with smaller values of the parameter

e By selecting small values of the parametein the generalized Hilbert transform, it
is possible to avoid using a computationally expensivesiadgpthD without loss of
significant information.

3.2. Optimal Feature Extraction via Partitioning

Partitioning is the process of coarse-graining of the datece under some notion of simi-
larity, transforms continuous valued variables to a digcsymbolic space. This is an im-
portant pre-processing step essential for several apiplisasuch asymbolic time-series
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Figure 14. Profiles of information gain

analysisof dynamical systems, data-mining and machine learningsp® the necessity
and importance of discretization, there is no standard wapproach it. This is because
several factors such as the nature of the dynamical systafatarset in question, choice
of the similarity metric, and desired model simplicity afféhe nature of a discretization
scheme that is appropriate. Moreover, even if one can ddfimeptimality criteria for
discretization, the process will be NP-complete [31]. Anfed out by [32], while dis-
cretization is desirable pre-processing step, practisaletization schemes are necessarily
heuristic in nature and a large number of such schemes hawvepoeposed in the literature.
The simplest methods incluagual interval width(uniform) andequal interval frequency
(maximum entropy) discretization or partitioning. One ldigtinction among different
methods is whether the discretization process sugeervisedr unsupervisedin a super-
vised process a metric based on a discrete variable (ess lelael) is used as a feedback to
guide the discretization process, while a unsupervisedhadetioes not use such informa-
tion. The literature is vast and there are several reviewsadble that summarize and com-
pare different techniques [33, 34, 35, 36, 37]. This seatemews two recently developed
multi-variate partitioning schemes with particular obijee of symbolic dynamic analysis
of time-series data from physical systems. While the firsesge (maximally bijective dis-
cretization) aims to optimize symbolic modeling of dynaatisystems, the second scheme
(optimal partitioning for classification) is particulanseful for time-series classification.

3.2.1. Maximally Bijective Partitioning

Consider a dynamical system with input/output signals as:

U(t) = 2cos(0.25t) (35)
Y(t) = cos(0.5t) (36)
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To build a symbolic model of such a system, both input and Wuspace need to be dis-
cretized. However, if the discretization of input and odtppaces are completely inde-
pendent, then important functional relationship in thetcmous domain may not remain
preserved in the discrete domain. Based on this key ideas#ution reviews the recently
developed methodology and algorithm for a discretizaticdmese that maximizes the de-
gree of input-output symbol correspondence, hence namedially Bijective Discretiza-
tion (MBD).

Although the required notations follow earlier discussidns repeated here for en-
hanced readability. Let the time series data of a variahteigded from a physical complex
system or its dynamical model be denoted|aé compact (i.e., closed and bounded) region
Q € R™, wheren € N, within which the time series is circumscribed, is idendfiéet the
space of time series data sets be represent€@d@®” <"V, where theV € N is sufficiently
large for convergence of statistical properties within acsied threshold. Note; repre-
sents the dimensionality of the time-series awds the number of data points in the time
series. A discretization encod@sby introducing a partitio® = { By, ..., B(,—1) } consist-
ing of p mutually exclusive (i.e.B; N By, = 0 Vj # k), and exhaustive (i.eu?;lBj =)
cells. For one-dimensional time series data, a discréizatonsisting ofp cells is repre-
sented by — 1 points that serve as cell boundaries. In the sequelcell discretizatioriB
is also expressed &5, = {71,772, - ,Ym_1}, Wherey; denotes a bin boundary.

Let the complex system under consideration haseal-valued output variables and
real-valued input variables that are denotedvas - - , w,, anduy, - - - , u,, respectively. In
the continuous domain, an input variahlgfor any i is represented as a function of all
output variables for the purpose of discretization as Vodlo

Suppose an-dimensional discretization is imposed on the space ofututariables that
divides the data for output variables inko discrete classes. The goal is to discretize each
input variable based on the defined classes of output vagablhis work develops lslax-
imally Bijectivescheme of performing the discretization of each input \deizeparately.
The problem is formulated in the sequel for any input vagab{omitting the subscript).
LetB = { By, ..., By—_1)} be a discretization of one of the input variables, whise;j €
{0, ...,1—1} is a bin of the discretization. With this setupyrespondence between a class
and a bin is defined as follows:

If ¢ = argmkaxP(CH:EGBj)

where,P(-) denotes a probability function ande R. In words, clasg’; corresponds to bin
B;. Note, a clas€’; may correspond to more than one disjoint bins. From thispeets/e,
a reward function is defined as follows:

R(B|z) = {P(Ci|z € B;) : C; = B;} (39)

Note that this reward function signifies the notion of bijewt i.e., with higher reward,
the probability of a class being corresponding to a bin iases. With this setup, the total
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expected reward is calculated as
TR(B) = / R(B|x)P(z)dx (40)
X

The goal here is to maximize this total reward function, leetie discretization scheme
is called Maximally Bijective. It is clear from the formuiah that maximizing the total
reward function is equivalent to maximizig(B|z) at eache.

B* = arg max {R(B|z) Vz}
= arg mIBE%LX{P(Ci|$ € Bj): C; = Bj Vx} (41)

This observation leads to an algorithm that is developedused to identify MBD in this
work. Let P, (x) denotes{ P(C;|z € B;) : C; = B;} at anyz. Note, by this definition

P, (x) = max P(Cs|x) Vz (42)

With this setup an overview of the proposed algorithm is jates below:
Overview of the Algorithm
x = min(D)
k=1
while z < max(D) do
Identify C; such thatP(C;|x) = P, (z);
Identify C; such thatP(Cj|x + dx) = Py, (x + dx);
if 1 #£ j then
v = z % Note,y, denotes thé"" bin boundary
k+—k+1
end if
T+ r+dx
end while

However, the primary issue with the above process is reiabtimation ofP(C;|z) from
data [32]. This work adopts a basic frequency counting (ewvemterval) method to es-
timate this conditional probability. This means that theimfzation process begins with
considering a small window in the domain (arounth(D)) to identify the most probable
class in that interval. Then the window is slided across tita dange of the input variable
and bin boundariesy(.s) are placed where the most probable class changes fromitene i
val to the next. However, this approximation may result ib-sptimality of the solution.
The rationale is as follows: Lét,b] C R be an interval over which the frequencies of
different classes are estimated to identify the most prebelss. The frequency of class
C; inthe interval[a, b] is denoted ag(C;)|(,, and it can be represented as

b
(O oy = / P(Ci|)P(x)dx (43)

To identify the most probable class ia,b], one needs to compare(C;)|,s With
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n(C}j)[a,)- HOwWever, it is known that

b
/ P(Ci|x)P(x)dx /PC\x

2
+* P(C lz) = P(Cjlz)Vz € [a b] (44)

Consequently, the solution may become suboptimal due tedhsideration of intervals
of finite width. Also, in a realistic setting, the intervalsed to be wide enough to avoid
significant effects of noise in the data.

However, the following lemma can be stated in this scenario:

Lemma 3..3. The total reward (TR) is a nondecreasing function of addiag bin bound-
aries.

This ensures that the total reward at least does not reduea whew bin boundary is
introduced in the sequential algorithm proposed here. gmqaroof sketch of this property
is provided here:

Proof Sketch:First of all, it should be noted that introduction of a new bioundary
can be considered as splitting one of the current bins. A,abe the bin which is splitted
into B]l andB} with the introduction of a new bin boundary. Also, let cl@gsbe the most
probable class of the biR; with frequencyn(C;)|s;. Let the total reward function before
and after splitting be denoted @3z(k) andT R(k + 1) respectively. Now, three cases are
possible with this splitting.

e Case l:In both new binsB} andBJZ, C; is no longer the most probable class and the
most probable classes i} and B are sayC,, andC, respectively. In this case,
TR(k+1) = n(Cy)|p1 +n(Cy)l 52 >
n(Ci)|pr +n(Ci)lp2 = TR(F) (45)

e Case ll:In one of the new bins, say lle C; is still the most probable class. How-
ever, inBJQ., Cy is the most probable class. In this case,

TR(k+1) = n(C3)l g1 + (Gl >
”(Cz')’le. + ”(Cz')’B]? =TR(k) (46)

e Case lll: In both new bins(; is still the most probable class. In this case,

TR(k +1) = n(Cy)| gy +n(Ci)|p = TR(K) 47)

Therefore TR(k + 1) > TR(k), i.e., total reward does not decrease when new bin bound-
aries are introduced sequentially in the algorithm descri@bove. This is also compatible
with the intuitive notion of increase in reward with increga complexity.

Figure 15 shows the MBD for the illustrative example probletnoduced in the be-
ginning. It is clear from the result that in a numericallytdeascenario, the present ap-
proach can identify the bin boundaries of an admissiblerefisation. Furthermore, Fig. 16
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Figure 16. Monotonic increase in Total Reward with additiddmew bin boundaries

shows that the total reward monotonically increases witlitewh of new bin boundaries as
stated in Lemma 3..3. The total reward of the MBD in this extng found to be).88.
For comparison purposes, uniform discretization of sanmepdexity, i.e., with same num-
ber of cells/bins (with bin boundari¢s-1.66, —1.00, —0.350.300.961.61]) has total reward
of 0.79 and maximum entropy discretization with same complexititii\bin boundaries
[—1.80 — 1.25 — 0.450.451.231.80]) has total reward of.76. The following remark sum-
marizes some of the key aspects the proposed discretizatiay.

Remark 3..4. The MBD scheme developed here avoids computationally sixedierative
search for bin boundaries in the data space. Instead, tlgsr@thm scans data space once
to sequentially place optimal bin boundaries and in turnnitifges the optimal number of
cells/bins in a stable numerical scenario. Furthermoreshibuld be noted that discretiza-
tion of the output variables can be revised once MBD of thetimariables are obtained.
This process essentially involves removing certain bimdaties of output variables that
do not have effect in the MBD of the input variables. Finalhys scheme can be used for
any complex dynamical system. However, it will be partidulaseful for highly nonlinear
systems where traditional uniform or maximum entropy @igzations may fail to preserve
the functional relationships by a great deal.

It should be noted that there are other popular cost fungfjiiornolving e.g., maximizing
mutual information and minimizing Bayes risk) availablditarature that may have similar
effects on discretization as the current reward functiarppsed in this study. Therefore,
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comparison of the strategy presented here with the othelasioost/reward functions is an
important topic of future investigation.

3.2.2. Optimal partitioning for Classification

In the SDF framework, a symbol sequer&® is compressed by a probabilistic finite state
automaton PF'SA), wherej, k € {1,2,...,r} are the states of thBF'S A with the (r x r)
state transition matriXI = [r;;] that is obtained at slow-scale epochs (different classes
in this context). (NoteIl is a stochastic matrix, i.e., the transition probabiity, > 0
and), m;, = 1). To compress the information further, the state probigbilectorp =

[p1 -+ pr] thatis the left eigenvector corresponding to the (uniquiyeigenvalue of the
irreducible stochastic matrid is calculated. The vectqris the extracted feature vector and
is a low-dimensional compression of the long time seriea dgpresenting the dynamical
system at the slow-scale epoch.

For classification using SDF, the reference time seriegnigithg to a class denoted as
Cly, is symbolized by one of the standard partitioning scheraes,(Uniform Partition-
ing (UP) or Maximum Entropy partitioning (MEP)) [15, 12, 13Then, using the steps
described earlier, a low-dimensional feature veq:t@f1 is constructed for the reference
slow-scale epoch. Similarly, from a time series belongim@ different class denoted as
Cl,, a feature vectop®’ is constructed using the same partitioning a€'in. The next
step is to classify the data in the constructed low-dimeraideature space. In this re-
spect, there are many options for selecting classifiersdhald either be parametric or
non-parametric. Among the parametric classifiers, one ettttimmonly used techniques
relies on the second-order statistics in the feature spawre the mean feature is calculated
for every class along with the variance of the feature spatatulition in each class of the
training set. Then, a test feature vector is classified bygu$ie Mahalnobis distance [38]
or the Bhattacharya distance [39] of the test vector fromntlean feature vector of each
class. However, these methods are not efficient for non-<€auslistributions, where the
feature space distributions may not be adequately deschpeéhe second order statistics.
Consequently, a non-parametric classifier (e.g., k-NNsdias [40]) is potentially a better
choice. In this study, the k-NN classifier has been used Isecthe Gaussian probability
distribution cannot be assured in the feature space. Howievgeneral, any other suitable
classifier, such as the Support Vector Machines (SVM) or taasSian Mixture Models
(GMM) may also be used [40]. To classify the test data settithe series sets are con-
verted into feature vectors using the same partitioning llaa been used to generate the
training features. Then, using the labeled training feesuthe test features are classified
by a k-NN classifier with suitable specifications (neighloarth size and distance metric).

Many optimization criteria have been reported in literatfor feature extraction in
multi-class classification problems. However, none can beenfundamental than min-
imization of classification error. Although, there have edgtempts to approximate the
classification error as the Bayes error using pairwise wgighfunctions for multi-class
problems [41], the Bayes error itself cannot be expressatytécally except a few special
cases. On the other hand, even if the Fisher criteria is netttlf equivalent to classification
error, it is widely used as a feature extraction optimizatoiteria in literature. This cri-
teria involves maximization of the inter-class variance amnimization of the intra-class
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variance for the training data set. For a K-cla&s £ 2) classification problem, a general
K-class Fisher criterion may be used; alternatively, a stifki @< — 1) /2 number of 2-class
Fisher criteria may be used as well. This criterion is vergfuilsfor binary classification
problems, especially when the samples are distributed iaws&an manner in the feature
space. For multi-class problems [42], a criterion has beepgsed based on the minimum
classification error (MCE) that is calculated by the missif&sation rate over the training
samples. Formally, these two (fundamentally differentjrojzation criteria are known as
the (i) Filter method and (ii) Wrapper method. While a filteetimod uses information con-
tent feedback (e.g., Fisher criterion, and statisticakdéence) as optimization criteria for
feature extraction, a wrapper method includes the classii@le the optimization loop and
attempts to maximize the predictive accuracy (e.g., diaasion rate) using statistical re-
sampling or cross-validation [40]. In this methodolog thrapper method is adopted (i.e.,
via minimization of the classification error on the trainisgt) for optimization, primarily
because of the non-binary nature of the problem at hand ang@dksible non-Gaussian
distribution of training samples in the feature space.

In this context, ideally one should jointly minimize evetgment of the confusion ma-
trix [43]. However, in that case, the dimension of the objecspace may rapidly increase
with an increase in the number of classes. To circumvensthiation in the present work,
two costs are defined on the confusion matrix by using anatlegghting matrix, elements
of which denote the relative penalty values for differentfosions in the classification pro-
cess. Formally, let there lgl4, - - - , Cl, classes of labeled time-series data in the training
set. A partitioningB is employed to extract features from each sample and a k-Bbsiel
fier K is used as a classifier. The confusion mafixs obtained upon completion of the
classification process, where thg" elementc;; of C denotes the frequency of data from
classC1; being classified as data fro6%;. Let W be the weighting matrix, where thig!"
elementw;; of W denotes the penalty incurred for classifying data frGip as data from
classC1;. (Note: Since there is no penalty for correct classificattbe diagonal elements
of W are identically equal t®, i.e., w;; = 0V i.) With these specifications, two costs,
CostE andCostW, that are to be minimized are defined as follows.

The costCost EF due to expected classification error is defined as:

1
CostE = F Z ZJ: W; 5 Cij (48)

s i
whereN; is the total number of training samples including all clasSehe above equation
represents the total penalty for misclassification acrivstagses. Thu§'ost E is related to
the expected classification error. The weighfsare selected based on the prior knowledge
about the data and the user’s requirements.

It is implicitly assumed in many supervised learning altjoris that the training data
set is a statistically similar representation of the wha&adset. However, this assumption
may not be accurate in practice. A solution to this problemo ishoose a feature extractor
that minimizes the worst-case classification error [44}hia setting, that cost'ostW due
to worst-case classification error is defined as:

1
CostW = max i Z W;jCij (49)
j
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Figure 17. Fuzzy Cell Boundaries to obtalitwst E,. s aNdCostW,.ppust

wherelN; is the number of training samples in the clégs. (Note: In the present formula-
tion, the objective space is two-dimensional for a multissl classification problem and the
dimension is not a function of the number of classes.)

Sensitivity and Robustness

Cost minimization requires a choice of partitioning thatildobe sensitive to class separa-
tion in the data space. However, the enhanced sensitivitytifhal partitioning may cause
large classification errors due to noise and spurious thahaes in the data and statistical
variations among training and testing data sets. Hencgjntportant to invoke robustness
properties into the optimal partitioning. In this studybustness has been incorporated by
modifying the cost€'ost F andCostW, introduced above.

For one-dimensional time series data, a partitioning abingj of|X| cells is represented
by (|| — 1) points that serve as cell boundaries. In the sequetcell partitioningB is ex-
pressed ad y; 2 {1, Aoy - ; A\jzj—1}, Where)\; denotes a partitioning boundary. Thus, a
Cost is dependent on the specific partitioning; and is denoted bfost(A5;). The key
idea of a robust cost for a partitioninlyy, is that it is expected to remain invariant under

small perturbations of the partitioning points;, Ao, - -+, A\ —1 (i.e., fuzzy cell bound-
aries). To define a robust cost, a distribution of partitiugnfmm (+) is considered, where a
sample of the distribution is denoted Asy) = {A\1, X2, -+, A\j5j_1} and);’s are chosen

from independent Gaussian distributions with meéarand a uniform standard deviation
oy, the choice ob, is discussed later.

The resulting cost distribution is denotedj%s,stmm)(-), andCost, st 1S defined as
the cost value below whichb% of the population of distributiorfCOSt(A‘Z‘)(-) remains and
is denoted as:

Costropust = Pos [fCost(A‘E‘)(’)] (50)

For the analysis to be presented here, it is assumed thatisnffsamples are generated to
obtain a good estimate @fost, s @S explained in Fig. 17, where the firm lines denote
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Figure 18. General Framework for Optimization of Featur&&otion

the boundaries that divide the range space into four ceisetya, b, c andd. However, in
general, the cell boundaries are fuzzy in nature, whichdead probabilistiaC ost,.opst
instead of a deterministic cost based on the firm partitipriioundaries. Thus, a robust
cost due to expected classification eri@nst E,..p.st, and a robust cost due to worst-case
classification errorC ostW,p.5:, are defined for a given partitioningy; .

Finally, a multi-objective overall cost'ostO is defined as a linear convex combination
of CostE,opyst aNdCostW.op,¢ IN terms a scalar parametere [0, 1].

CostO £ aCostEgpust + (1 — a)CostWopust (51)

Ideally, the optimization procedure involves constructad the Pareto front [45] by min-
imizing C'ostO for different values oty that can be freely chosen as the operating point.
However, for simplicity« is taken to be).5 in this work, i.e., equal weight for the costs
CostEropust andCostW.opuse. Thus, the optimaki-cell partitioningB* is the solution to
the following optimization problem:

B* = arg I%Il CostO(B) (52)

Figure 18 depicts a general outline of the classificatiogss. Labeled time series data
from the training set are partitioned. The low-dimensidieature vectors that are gener-
ated by symbolization anB F'S A construction are fed to the classifier. After classification
the training error costs, defined above, are computed aniaekito the feature extraction
block. In the classification aspect, the classifier may beduo the obtain better classifi-
cation rates. For example, for k-NN classifiers [40], theich@f neighborhood size or the
distance metric can be tuned. Similarly, for support veatachines [40], an appropriate
hyperplane should be selected to achieve good classificalioe key idea is to update the
partitioning to reduce the cost based on the feedback. &hregibn is continued until the set
of optimal partitioning in a multi-objective scenario aritcorrespondingly tuned classi-
fier are obtained. Generally, choice of the optimal partitig is made based on the choice
of operating pointx by the user. After the choice is made, the optimal partitigrand the
tuned classifier are used to classify the test data set. édgththis is the general framework
that is being proposed for the optimization methodologgijrtg of the classifier is not ad-
dressed in this chapter, because the main focus here is ¢s&lioe optimal partitioning to
minimize the cost related to classification errors.
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Optimization ProcedureA sequential search-based technique has been adopted in thi
study for optimization of the partitioning, which was preusly proposed in [46]. As the
continuity of the partitioning function with respect to trenge space of classification error-
related costs may not exist or at least are not adequatelyzaaia gradient-based optimiza-
tion methods are not explored here. To construct the sepadesa suitably fine grid size
depending on the data characteristics needs to be assumatdotthe grid boundaries de-
notes a possible position of a partitioning cell boundasyillastrated in Fig. 17. Here, the
dotted lines denote the possible positions of a partitigriell boundary and as discussed
before, for a chosen partitioning (denoted by firm linesg gartitioning boundaries are
perturbed to obtain &'ost,opyst-

Let the data space regiéhbe divided intoG grid cells for search, i.e., there i@ —1)
grid boundaries excluding the boundaries. Thus, ther&are 1 partitioning boundaries to
choose amon@= — 1) possibilities, i.e., the number of elements (i(€5| — 1)-dimensional
partitioning vectors) in the spade of all possible partitioning is(:G—l)C(m_l). Itis clear
from this analysis that the partitioning spaPemay become significantly large with an
increase in values aff and|X| (e.g., forG >> |X|, computational complexity increases
approximately by a factor off/|X| with increase in the value d&| by one). Further-
more, for each element @?, a sufficiently large number of perturbed samples need to be
collected in order to obtain th€ost, ... Therefore, usage of a direct search approach
becomes infeasible for evaluation of all possible pariitig. Hence, a sub-optimal solu-
tion is developed in this chapter to reduce the computdticoraplexity of the optimization
problem.

The objective space consists of the scalar-valuedostO, while decisions are made
in the spaceP of all possible partitionings. The overall cost is dependam a specific
partitioning A and is denoted bg'ostO(A). This sub-optimal partitioning scheme involves
sequential estimation of the elements of the partitioning

The partitioning process is initiated by searching therogticell boundary to divide
the data set into two cells, i.e\p = {\1}, where); is evaluated as

Al = arg II)l\iIl CostO(Ag) (53)

Now, the two-cell optimal partitioning is given bys = {7 }.

Note that to obtairCostO (i.e., bothCostE, st andCostW,.us¢) fOr @ given parti-
tioning, a suitabler, needs to be chosen. Let the gap between two search grid besda
(i.e., two consecutive dotted lines in Fig. 17) heando ) is chosen as, /3 in this study.
The choice of such a standard deviation of the Gaussianrpatton is made for approxi-
mately complete coverage of the search space. Note that¢bald be an overlap of pertur-
bation regions between two consecutive search grid boigsjarhich leads to a smoother
(that is essentially robust) cost variation across the dorsace. In addition, depending
on the gap, and data characteristics, a suitable sample size is chosgrptoximate the
cost distribution under the fuzzy cell boundary condition.

The next step is to partition the data into three cells\gs by dividing either of the
two existing cells ofA3 with the placement of a new partition boundary\af where\; is
evaluated as

A5 = arg H)l\in CostO(A3) (54)
2
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whereA; = {A}, A2}. The optimal3-cell partitioning is obtained ad; = {A},A5}. In
this (local) optimization procedure, the cell that prowdhe largest decrement @lostO
upon further segmentation ends up being partitioned. titety, this procedure is extended
to obtain theX| cell partitioning as follows.

/\TEI—l = arg )\min CostO(Ajx) (55)
I=|—1

whereAy = A\*z|—1 U {\gj—1} and the optimalX| cell partitioning is given by\
Alsim U N

In this optimization procedure, the cost function decreasenotonically with every
additional sequential operation, under the assumptiooméct estimation of 'ost E, opust,
CostW,opust @nd hence,C'ostO under the fuzzy cell boundary condition. Formally,
COStO(ATZ\—l) > CostO(Al*Z‘). as explained below.

Let A%, be the (3|-1)-cell partitioning that minimize€’'ostO, based on the algo-
rithm, Ay = AI*E\—l U {Azj=1})- If Aig—1 is chosen such that it already belongs to

1%]-1
A\*E|—1’ then there would be no change in the partitioning struciuge

* =
1

COStO(A‘m) = COStO(A‘*E'_l) for )\|2‘_1 S A\*E|—1 (56)

I_f_)\‘g_|_1 € A\*E|—1’ then the partitioning_\m is esse_nt_ially treated as(&| — 1)-cell
partitioning for the purpose of cost calculation. By defamit

CostO(Afy,)) < CostO(Ajg)) YAz (57)
Then, it follows that,
min(CostO(Ajg—1)) > min(CostO(A}x))) (58)
Or,
CostO(Afy_1) = CostO(Afy)) (59)

The monotonicity in the cost function allows formulationafule for termination of
the sequential optimization algorithm. The process oftargaadditional partitioning cells
is stopped if the cost decrease falls below a specified pestalar threshold,;,, and the
stopping rule is as follows.

ATE‘_I is the optimal partitioning (anf| — 1 is the optimal Alphabet size) if

CostO(Afy_1) — CostO(Afy) < Nstop- (60)

In contrast to the direct search of the entire space of fmanititg, the computational com-
plexity of this approach increases linearly wjth|. This approach also allows the user to
have finer grid size for the partitioning search.

Validation Example 1: Fatigue Damage Classificatidts described earlier, the process
of fatigue damage is broadly classified into two phases:kcimitiation and crack propa-
gation. For validation purpose, the crack propagationestaglivided into four classes as
presented below.
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Class| Crack Length

1 0.5t01.75 mm
2 1.75t0 3.5 mm
3 3.5t05.5mm
4 more than 5.5 mn

As described earlier, the weighing matiix is chosen based on the user’s requirement.
In the present casél is defined from the perspective of risk involved in miss-sifigation.
For example, penalty is low when data in Class 1 (i.e., snmatticlength) is classified as
in classes for larger crack length; however, penalty is fiiglthe converse. For the results
presented in this chaptdily matrix is defined as follows.

<

Il
o o wo
o w o
W o =N
O =N W

In the present work, a large volume of ultrasonic data has bebected for different
crack lengths on different specimens to demonstrate th@egftiy of the present classifica-
tion scheme to account for the stochastic nature of matertderties. The experimental
procedure has been discussed earlier. Classificatiortsdsuthe crack propagation phase
using the optimal partitioning along with results obtairfydusing Maximum Entropy and
Uniform partitioning [12] are provided here. The classifica process is started by wavelet
transformation of the time series data with suitable scatektime shifts for a given basis
function. Each transformed signal is normalized with theximam amplitude of trans-
formed signal obtained at the beginning of experiment, wifieme is no damage in the
specimen. The data are normalized to mitigate the effectaridbility in the placement of
ultrasonic sensors during different experiments.

As described earlier, both training and test data sets aigedi into four classes based
on crack length as all the ultrasonic signals are labelelltivé corresponding crack lengths.
The sequential optimization of partitioning has been edrout on the training data set to
find optimal partitioning. The specifications of SDF and tlessifier remain same as in
the first example. The optimal alphabet size iwith stopping threshold valugs,, =
0.005. The confusion matrices for Optimal, Uniform and Maximumtigpy Partitioning
on the test data set are given @y”!” CUL and CMEP respectively. Table 2 shows the

est

comparison of classification performances using diffepamtitioning processes.

93 7 0 O
Coptp B 5 8 6 0
test = 0 4 92 4
0 3 7 90
94 5 1 0
cup _ | 15 74 11 0
test = 0 9 8 6

1 5 11 83
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93 7 0 0

cmEp_ | 12 82 60
test 0 7 89 4
1 3 7 89

Table 2. Performance Comparison of Partitioning Schemes

Partitioning| Costg | Costyy
OptP 0.255 0.5
UP 0.40333| 0.68
MEP 0.31333| 0.52

It is observed that both costosty andCostyy are reduced for optimal partitioning
as compared to maximum entropy and uniform partitioningis kilso evident from the
confusion matrix that optimal partitioning has improvee ttiassification results. A close
observation of confusion matrix indicates that chancesgifdr damage level data samples
being classified as a lower level damage is reduced.

Validation Example 2: Fault detection in Nuclear power glan Component-level
anomaly detection in nuclear power plants involves iderdifon of the anomaly type and
location & quantification of the anomaly level. Although thmodel configuration in the
IRIS test-bed can be easily extended to simultaneous aresrialmultiple components,
this work deals with a single component, namely, the reamofant pump (RCP), where
the task is to detect an anomaly and identify its level fois§iloly unknown) sensor noise
variance. The RCP overspeed percentaggec) is chosen as a health parameter. Ta-
ble 3 shows the approximate ranges/gf-p under different anomaly levels. Here, the low
anomaly level indicate very minimal overspeed in RCP andé@exiso includes the abso-
lute nominal health condition/(zcp = 0). Similarly, depending on the standard deviation
of the noise in the hot-leg coolant temperature sefi3gr, three sensor noise levels are
selected. Table 4 shows the approximate ranges of the staddeaiation of sensor noise
under different levels. The primary coolant RTDs in PWR daare typically calibrated
to an accuracy 00.5° F' or better before installation [25]. In general, the leveldise is
defined to be within the accuracy threshold of RTDs, whilelé&/and 3 noise are beyond
this accuracy threshold and hence are measurable by RTDs.

In the above contex{;3 x 3) = 9 classes of data sets are chosen to define each class
by an RCP anomaly level and a noise level of #hg;, sensor. One hundred simulation
runs are performed on the IRIS system for each class to gentaree series data, among
which 50 samples were chosen for training and the remairaingptes for testing. The

Table 3. Anomaly Levels in Reactor Coolant Pump (RCP)

Anomaly Level | RCP Overspeedy)rcp (%)
Low 0.00to0 0.30
Medium 0.30to 0.60
High 0.60t0 0.90
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Figure 19. Original class labels for data collection

parameters, RCP overspeed percentagepr and standard deviation &fy;, are chosen
randomly from independent uniform distribution such tHabathe parameter values are
within the prescribed ranges given in Tables 3 and 4. FigQneldts the generated samples
in the two-dimensional parameter space, where differexisels of samples are shown in
different colors and are marked within the class number.eNloat the standard deviation
(o1, ,) in Fig. 19 shows values of actual standard deviation, npeasents.

Often component degradations in nuclear plants occur oove-tiine scale, i.e., the
anomaly gradually evolves over a relatively long time spaadden failures in plant com-
ponents are disastrous and may occur only if a componentradates sufficient amount
of anomaly over a prolonged period and reaches the critmial pwhich justify early de-
tection of an anomaly for enhancement of plant operatioatdtg However, component
anomaly at the early stages of a malfunction is usually verglsand is difficult to detect,
especially under steady-state operations. One way to frhfiie anomaly signature is to
perturb the plant by (quasi-)periodically perturbing thebtne load such that the plantis in
a transient state for a period that is sufficiently long fopraaly detection and insignificant
from the perspectives of plant operation.

For each sample point in the parameter space, a time sedebdsted forls;;, sensor
under persistent excitation of turbine load inputs thaehawncated triangular profiles with
the mean value of 99% of nominal output power, fluctuationthiwi+1% and frequency
of 0.00125Hz (period” = 800 sec). In other words, the turbine load is fluctuating between
nominal power (i.e., 335 MW) and 98% of nominal power (i.283 MW). Figure 21
shows the profile of turbine load and a typical example ofihgtwutput power as a result
of fluctuation in turbine load.

For each experiment, the sampling frequency for data daleds 1 Hz (i.e., the inter-

Table 4. Variable Noise Levels in the the Sensoy,

Noise Level | Standard Deviation Rangeor,,, (°F)
Level 1 0.005 to 0.025
Level 2 0.025 t0 0.045
Level 3 0.045 to 0.065
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Figure 20. Representative time series data for RCP anomadl{/'a; degradation condi-
tions
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Figure 21. Profile of turbine load and turbine output respons

sample time of 1 sec) and the length of the perturbation tirmelew is 2,400 seconds,
which generate 2,400 data points. The total perturbatiolog&r each experiment is 3,000
seconds. In this study, to eliminate the possible transi¢hé data for the first 600 seconds
have not been used so that quasi-stationarirty is achidviggire 20 shows representative
examples ofl ;7 ;, time series data from each of nine classes. Reduction ofdftarpation
period needs to be investigated for in-plant operationschwvis a topic of future research.

With the objective of building a data-driven diagnosticalthm that is robust to sen-
sor noise (within an allowable range), a data class is defiodae only dependent on
the RCP overspeed parameters. Thus, the 9 original classesduced to 3 classes as
shown in Fig. 22. This is the final class assignment for tha dat, where each class has
(50 x 3) = 150 training samples an(b0 x 3) = 150 test samples. Thus, the problem of
component level anomaly detection is formulated in presesfcsensor noise as a multi-
class classification problem; in the present scenario, eummiclasses is 3.

Pertinent results are presented here for the case studgpofaydetection in the reactor
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Figure 22. Revised class assignment for anomaly detection
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Figure 23. Two dimensional objective space for partitigniptimization

coolant pump (RCP) for comparative evaluation of the optipaatitioning-based SDF tool
with those based on classical methods of partitioning akagdPCA.

At the beginning of the optimization procedure, a weightmgtrix W needs to be
defined to calculate the cost functionélest z andCosty, from the confusion matrix for
the training data set. In this case stully, is defined according to the adjacency properties
of classes in the parameter space, wg;,= 0 Vi € {1,2,3}, i.e. there is no penalty for
correct classification. The weights are selectedias= |i — j|, Vi € {1,2,3}, i.e., given
that a data sample originally frodil; is classified as a member 61, the penalty incurred
by the classification process increases with increase iseparation o”'l; andCl; in the
parameter space. Then, it follows that:

01 2
W=|101
210

The data space regidnis divided into40 grid cells, i.e. 39 grid boundaries excluding
the boundaries of). Each partitioning in the space is evaluated by calculating'ost g
and Costyy to identify the optimal partitioning. Figure 23 shows a velet region of the
(two-dimensional)Cost g-Costy, objective space, where the elements of the sffaese
located. The Pareto front is also generated from this etialuaThe threshold, i.e., the
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Figure 24. Feature space of the training set using optintétipaing

maximum allowableCosty is taken to be).041 in this case and the optimal partitioning
(OptP) is chosen by the Neyman-Pearson criterion as disdwesarlier. Thus, the user has
the option of choosing a classification operating point witected values af'osty and
Costyy. The Pareto front [47] is generated after the threshadlksl chosen. Locations of
the classical partitioning (i.e., uniform (UP) and maximaniropy (MEP)) are also plotted
along with the elements @ in the figures for comparative evaluation.

For SDF analysis, the alphabet size is taken t®He= 4 and the depth for constructing
PFSAistaken to b® = 1. Features are classified by:a\N classifier using the Euclidean
distance metric. Figure 24 shows locations of the trainegjures in the three-dimensional
plot using first three linearly independent elements of dagifre vectors obtained by using
the chosen optimal partitioning, OptP. Note, ofii|—1) out of its|>| elements of a feature
vector are linearly independent, because a training featactor,p is also a probability
vector, i.e., the sum of its elements is constrained to baldqu. The class separability
is retained by the feature extraction (partitioning) psgeven after compressing a time
series (with 2,400 data points) into 3 numbers.

For comparison purpose, classical partitioning schemety as, Uniform Partitioning
(UP) and Maximum Entropy Partitioning (MEP) are also usetihwhe same alphabet size,
|X| = 4. Figures 25 and 26 show the location of each training timesen the three
dimensional (using first three linearly independent elesefthe feature vectors) feature
space plot using UP and MEP, respectively.

Finally, the confusion matrices for the SDF-based meth@jsF, UP and MEP) with
k-NN on the test data set are given @7/ NN CUP+ENN angMEP+ENN | respec-
tively.

142 8 0
COPIPFRNN _ 114 136 0
0 4 146
145 5
CUPFENN — 1 17 132 1
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Figure 26. Feature space of training set — maximum entrogitipaing (MEP)

143 7 0
CMEPFTENN — |18 132 0
0 5 145

For comparative evaluation, the data sets are analyzed agher common pattern
recognition tools [4][40]. In this case study, principaingoonent analysis (PCA) is used
as the feature extraction tool, whileNN, linear discriminant analysis (LDA) and least
squares algorithm (LS) are used as the pattern classifiess.PEA anomaly detection,
M = 450, N = 2400, and by choosing; = 0.90, the corresponding number of largest
eigenvalues turns out to be = 20. The confusion matrices for PCA wititNN, LDA and
LS are given byCLCATRNN ¢ POATLDA gndcPCA+LS respectively.

149 1 0
CPOATRNN — 1 40 110 0
0 4 146
136 14 0
CPCATLDA _ [ 18 126 6
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Figure 27 shows how the neighbor size in thélN classifiers affect the classification
performance, and the performances of Opt, MEP, UP and PQAdifferent neighbor size
k are compared. Only odd values of neighbor size are showrubeaahen using an even
value for k, it might be necessary to break a tie in the number of neamighbors by
selecting a random tiebreaker or using the nearest neigitbong the tied groups. It is
seen in Fig. 27 the classification performance of SDF-basttiods is consistently better
than that of PCA-based method and almost independent ofdilgdlvor size, whereas the
classification error of PCA increases with the number of medy size. This results show
that the feature vectors extracted by SDF retain betterabitity among classes than those
extracted by PCA.

Table 5. Comparison of Classification Performances of Differentidels on Test-data set
(50 x 9 samples)

Methods | CostE | CostW | Classification Error %
OptP+#NN | 0.0578 | 0.0933 5.78
UP+:NN | 0.0644| 0.1200 6.44
MEP+kNN | 0.0667 | 0.1200 6.67
PCA+:NN | 0.1000| 0.2667 10.00
PCA+LDA | 0.0911| 0.1200 9.11

PCA+LS | 0.0889| 0.1800 8.89

Table 5 presents the comparison of the classification eetated costs for SDF-based
methods and PCA-based methods on the test data set. Theailisemade from these
results indicate that the classification performance of ®8sed methods are superior to
that of the PCA-based methods. The classification perfocenan MEP and UP are close,
and UP performs slightly better in this case study. The cdatsto worst-case classifi-
cation error and expected classification error are reduoatpared to that of the uniform

partitioning scheme by optimizing the partitioning pracewer a representative training
set.
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It is noted that, for some problems, the classical partitigrechemes may perform
similar to the optimal one. Therefore, the optimization gadure may also be used to
evaluate the capability of any partitioning scheme towaseving a better classification
rate. The evaluation can be performed by using a part of theddd training data set as the
validation set. Although the construction of the cost fimts allow solutions of problems
with a large number of classes, its upper limit could be canstd by the alphabet size
used for data partitioning which determines the dimensidhefeature space.

4. Symbolic Dynamic Analysis of Short-length Transient Tine-
series Motifs

Many classification algorithms are not well-suited for aggtions to nonlinear dynami-
cal systems [48][49][50]. This phenomenon has led to deparfrom the conventional
continuous-domain modeling towards a formal languagertte paradigm in the sym-
bolic domain [51]. The theory of symbolic dynamic filterin§{F) has been developed as
a tool for anomaly detection [15][12] and also for featur&&stion [52] in pattern classifi-
cation problems [1].

A symbol string is obtained from the output of the dynamigadtem by partitioning
(also called quantization) of the time-series data. Tlggeaa probabilistic finite state
automaton (PFSA) is constructed from the (finite-lengthhlsgl sequence via one of the
construction algorithms (e.g., [15], [53], and [54]). Dodhe quasi-stationarity assumption
in SDF, it may not be feasible to obtain sufficiently longrag of symbols in both training
and testing phases of classification. Therefore, the ewttngarameters of the resulting
PFSA model may not be precise.

The goal of this section is to identify the hidden structufé¢he symbol string and to
construct a Bayesian classifier for identification of thebatality morph matrices of PFSA
based on the data length in both training and testing phdgesnsient time-series motifs.
In this context, Dirichlet and multinomial distributiongwe been used to construct tae
priori anda posteriorimodels of uncertainties, respectively. The algorithmda@mulated
by quantitatively incorporating the effects of finite-léhgymbol strings in both training
and testing phases of pattern classification. In this ggtfiartinent information (e.g., prob-
ability morph matrix and state transition function) dedvieom a PFSA model serves as a
feature vector even though the PFSA representations magy diasimilar structures. The
Proposed algorithm is validated on an industrial applicatvhich is as follows: Transient
Fault Detection in Aircraft Gas Turbine Engine.

4.1. Theory

A symbol string is obtained from the output of system underswteration by partition-

ing, also called quantization, of the time-series data.rdéfter, a probabilistic finite state
automaton (PFSA) model is developed from the (finite-lengimbol sequence [15] as
explained in the subsection 1.1.. This section constru@syaesian classifier for iden-
tification of the probability morph matrices of PFSA basedtloa transient data in both
training and testing phases. The Dirichlet and multinordisiributions have been used to
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construct thea priori anda posteriorimodels of uncertainties, respectively. This formula-
tion quantitatively incorporates the effects of finitegéim symbol strings in both training
and testing phases of pattern classification.

4.1.1. Partitioning of time series data

The sensor time series is encoded by data partitioning imathge of the signal [55][12],
where the conversion to symbol strings is achieved by dukisy each (real-valued) data
point in the time series by a symbol corresponding to theoreie., interval) within which
the data point lies. This step enables transformation os#mesory information from the
continuous domain to the symbolic domain; in other words, gensor data at each sam-
pling instant is replaced by a symbol. Sarkar et al. [55][B&}e reported details of data
partitioning and its usage for fault detection in gas tuelb@mgines.

4.1.2. Modeling via Probabilistic Finite State Automaton

The symbolic sequence is modeled as a probabilistic firgtie stutomaton (PFSA) that is
constructed as a tuple 2 (Q, %, §,1I), where the alphabef is a nonempty finite set of
symbols and the set of statésis constrained to be nonempty and finite. To simplify the
PFSA model construction, this section considers only s@d&®PFSA, known as D-Markov
machines [15], where the states are strings offthgast symbols; the positive integéris
called the depth of the machine and the number of staes< |>|”. Given the previous
state and an observed symbol, the state transition funétior x ¥ — (@ yields the
new state. In addition, the morph functian: @ x ¥ — [0, 1] is an output mapping that
satisfies the condition} .y, 7(¢q,0) = 1 forall ¢ € Q. The morph functionr has a
matrix representatiofil, called the (probability) morph matrix of dimensigf@Q| x |X|).
Each row sum ofl is equal tol and each matrix elemenl;; is strictly positive due to the
finite length constraint of time series from which PFSA med®k constructed [57].

Remark 4..1. The PFSAG = (Q, %, 4, IT) is not dependent on the initial stagg € @ due
to the assumption of quasi-stationarity of the observedaedata.

4.1.3. The Online Classification Problem

Let there bek symbolic systems (i.e., classes) of interest, denoted,by¢, . . ., Ck, over
the same alphabet. Each clasg’; is modeled by an ergodic (equivalently, irreducible)
PFSAG' = (Q%, %, 6, 11"), wherei = 1,2... | K.

During the training phase, a symbol strisg < s/s)...s) is generated from each
classC;. The state transition functiof and the set of state@ of the D-Markov machine
are fixed by choosing an appropriate depth Thus,II*’s become the only unknowns and
could be selected as the feature vectors for the purposessgification. The distribution
of the morph matrixII’ is computed in the training phase from the finite length syimbo
sequences for each class.

In the testing phase, let another symbol strﬁge obtained from a sensor time series
data. Then, the task is to determine which class this obdesymbol string§ belongs
to. While the previous work [15][12] has aimed at identifioatof a PFSA from a given
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symbol string, the objective of this section is to imbed tineartainties due to the finite
length of the symbol string in the identification algorithirat would influence the final
classification decision.

In the training phase, each row Hf is treated as a random vector. Let th&" row of
IT" be denoted aH’, and then” element of then'” row asITi , > 0 andz‘EI ..
Thea priori probability density functiorf: |s: of the random row-vectdd’,, condltloned
on a symbol strings?, follows the Dirichlet distribution [58] [59] as describéelow.

E .
H )G~ (61)

whereojn is a realization of the random vectﬂl’;n, namely,

i 15i(65,187) =

aﬁn:[eg‘nl i, .. egnm]

and the normalizing constant is
(62)

whereal, £ [a;ﬂq;ﬁ cap ] with . = Ny, + 1and Ny, is the number of times
the symbolr,, in S* is emanated from the staig,, i.e.,

N = [{(sk k) = 5} = 0n, 0} = G} (63)

wheressi is the k" symbol in S* and v}, is the k™" state as derived from the symbolic
sequences’. Recall that a state is defined as a stringogpast symbols Then, the number

of occurrence of the statg, in the state sequence is given iy, = E‘m N: . Itfollows
from Eq. (62) that

iy I TV, 1) T (N,)!
) R S N+ ) N 51— 1) e

by use of the relatiol’(n) = (n — 1)! Vn € Nj.
By the Markov property of the PFS&", the (1 x |%|) row-vectors,{II¢,},m =
.|Q|, are statistically independent of each other. Therefor®/lows from Egs. (61)
and (64) that thea priori joint density fy:|5: of the probability morph matrixI’, condi-
tioned on the symbol strin§?, is given as

QI
frsi(6°18Y) = T frusys0 (05157)

m=1

Q| 2|

‘ gi N,
= 1‘_[1 (N&+]E\—1)!H7((N;ln)' (65)
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whereg’ = [(69)7 (64) -+ (8],)7] € [0,1]/12>
In the testing phase, the probability of observing a symtrbig;§ belonging to a par-

ticular class of PFSAQ, 32, 6, IT?) is a product of independent multinomial distribution [60]
given that the exact morph mati¥ is known.

Pr <§|Q, 5, Hi)
IQI " IZ‘ (Hz )Nwzn
= [TV ] 22— (66)
e L
2 pr <§|H"> asQ andé are kept invariant (67)

Similar to N! . defined earlier fors?, Nmn is the number of times the symbe), is
emanated from the staig, € @ in the symbol stnngS in the testing phase, i.e.,

Ny 2 [{(8k,T8) © 31 = 00, O = i }| (68)

wheres;, is thek™ symbol in the stringS andy, is thek!" state derived frons. It is noted
thatV,,, 2 S N,

The results, derived in the training and testing phasesnawne combined. Given a
symbol stringS® in the training phase, the probability of observing a symibbhgg in the
testing phase is obtained as follows.

Pr(S|St) = /---/Pr (§|Hi :02') Friys: (671576

\Q\ B \2l (92‘ )ﬁmn_

/ / e 1 (Nomn)! |

9] ' 2] CIRLCT i

< IT | (N, + 15 = 1) Hmd%n
m=1 n=1 mn/:

Q|
= H L(NE, 4|2 = 1)!
f fn‘m z N,,m-i-anndQ:'nn
1 (N (N, )!

The integrand in Eq. (69) is the density function for the €htet distribution up to the
multiplication of a constant. Hence, it follows from Eg. J@Aat

(69)

12|

[ TL ¥

[T, (N + Ni,)!
(Nm+N;'n+]E\—1)!
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Then, it follows from Eq. (69) that

Qv
Pr(S)s7) = [ D) (M + 151~ 1)

=t (N + NG +15) = 1))

E ~
Nmn—i—NZ (Nmn + Nppp)!
1:[ W)W (NE)!

(70)

It might be easier to compute the IogarithmR1ﬁ§|Si) by using Stirling’s approxima-
tion formulalog(n!) ~ nlog(n) — n [2] because botiV* and N would be large numbers.
The posterior probability of a symbol strin§ belonging to the clas§’; is denoted as
Pr(C;|S) and is given as

31 Pr(S187) Pr(Cy)

wherePr(C;) is the known prior distribution of the clags. Then, the classification deci-
sion is made as follows.

D, jqss = arg max Pr(C’i\g)
= arg max (Pr(ngi) Pr(C’i)) (72)

Algorithms 1 and 2 respectively summarize the training &sting phases for classifi-
cation of time-series data.

Algorithm 1 Training
Input: Time-series data, one for each of tReclasses
User defined Input: Symbol alphabek, depthD of PFSA
the symbols are definett, o, ..., oy and states are
defined asg/1, q2; -, gz 0
Output: N, wherei =1,....K,n=1,...,|%|
andm =1, ..., \Z]D
Initialize: All N = 0.
forall i€ {1,2,...,K} do
Symbolize time-series data for clas® obtain a symbol
sequences’
ObtainN!,, the number of times the symbe)}, in S°

mn?

is observed immediately after the stajg

end for
return N:  wherei=1,...K,n=1,..,|3]
andm =1, ..., |2|”

The concept of the online classifier can be clarified usingrels example [61] as
follows. Figure 28 shows two single-state PFSA with the al@t> = {1,2,3}, which
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Algorithm 2 Testing

Input: Test time-series data, and output of trainiNg,,
User defined Input: Prior probability of each clasBr(C;),
symbol alphabell, and depthD of PFSA,
the symbols are defined as, o9, ..., 0|5, and states are
defined ag1, ¢, ..., 4P
Output: Posterior probability of each class.
Initialize: All N, = 0.
Symbolize test time-series data to obtain a symbol
sequence"
Obtain N, the number of times the symbe), in S
is observed immediately after the statgis reached
forall i€ {1,2,...,K} do
Evaluate Pr§|S?) using Eq. (70)
end for
forall 1 €1,2,...,K do
Evaluate Pr(;|S) using Eq. (71)
end for
return Pr(C;|S),i € {1,2,..., K}

have identical algebraic structures, but they differ irirth@orph probabilities; these PFSA
belong to the respective classés, and 5. Since both PSFA have only one state, each
symbol in a string is independent and identically distetlit Given an observed symbol
string S, the task is to identify one of the two classes to wh&:lh)elongs i.e., to select
one of the two PFSA that would more likely generate the syratmigS In this example,
two training symbol strmgsS1 and S? are chosen, one from each class. In the testing
phase, the quantitied’};, N}, N03 are obtained following Eq. (68), which are essentially
the frequency counts of the symbols 1, 2, and 3, respectivedy 1, 72, andn; be the

Nl

normalized frequency counts obtained gy £ ——=2%—— k = 1,2,3. Two classes
Noy +Nop +No3

are generated on the simplex plane in Fig. 29 that shows hewléssification boundary
changes as the length of a symbol string in the testing plsasereased.

4.2. Transient Fault Detection in Aircraft Gas Turbine Engine

Performance monitoring of aircraft gas turbine enginegjscally conducted on quasi-
stationary steady-state data collected during cruiseitond. This issue has been ad-
dressed by several researchers by using a variety of asalydpls. For example, Lipowsky
et al. [62] made use of Bayesian forecasting for change tieteand performance analysis
of gas turbine engines. Guruprakash and Ganguli [63] redarptimally weighted recur-
sive median filtering for gas turbine diagnostics from naggynals. However, transient
operational data (e.g., from takeoff, climb, or landingh ¢ gainfully utilized for early
detection of incipient faults. Usually engines operateasnduch higher stress and temper-
ature conditions under transient operations compareasethnder steady-state conditions.
Signatures of certain incipient engine faults (e.g., lmeggfaults, controller miss-scheduling,
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{310.6 {310.3

(a) ClasC: (b) ClassC

Figure 28. Two one-state PFSA with different morph prohtéd

(a) Testing data length = 25 (b) Testing data length = 80

Figure 29. Both subfigures (a) and (b) show the classificdttamdaries for the two classes
C1 (in light shade) and’, (in dark shade) for different lengths of testing striﬁg The
training stringsS! andS? for classes”; andC, are obtained from the two machines and
have lengths 30 and 80, respectively.

and starter system faults) tend to magnify during the tearistonditions [64], and appro-
priate usage of transient data could enhance the prolyabilfiault detection [65]. Along
this line, several model-based and data-driven fault disigrmethods have been proposed
by making use of transient data. For example, Wang et al.dé%¢loped a neural network-
based fault diagnosis method for automotive transientatipers, and Surendar and Gan-
guli [67] used an adaptive Myriad filter to improve the qualif transient operations for
gas turbine engines. However, model-based diagnosticssufésr from inaccuracy and
loss of robustness due to low reliability of the transientdels. This problem is partially
circumvented through usage of data-driven diagnosticexXample, Menon et al. [68] used
hidden Markov models (HMMs) for transient analysis of gabitie engines.

A recently developed data-driven technique, called thebsfim dynamic filtering
(SDF) [15], has been shown to yield superior performancetims of early detection of
anomalies and robustness to measurement noise in compé#isther techniques such as
Principal Component Analysis (PCA), Neural Networks (NNjldayesian techniques [6].
Recently, in a two-part paper [69][70], an SDF-based allgorifor detection and isolation
of engine subsystem faults (specifically, faults that caieiency degradation in engine
components) has been reported and an extension of that wadtimate simultaneously
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occurring multiple component-level faults has been preskin [56]. Furthermore, an
optimized feature extraction technique has been developédr the same semantic frame-
work in [55]. However, all of the above studies were conddabe steady-state cruise
flight data that conform with the assumption of quasi-stetity made in SDF. Due to this
assumption, SDF may not be able to adequately handle trdrdéga that are usually of
limited length. To handle this limitation the above menédralgorithm is applied using the
Transient Test-case Generatptl] of the Commercial Modular Aero Propulsion System
Simulation (C-MAPSS) test bed, developed by NASA to detextdient fault.

4.2.1. Fault Injection in C-MAPSS Test Bed

A stochastic damage model has been developed and incagdrathe C-MAPSSran-
sient Test-case GeneratPrl] (developed by NASA), based on the experimental data for
trending the natural deterioration of the engine companaatexplained in section 2.. Al-
though injection of faults is described in the transient-tese generator code [71], it is
explained in this section for completeness. For all fivetnaggcomponents, faults exhibit
random magnitudesft{,), and a random health parameter rattd/{ k). While F;,, and

H PR directly determines the change in efficiency health paramgitC') of a component

C, achange in the flow health parameferis determined by{ P R for a given perturbation

in . Formally, the following two relations are used.

F
Sp, = ——— — and dy., = by - HPR 73
Yo 11 HPR? o Yo ( )

whered,,, andd, denote the changes if and(c respectively.

In the case study, fault magnitudg; () follows a random uniform distribution ranging
from 1 to 7. Health parameter ratiod(PR) for Fan, LPC, and HPC are uniformly dis-
tributed between 1.0 and 2.0, wherdd® R s for HPT and LPT are uniformly distributed
between 0.5 to 1.0. The changes in health parameters ootnicirtain base values ¢
and(c.

4.3. Performance of Transient Fault Classifier

This section presents the simulation results of symbolidyesis of transient time series and
incipient fault detection on the C-MAPSS test bed. The geakhs to demonstrate how
the binary faults (i.e.KX = 2 in Algorithms 1 and 2) are detected and identified at an early
stage in time-critical operations like engine health mamagnt. To establish the relation-
ship between detection time and detection accuracy, numaimulation experiments have
been performed during the “takeoff” operation, where thecMaumber is varied frord

to 0.24 in 60 seconds keeping the altitude at zero (i.e., sea level) ardl&R0%. Faulty
operations in three different components, Fan, LPC and ldiTsimulated along with the
ideal engine condition. The HPT exit temperatuigs] sensor (that captures the above
failure signatures in the gas path) is chosen to providertimsient response. The rationale
behind choosing th&,s sensor is attributed to the following physical facts:1{j} is placed
between HPT and LPT, and (ii) LPT is mechanically conneateithé Fan and LPC via the
outer shaft. The sampling frequency of thg sensor data i66.7 Hz. For the purpose of
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training, the duration for each simulation run is chosend@®sec (i.e., a time series of
length~ 4000) and the transient data set for each fault class is constiimt concatenating
50 such blocks of time series data that were individually gategl on the simulation test
bed under similar transient operating conditions. It issdathat these blocks of data are
statistically similar but they are not identical.

The next step is to partition the data sets to generate ribapeymbol strings. The
range of the time series is partitioned itotervals (i.e., the alphabet sigg| = 5), where
each segment of the partitioning corresponds to a distiymabsl in the alphabelE. The
training phase commences after the symbol strings arenautéor each of the four classes,
i.e., one nominal and three faulty conditions. In this aggilon, it suffices to choose the
depthD = 1 [15], which implies that the probability of generation of ature symbol
depends only on the last symbol, and hence the set of staemm®rphic to the symbol
alphabet (i.e.Q = ). For each clas§;, the parameterd/’? = are obtained by counting the
number of times the symbel, is emitted from state,,,.

The testing phase starts with a new time series from one efdisses, where the symbol
sequence is generated by using the same alphabet andpartitas in the training phase.
Following Eq. (71), the posterior probability of each classalculated as a function of
the length of the testing data set. Figure 30 shows the posfaobability of each class
as a function of the length of the observed test data. It in Hest the observed sequence
is correctly identified to belong to the class of LPC faultsttees posterior probability of
the corresponding class approaches one, while it appreadte for each of the remaining
classes (i.e., the other two component faults and nomimalition). By repeating the same
classification technique di new test runs of LPC fault, it is observed that a data length of
500 is sufficient to detect the fault with a reasonable confidefoe other two component
faults, the posterior probability for the correct faultsdaapproaches unity within the data
length of 50, as seen in Fig. 31. The rationale is that the fault signattoefan and HPT
in Tyg response are dominant, even if they are incipient.

In a hierarchical fault detection and isolation strategy w resolution level, the goal
is to identify the faulty component (e.g., Fan, LPC or HPTic® the fault is located, the
next step is to quantify the severity of the located faulte Bgmbolic transient fault detec-
tion technique can be extended to classify different legéfault in single components of a
gas turbine engine. For verification, samples of nominad da¢ injected with a low-level
fan fault, where the fault magnitudé(,) follows a random uniform distribution ranging
from 1 to 3. The remaining samples of nominal data are injected witlgh-fével fan fault
of magnitude £},,) within the range ob to 7. In this case, the alphabet size is chosen to be
|| = 6 to obtain better class separability. Figure 31 shows tleaptsterior probability for
a high fan fault saturates to the valuelofvithin a data length of0, which is equivalent to
~ 1 sec. (Note: The oscillations in posterior probabilities-ig. 31 are due to randomness
of the estimated parameters for data lengths smaller harBut when the test case is a
low-fan fault (see Fig. 32), the posterior probability ofigtitlevel fan fault remains dom-
inant until the data length reaches400. This would result in a false classification as the
posterior probability for the true class reachemonotonically at around the data length of
1000 at, aboutl5 seconds, as seen in Fig. 32. This result agrees well witmth#ion that
the detection time increases with smaller the fault levels.

To examine the performance of symbolic transient faultc&ir, a family of receiver
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Figure 30. Detection in a multi-fault framework (Groundttrua faulty LPC)

operating characteristics (ROC) is constructed for déffielengths of test data. A binary
classification scenario is constructed, which consistaof ¢lasses: the nominal engine
condition belonging to the clags;, and a faulty fan condition belonging to the class
The training data length is the same as described in thequ®\simulation runs. The
general classification rule [72] in a symbol striﬁgs given by

D) (74)

where the threshold parametgris varied to generate the ROC curves. For the binary
classification problem at hand, an ROC curve provides tlietodf between the probability
of detectionPp, = Pr{decideC,|C; is true} and the probability of false alarmBr =
Pr{decideC;|C} is true}. Figure 33 exhibits a family of ROC curves for the proposed
fault detection technique with varying lengths of test d&ar each ROC curve is varied
betweernD.01 and2 with steps of 0.01. It is observed that the ROC curves yielprawed
performance (i.e., movement toward the top left cornerymssively as the test data length
is increased fromV;.s; = 20 to Neesr = 200. Thus, based on a family of such ROC curves,
a good combination aPp and V. is obtained for a giverx.
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Figure 31. High-level fan fault detection (Ground truth: |llevel fan fault)

5. Semantic Framework for Multi-sensor Data Interpretation
and Fusion

Sensor fusion has been one of the focused topics in the dalysenof distributed physical
processes, where the individual sensory information isnoftsed to reveal the underlying
process dynamics and to identify potential changes thestributed physical processes
are usually equipped with multiple sensors having (pogsitiifferent modalities over a
sensor network to accommodate both model-based and de¢a-diiagnostics & control.
The ensemble of distributed and heterogeneous informatewls to be fused to generate
accurate inferences about the states of critical systemesairtime. Various sensor fusion
methods have been reported in the literature to addressitittedietection & classification
problems; examples are linear and nonlinear filtering, taelamodel reference methodolo-
gies and neural network-based estimation schemes.

Researchers have used multi-layer perception [73] an@lrbdsis function [74] con-
figurations of neural networks for detection & classificatiof plant component, sensor
and actuator faults [75]. Similarly, principal componenglysis [76] and kernel regression
[77] techniques have been proposed for data-driven pattassification. These approaches
address nonlinear dynamics as well as scaling and datavadiginissues. However, the ef-
fectiveness of data-driven techniques may often degrauldlyafor extrapolation of non-
stationary data in the presence of multiplicative noisem&af the above difficulties can
be alleviated to a certain extent by simplifying approxiimas along with a combination of
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Figure 32. Low-level fan fault detection (Ground truth: Avdevel fan fault)

model-based and data-driven analysis as discussed below.

Robust filtering techniques have been developed to geneigble estimations from
sensor signals, because sensor time series data are alwisgscontaminated to some ex-
tent [78][79]. Recent literature has also reported MonteldC&larkov chain (MCMC)
techniques (e.g., particle filtering [80] and sigma poicchtgques [81]) that yield numeri-
cal solutions to Bayesian state estimation problems and baen applied to diverse non-
linear dynamical systems [82]. The performance and quefigstimation largely depend
on the modeling accuracy which is the central problem in titerifng approach; either the
dynamics must be linear or linearized, or the data must b&lgtperiodic or stationary
for the linear models to be good estimators. It is noted thatetstimation error could be
considerably decreased with the availability of high-filgetnodels and usage of nonlinear
filters, which require numerical solutions; such numeritathods are usually computa-
tionally expensive and hence may not be suitable for read-tstimation. Many techniques
of reliable state estimation have been reported in liteeatexamples are multiple model
schemes [83], techniques based on analytical redundanicseaiduals [84], and nonlinear
observer theory [85]. In essence, the information from ipl@ltsources must be synergisti-
cally aggregated for diagnosis and control of distributbysical processes (e.g., shipboard
auxiliary systems). In this context, information fusioué&es processing of non-stationary
sensor information to detect parametric or nonparametianges in the underlying system.

This section presents the development of a sensor datafosthod for fault detection
& classification in distributed physical processes with ppligation to shipboard auxiliary
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systems, where the process dynamics are interactive. Bon@g, the electrical system is
coupled with hydraulic system with time-dependent therloatl. The challenge here is
to mitigate several inherent difficulties that include: r(@n-stationary behavior of signals,
(i) diverse nonlinearities of the process dynamics, (iicertain input-output & feedback
interactions and scaling, and (iv) alignment of multi-mlod&rmation and multiplicative
process noise.

The sensor fusion concept, proposed in this section, isdgudln the algorithmic struc-
ture of symbolic dynamic filtering (SDF) [15]. A spatiotemmpbpattern network is con-
structed from disparate sensors and the fully connectedlonletis then pruned by apply-
ing an information-theoretic (e.g., mutual informatioasked) approach to reduce compu-
tational complexity. The developed algorithms are denrated on a test bed that is con-
structed based on a notional MATLAB/Simulink model of Stopld Auxiliary Systems,
where a notional electrical system is coupled with a notibgdraulic system under a ther-
mal load. A benchmark problem is created and the resultsrutifferent performance
metrics are presented.

The section is organized in three sections including theegmeone. Section 5.1.
presents the semantic framework for multi-sensor data hmgdand explains how the pro-
posed technique is used to prune the heterogenous sensarkébdr information fusion.
Section 5.2. presents a fault injection scheme in shipebaariliary unit (section 2.4.)
for conducting simulation exercises and validates the féetlection accuracy for different
scenarios in the proposed method of information fusion.
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5.1. Multi-sensor Data Modeling and Fusion

This section presents a semantic information fusion fraonkwthat aims to capture tem-
poral characteristics of individual sensor observatioleag with co-dependence among
spatially distributed sensors. The concept of spatioteaigmttern networks (STPNS) rep-
resent temporal dynamics of each sensor and their relhti@peendencies as probabilistic
finite state automata (PFSA). Patterns emerging from iddalisensors and their relational
dependencies are called atomic patterns (AP) and relatpaiterns (RP), respectively.
Sensors, APs, and RPs are represented as nodes, selfdkgpalnd links between pairs of
nodes, respectively, in the STPN framework.

5.1.1. Modeling of Temporal Dynamics of Individual Sensor [&ta

This subsection briefly describes the concept of symboliadyic filtering (SDF) [15] for
extracting atomic patterns from single-sensor data. Thekacepts of SDF are succinctly
presented below for completeness of the section. For maed dabsection 1.1. should be
consulted.

Symbolic feature extraction from time series data is poseal tavo-time-scale problem
as explained before. Symbolic dynamic filtering (SDF) ersothe behavior of (possibly
nonlinear) dynamical systems from the time series by symémdn and subsequent state
machine construction. This is followed by computation of #tate probability vectors
(or symbol generation matrices) that are representati’ésecevolving statistical charac-
teristics of the dynamical system. To this end, the timeesediata are partitioned into a
mutually exclusive and exhaustive set of finitely many ¢etiaximum-entropy partition-
ing (MEP) [12] has been adopted to construct the symbol akgtiafor generating symbol
sequences, where the information-rich regions of the da#tars partitioned finer and those
with sparse information are partitioned coarser in ordat the Shannon entropy [5] of the
generated symbol sequence is maximized.

Consequently a D-Markov machine is constructed from theb}sequence based on:
(i) state splitting that generates symbol blocks of diffeédengths according to their relative
importance; and (ii) state merging that assimilates hissdirom symbol blocks leading to
the same symbolic behavior [86]. Words of lendthon a symbol sequence are treated as
the states of thé&-Markov machine before any state-merging operation isueelc Thus,
on an alphabek, the total number of possible states becomes less than af &g |”;
and operations of state merging may significantly reducatimeber of states.

Let the state of a senset at thek' instant be denoted ag'. With this notation, the
i7" matrix elemenbrf]‘. of the (stationary) state transition matiik* (atomic pattern for

sensorA) is the probability thay;', , state isi given that they;! state wag, i.e.,
w5 2 P (g =i | g = j) for an arbitrary instank

5.1.2. Pattern Analysis of Multi-sensor Information

Relational patterns (that are necessary for constructi@T®N) are essentially extracted
from the relational probabilistic finite state automata $P. These PFSA are obtained
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as xD-Markov machines to determine cross-dependence awddfelow; the underlying
algorithm is described in Subsection 5.1.2..

Construction of Relational PFSA: xD-Markov machine

This section describes the construction of xD-Markov miaehifrom two symbol se-
quenceqs; } and{s,} obtained from two different sensors (possibly of diffenertdalities)
to capture the symbol level cross-dependence. A formalitefiris as follows:

Definition 5..1 (xD-Markov). Let M; and M, be the PFSAs corresponding to symbol
streams{s; } and {s,} respectively. Then a xD-Markov machine is defined as a ®tupl
Misa £ (Q1,%1, 59,61, 1112) such that:

e ¥y ={00,...,0y5,-1} is the alphabet set of symbol sequerisg}
e Q1 ={q1,4,---,q0,} is the state set corresponding to symbol sequegsck
e ¥y = {00, ..., 05,1} is the alphabet set of symbol sequerisg

e §1 : Q1 x X1 — Q; isthe state transition mapping that maps the transitionyimisol
sequences; } from one state to another upon arrival of a symbol &}

e II;, is the symbol generation matrix of sil@; | x |3s|; the ij™* element ofl,, de-
notes the probability of finding the symlolin the symbol strind's, } while making
a transition from the state; in the symbol sequende; }

In practice,IT;, is reshaped into a vector of lengi@; | x |¥| and is treated as the ex-
tracted feature vector that is a low-dimensional repredimt of the relational dependence
between{s, } and{s,}. This feature vector is called a relational pattern (RP)ewhoth
symbol sequences are the same, RPs are essentially the giiteirn (AP) corresponding
to the symbol sequence; in that case, the xD-Markov machitgces to a simple D-Markov
machine. It is noted that an RP between two symbol sequesces hecessarily symmet-
ric; therefore, RPs need to be identified for both directiotigs also useful to quantify
cross state transition matric€s'”? andII”4 to quantify the state level cross-dependence
between sensord andB. As illustrated in Fig. 34, elements of the state transitizatrices
148 andII®4 corresponding to the cross machines are expressed as:

el £ P (g =gy =k) Vn

T E P (g =Jla, =1) n
wherej,k € Q4 andi,? € QP. For a xD-Markov machine, the cross state transition
matrix is constructed from symbol sequences generated finmrsensors by identifying
the probability of occurrence of a state in one sensor frootter state in the second sen-
sor. For depthD = 1 in a a xD-Markov machine, a cross state transition matrix thed
corresponding cross symbol generation matrix are iddntica
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Figure 34. lllustration of Spatiotemporal Pattern Netw(SRK PN)

Pruning of STPN

From the system perspectives, all APs and RPs need to balecgiin order to model the
nominal behaviors and to detect anomalies. However, itvgois that there is a scalability
issue if there is a significant number of sensors becauseutider of relational patterns
increases quadratically with the number of sensors; fomgka, the number of RPs could
be S(S — 1) whereS is the total number of sensors and total number of patterosrbe
S2. The explosion of the pattern space dimension may prolibitise of @ompleteSTPN
approach for monitoring of large systems under computatiand memory constraints.
However, for many real systems, a large fraction of relaiqratterns may have a very
low information content due to the lack of their physicalg(e electro-mechanical or via
feedback control loop) dependencies. Therefore, a prymogess needs to be established
to identify asufficientSTPN for a system. This section adopts an information-ttaor
measure based dviutual Informationto identify the importance of an AP or an RP. Mu-
tual information-based criteria have been very popularwsedul in general graph pruning
strategies [87, 88] including structure learning of BagadNetworks [89]. In the present
context, mutual information quantified on the correspogditate transition matrix essen-
tially provides the information contents of APs and RPs. Taecept of network pruning
strategy is briefly described below.

Mutual information for the atomic pattern of sensbis expressed as:

A A
I = 1(gi i a0) = Hlgi) — H(gi )

where

Qa

H(‘];?-H) == Z P(Q;?-i-l = i) logy P(‘];?-H = 1)
1=1



60 Soumik Sarkar, Soumalya Sarkar and Asok Ray

H(g)1lgn) = ZP H(gi g = 1)

Qa

H(q;?+1|%4 =i)=-— Zp(q;?_;’_l = l|q;;1 =1)-
=1

logy P(qjy = Ugf = 9)

The quantity/ 4 essentially captures the temporal self-prediction caipakself-loop) of

the sensord. However, as an extreme example, the AP for a random sentsondgy not

be very informative and its self mutual information becorne under ideal estimation.
Similarly, mutual information for the relational patteR1'Z is expressed as:

I8 = (P15 ) = H(gP,,) — H(gP1la?)

where

H(g)1lgn) = ZP H(qh\ g, =)

QB

H(gllgy =1i) ==Y Plaf, =1llg; = i)
=1

logy P(qyyy = llg; = 19)

The quantity7 47 essentially captures senséis capability of predicting sensds’s outputs

and vice versa fod?4. Similar to atomic patterns, an extreme example would be the
scenario where sensors and B are not co-dependent (i.e., sensbicompletely fails to
predict temporal evolution of sensB). In this caseR“Z is not very informative and“?

will also be zero under ideal estimation.

Therefore, mutual information is able to assign weightstengdatterns based on their
relative importance (i.e., information content). The nstdp is to select certain patterns
from the entire library of patterns based on a threshold emrtétric. In this section, patterns
are selected based on a measure of information gain duertocaémd relational patterns.
Formally, let the total information gaiff¢* is defined as the sum of mutual information for

all patterns, i.e.,
= > I (75)
(A,B)eSxS

whereS is set of all sensors. Now, the goal is to eliminate insigaiiicpatterns from the
setS x S of all patterns. Let the set of rejected patterns be dena@dd C S xS and the
corresponding information gain be denoted/gS. The set of rejected patterns is chosen
such that, for a specifiegle (0, 1),

re]

Itot < (76)
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Table 6. Sensors of the system

System | Sensor Physical Quantity
Electrical T, Torque output of PMSM
We Rotor speed of PMSM

Hydraulic | wp,, Angular Velocity of Hydraulic Pump
P, Pressure across Hydraulic Motor (HM)

Thm Torque output of HM
wrm  Angular Velocity of output shaft of HM
Thermal | T} Temperature

Table 7. Fault parameters of the system
System Fault parameter Symbol Range
Electrical Flux linkage of PMSM Wy Nominal0.05 + 0.005
Fault0.03 £ 0.005
Hydraulic | Volumetric Efficiency of HM vy, Nominal0.9 + 0.02
Fault0.8 + 0.02

Total Efficiency of HM Vim, Nominal0.8 + 0.02
Fault0.65 & 0.02
Thermal Thermal efficiency Vih Nominal0.9 &+ 0.02

Fault0.8 + 0.02

where mutual information for any pattern in the reject sesdth be smaller than the mutual
information for any pattern in the accepted Bt = (S x S) \ P, which is expressed
asI*B| 4 pyepres < I9P|(c, pyepace for a sufficiently smalk. In this sectiony) is chosen
as0.1 for the validation experiments. In the pruning strategis jpossible that all patterns
related to a certain sensor might be rejected, implying tthetsensor is not useful for the
purpose at hand. However, the user may choose an additionstraint to keep at least one
(atomic or relational) pattern for each sensor in the aetkepét of patterns.

Remark 5..1. In order to use the STPN for fault detection, a network of PESA be
identified following the above process under the nominatitmmn. Faulty conditions can
then be detected by identifying the changes in paramet&atedktto the accepted patterns.
However, under some severe faults, the causal dependeai@ctéristics (i.e., the structure
itself) among the sensor nodes may not remain invariantuét £ases, new structures of
the STPN can signify severely faulty conditions.

5.2. Fault Detection in Ship-board Auxiliary Unit via Sensa Fusion

This section presents and discusses the results of validafi the the sensor fusion al-
gorithm on the simulation test bed of shipboard auxiliargtegns described in subsection
2.4..
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5.2.1. Faultinjection, sensors, data partitioning

Each of the electrical, hydraulic and thermal subsystenteeghipboard auxiliary system
is provided with a set of sensors as listed in Table 6. In thmukition test bed, selected
parameters in each subsystem can be perturbed to indutedaduisted in Table 7.

The pertinent assumptions in the execution of fault detaciigorithms are delineated
below.

e At any instant of time, the system is subjected to at most dtigecfaults mentioned
in Table 7, because the occurrence of two simultaneoussfailather unlikely in
real scenarios.

e The mechanical efficiency of a hydraulic motor or a pump isiasd to stay constant
over the period of observation as the degradation of mashdne to wear and tear
occurs at a much slower rate with respect to the drop in efibgie

e The dynamical models in the simulation test bed are equipg#dstandard com-
mercially available sensors. Exploration of other feasigénsors (e.g., ultra-high
temperature sensors) to improve fault detection capisilis not the focus of this
study.

Figure 35 depicts a typical electromagnetic torque outpubbminal and PMSM fault
cases. As it is seen that the data itself is very noisy andtalfsedback control actions,
there is no significant observable difference in the two €asé-ig. 35. Information inte-
gration from disparate sensors has been performed to emltfaadetection & classification
accuracy in such critical fault scenarios.
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Figure 35. Electromagnetic torque under nominal and PM3M &onditions

For all the fault scenario$00 samples from each sensor are equally divided into two
parts for training and testing purposes. For symbolizatiaximum entropy partitioning
is used with alphabet siz&:| = 6 for all sensors althougi¥| does not need to be same
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for individual sensors. The depth for constructifg'S A states is taken to bB = 1 for
construction of both atomic pattern and relational patté&meduced set of these patterns
are aggregated to form the composite pattern, which serwvdéiseafeature classified by a
k-NN classifier (withk = 5) using the Euclidean distance metric for fault detectiddi.[4

5.2.2. Fusion with complete STPN

One sensor from each of the subsystems (I.effom thermal subsysteri,. from electrical
subsystem and},,, from hydraulic subsystem) is selected for sensor fusiordémtify
component faults in the system. The composite patterns)@P$ormed by concatenating
atomic and relational patterns. Therefore, while pattevita high information content
(based on the formulation above) help distinguishing beiwelasses, patterns with low
information content dilutes the ability of separating skes Therefore, removing non-
informative patterns may lead to reduction of both falsemaJanissed detection rates and
computational complexity. In this study, CPs consist opalsible APs and RPs @, T
andT},,,. Itis seen in Table 8 that CPs perform better for detectiadh@hominal condition
than individual sensors, but the false alarm rate is stjhhi

Table 8. Fault classification accuracy by exhaustive fusion
class Ty Te Thm CP
Nominal 2%  42% 2%  68%
PMSM fault | 30% 100% 40%  84%
HM fault 40%  100% 100% 100%
Thermal fault| 100%  58%  44%  100%

5.2.3. Pruning of STPN

Pruning of large sensor networks of the given system is gitednhere to reduce the com-
plexity of fusion and improve the detection accuracy by gapg the essential spatiotem-
poral dynamics of the system. Left half of the Fig. 36 showslly ftonnected graph of

seven sensors of the system where each node is a sensaediiesial arcs among them
depict the RPs in both directions and self-loops are the ARggponding to sensors.

The right half of Fig. 36 demonstrates the pruned STPN, wtterehickness of arcs
represents the intensity of mutual information of the RPsmgnsensors. Both directions
of arrows are preserved as the mutual information of the twymositely directed RPs for a
pair of sensors are comparable. In this example, all thel@gfs are kept intact and arcs
with negligible mutual information are omitted from the gha In this simulation study,
the structure of the reduced STPN is observed to remainestablall the fault classes.
The reduction in complexity of network graph is more sigmificin larger STPNs. The
following two scenarios are chosen to justify the credipitif the pruned STPN in the light
of fault detection accuracy.
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Figure 36. Pruning of STPN

Reduction of false alarm rates

The same set of sensors, namély, T, and7},,,, are selected as the STPN and it is sub-
jected to the proposed pruning technique, which resultscionaposite pattern of AP df,
(117¢) and two RPsIf »=Te T1T»mTs as shown by two thick arcs in Fig. 36). This action
significantly reduces the false alarm rate as seen in TaMé&e APs ofl; and7j,,, are
dropped from the CP because these patterns do not fachiédtier detection. Also PMSM
fault detection accuracy does not degrade fri@9% unlike fusion with complete STPN.
Hence, this pruning technique reduces a CP contaifipagtterns (i.e.3 APs,6 RPs) to a
CP of three APs and two RPs along with providing better clapambility.

Table 9. Comparison of false alarm rate generated by exhaustivesérson and pruned

STPN
Fusion type | False alarm rate
complete STPN 32%
Pruned STPN 8%

Adaptability to malfunctioning sensors

In a distributed physical process, such as the shipboariiaayxsystem under consider-
ation, malfunctioning of primary sensors in a subsystem pgaasible event. One of the
current challenges in the fault detection area is to idgrgtifault in the subsystem with
malfunctioning sensors from the sensor responses of theystgms that are electrome-
chanically connected. To simulate that situation, thrém@rheterogenous sensors from
the hydraulic subsystem, namely;,,, Py, and7},,, are selected and a fault is injected to
the thermal subsystem by degrading the thermal efficieresy Table 7). Thd'; sensor of
thermal subsystem is chosen to be the malfunctioning seargbhence it is not incorpo-
rated in the detection process of thermal fault.

As the individual sensors of the hydraulic subsystem perforather poorly in de-
tecting thermal faults as seen in Table. 10, the informafiom these three sensors are
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Table 10. Thermal fault detection by sensors of hydraulic subsystem
whp th Thm CP
Detection accuracy 58% 18% 18% T70%

fused by applying the proposed pruning technique on thedwidrsubsystem. The pruned
STPN yields a CP consisting of an AP of,, (II"’»») and two RPs, namelyJ»m®re and
7»mwrpy | depicted by two thin arcs in Fig. 36; it results in a decenecdkon accuracy of
70% as seen in Table 10.

6. Summary, Conclusions and Future Research

The chapter presents some of the key recent developmente aftdchastic time-series
analysis tool called the symbolic dynamic filtering (SDF)wa special emphasis on its ap-
plication in the field of fault detection and diagnostics ofrplex industrial systems. Three
major aspects of the tool are highlighted: (i) data-spastrattion via partitioning, (ii) en-
coding and pattern classification of time-series motifs @ndspatio-temporal information
fusion. Validation results are presented on high fideliguistrial testbeds of various do-
mains, such as aircraft gas turbine engines, fatigue daprafpems, nuclear power plants
and ship-board auxiliary systems. The major advantagéd o' for detecting both small
and large changes in a dynamical system are listed below:

e Robustness to measurement noise and spurious operatistuebences [12]

e Adaptability to low-resolution sensing due to the coarsairgng in space parti-
tions [15]

e Capability for early detection of anomalies because of iieityg to signal distor-
tion [90]

e real-time execution on commercially available inexpeagilatforms [6][90].

While the above mentioned advantages have been demodsimateultiple industrial
system testbeds and small-scale laboratory setups, a kegtap is to validate the concepts
on real-life systems in order to reduce possible risks anckase robustness. Apart from
that, some of the broader research directions that arerntlyrteeing pursued are:

e From early detection to prognosticSDF has been particularly useful for early detec-
tion of anomalies in complex systems. Animportant curremtivis concentrating on
how to translate this capability to a prognostics capabilibich is absolutely crucial
especially for safety-critical systems.

e Contextual adaptatianTo become a sustainable health monitoring tool over tlee lif
cycles of industrial systems, SDF will be required to adasdal on contexts regard-
ing internal operations or external environment. Futuseaech will be dedicated to
build in and automate different contextual adaptationuiest in SDF.
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e Soft data integration and HMIIt is increasingly becoming obvious in the machine
learning community that exploiting human knowledge andnhtan be significantly
more rewarding compared to designing a completely autairsytetems. To this end,
a unified mathematical framework is being investigated tiaat accommodate both
human and machine information.

e Mathematics of PFSAA recent development on Hilbert space formulation of Prob-
abilistic Finite State Automata (PFSA) [91] demonstratgohth of formalizing the
SDF developments that can be particularly useful for infation fusion purposes.
Further studies are being pursued to investigate this aragreater detail.
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